最小二乘法的基本原理和多项式拟合

合集下载

最小二乘多项式拟合

最小二乘多项式拟合

最小二乘多项式拟合最小二乘多项式拟合,是一种常用的数据拟合方法,在各个学科领域都有广泛的应用。

它通过寻找最佳拟合曲线来近似描述一组离散数据点的趋势和规律。

在工程、统计学、经济学等领域,这种方法被广泛用于数据分析、曲线预测和模型建立。

首先,我们来看一下最小二乘拟合的基本原理。

在数据拟合过程中,我们通常假设数据是由一个未知函数生成的,而我们的目标是找到一个多项式函数,使得该多项式函数与数据之间的拟合误差最小。

为了达到这个目标,最小二乘拟合采用了最小化残差平方和的策略。

残差即为观测值与拟合值之间的差值,通过求解残差平方和的最小值,我们可以得到最佳拟合曲线的参数。

在最小二乘多项式拟合中,我们通常假设待拟合的数据点(x,y)满足下述形式的多项式方程:y=a0+a1*x+a2*x^2+...+ an*x^n,其中a0,a1,a2,...,an为待求的参数。

我们可以通过求解该多项式方程的系数,得到最佳拟合曲线。

在实际应用中,为了选择最佳的多项式次数,我们需要考虑过拟合和欠拟合的问题。

过拟合指的是模型过于复杂,过度适应了训练数据,但对新数据的预测效果较差;欠拟合则代表模型过于简单,无法很好地拟合数据的真实规律。

为此,我们可以引入交叉验证等方法,来选择合适的多项式次数,以平衡模型的复杂度和拟合能力。

此外,最小二乘多项式拟合还可以应用于数据的预测和模型建立。

对于已知的数据点,我们可以通过最小二乘方法拟合得到多项式函数,进而预测未知数据点的值。

这在实际中有很多应用,比如股票市场预测、天气预测等。

同时,最小二乘拟合还可以作为其他模型的基础,用于构建更复杂的模型,如神经网络、支持向量机等。

最后,最小二乘多项式拟合方法还有一些应注意的问题。

由于数据的分布情况和噪声的存在,最小二乘拟合可能对异常值比较敏感,因此需要在拟合过程中进行数据清洗和异常值处理。

此外,最小二乘拟合假设了数据之间是无相关的,因此在某些情况下,如时间序列数据的拟合中,可能并不适用。

直线拟合的四种方法

直线拟合的四种方法

直线拟合的四种方法直线拟合是一种常见的数据分析方法,用于找到一条直线来描述数据集中的趋势。

在实际应用中,直线拟合常用于回归分析、统计建模、机器学习等领域。

下面将介绍四种常用的直线拟合方法。

1. 最小二乘法(Least Squares Method)最小二乘法是最常见的直线拟合方法之一、该方法的基本思想是通过最小化实际观测数据点与直线的残差平方和来确定最佳拟合直线。

具体步骤如下:(1)给定包含n个数据点的数据集;(2) 设直线方程为y = ax + b,其中a为斜率,b为截距;(3)计算每个数据点到直线的垂直距离,即残差;(4)将残差平方和最小化,求解a和b的值。

2. 总体均值法(Method of Overall Averages)总体均值法也是一种常用的直线拟合方法。

该方法的基本思想是通过计算数据集的x和y的均值,将直线拟合到通过这两个均值点的直线上。

具体步骤如下:(1)给定包含n个数据点的数据集;(2) 计算x和y的均值,即x_mean和y_mean;(3) 利用直线方程y = a(x - x_mean) + y_mean拟合数据。

3. 多项式拟合法(Polynomial Fitting Method)多项式拟合法是一种常见的直线拟合方法,适用于数据集中存在非线性趋势的情况。

该方法的基本思想是通过将数据拟合到多项式模型,找到最佳拟合直线。

具体步骤如下:(1)给定包含n个数据点的数据集;(2) 设多项式方程为y = a0 + a1*x + a2*x^2 + ... + an*x^n;(3) 通过最小二乘法求解a0, a1, a2, ..., an的值;(4)通过求解得到的多项式方程进行数据拟合。

4. 支持向量机(Support Vector Machine)支持向量机是一种经典的机器学习方法,适用于直线拟合问题。

该方法的基本思想是找到离数据集最近的点,然后构建一条平行于这两个点的直线。

具体步骤如下:(1)给定包含n个数据点的数据集;(2)将数据点划分为两个类别,如正类和负类;(3)找到离两个类别最近的点,将其作为支持向量;(4)根据支持向量构建一条平行于两个类别的直线,使得两个类别之间的间隔最大化。

最小二乘法原理

最小二乘法原理

最小二乘法原理1. 概念 最小二乘法多项式曲线拟合,根据给定的m 个点,并不要求这条曲线精确地经过这些点,而是曲线y=f(x)的近似曲线y= φ(x)。

2. 原理给定数据点pi(xi,yi),其中i=1,2,…,m 。

求近似曲线y= φ(x)。

并且使得近似曲线与y=f(x)的偏差最小。

近似曲线在点pi 处的偏差δi= φ(xi)-yi ,i=1,2,...,m 。

常见的曲线拟合方法:1. 是偏差绝对值最小11min (x )y m mi i i i i φδφ===-∑∑ 2. 是最大的偏差绝对值最小min max (x )y i i i iφδϕ=- 3. 是偏差平方和最小2211min ((x )y )m mii i i i φδϕ===-∑∑ 按偏差平方和最小的原则选取拟合曲线,并且采取二项式方程为拟合曲线的方法,称为最小二乘法。

推导过程:1. 设拟合多项式为:01...k k y a a x a x =+++2. 各点到这条曲线的距离之和,即偏差平方和如下:22011(...)m k i i k i i R y a a x a x =⎡⎤=-+++⎣⎦∑ 3. 为了求得符合条件的a 值,对等式右边求ak 偏导数,因而我们得到了:0112(...)0m k i k i i y a a x a x =⎡⎤--+++=⎣⎦∑0112(...)0m k ik i i y a a x a x x =⎡⎤--+++=⎣⎦∑……..0112( 0k k i k i i y a a x a x x =⎡⎤--+++=⎣⎦∑4. 将等式简化一下,得到下面的式子01111...n n nki k ii i i i a n a x a x y ===+++=∑∑∑ 21011111...n n n nk i ik i i i i i i i a x a x a x y x +====+++=∑∑∑∑ ……12011111...n n n nkk k k ii k i i i i i i i a x a x a x y x +====+++=∑∑∑∑ 5. 把这些等式表示成矩阵形式,就可以得到下面的矩阵:11102111111121111.........n n n k i i i i i i n n n n k i i i i i i i i i n n n n k k k k k i i i i i i i i i n x x y a a x x x x y a x x x x y ===+====+====⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦∑∑∑∑∑∑∑∑∑∑∑ 6. 将这个范德蒙矩阵化简后得到:011112221...1...1...k k k k n n n a y x x a y x x a y x x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦。

最小二乘法的基本原理和多项式拟合matlab实现_0

最小二乘法的基本原理和多项式拟合matlab实现_0

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 最小二乘法的基本原理和多项式拟合matlab实现最小二乘法的基本原理和多项式拟合 matlab 实现最小二乘法的基本原理和多项式拟合一、最小二乘法的基本原理从整体上考虑近似函数 p(x) 同所给数据点(xi, yi) (i=0, 1, , m) 误差 ri p(xi) yi(i=0, 1, , m) 的大小,常用的方法有以下三种:一是误差 riri p(xi) yi(i=0, 1, , m) 绝对值的最大值max0 i m,即误差向量 r (r0, r1, rm) T 的范数;二是误差绝对值的和i 0mri,即误差向量 r 的 1范数;三是误差平方和 i 0 rm2i 的算术平方根,即误差向量 r 的 2范数;前两种方法简单、自然,但不便于微分运算,后一种方法相当于考虑 2范数的平方,因此在曲线拟合中常采用误差平方和 i 0 体大小。

rm2i 来度量误差 ri(i=0, 1,, m) 的整数据拟合的具体作法是:对给定数据 (xi, yi) (i=0, 1, , m) ,在取定的函数类中,求 p(x) , 使误差 ri p(xi) yi(i=0, 1, , m)的平方和最小,即 i 0 rm2i i 0 p(x) y iim2 min 从几何意义上讲,就是寻求与给定点(xi, yi) (i=0, 1, , m) 的距离平方和为最小的曲线y p(x) (图 6-1)。

函数 p(x) 称为拟合函数或最小二乘解,求拟合函数 p(x) 的1 / 15方法称为曲线拟合的最小二乘法。

在曲线拟合中,函数类可有不同的选取方法 .61 二多项式拟合为所有次数不超过 n(n m) 的多项式构假设给定数据点(xi, yi) (i=0, 1, , m) , pn(x) akxkk 0n 成的函数类,现求一 m , 使得 2 I pn(xi) yi i 0 2 n akxik yi mini 0 k0 (1) m 当拟合函数为多项式时,称为多项式拟合,满足式(1)的 pn(x) 称为最小二乘拟合多项式。

最小二乘法的原理及在建模中的应用分析

最小二乘法的原理及在建模中的应用分析

最小二乘法的原理及在建模中的应用分析最小二乘法(least squares method)是一种数学优化方法,用于解决线性回归和非线性回归问题,通过求取使得误差平方和最小化的参数估计值。

它的原理是寻找一条最佳拟合曲线或平面,使得观测值与拟合值之间的误差最小。

在线性回归问题中,最小二乘法可以用来估计回归模型的参数。

假设我们有n个样本点{(x1, y1), (x2, y2), ..., (xn, yn)},其中yi是对应的观测值,我们想要找到一个线性模型y = ax + b,使得拟合值与观测值之间的误差最小。

这个问题可以通过最小化误差平方和来求解。

误差平方和定义为E(a, b) = Σ(yi - (axi + b))^2,我们需要找到使得E(a, b)最小的a和b。

∂E/∂a = -2Σ(xi(yi - (axi + b))) = 0∂E/∂b = -2Σ(yi - (axi + b)) = 0将上述方程进行化简,可以得到如下的正规方程组:Σ(xi^2)a + Σ(xi)b = Σ(xi yi)Σ(xi)a + nb = Σ(yi)解这个方程组,可以得到最小二乘估计的参数值。

1.线性回归分析:最小二乘法可以用于估计线性回归模型的参数。

通过最小二乘估计,可以得到最佳拟合直线,并用这条直线来预测因变量。

2.时间序列分析:最小二乘法可以用于拟合时间序列模型。

通过寻找最佳拟合函数,可以识别出序列中的趋势和周期性变化。

3.统计数据处理:最小二乘法可以用于数据平滑和滤波处理。

通过拟合一个平滑曲线,可以去除数据中的噪声和不规则波动,从而提取出数据中的趋势信息。

4.多项式拟合:最小二乘法可以用于多项式拟合。

通过最小二乘估计,可以拟合出多项式函数,将其用于数据拟合和函数逼近。

5.曲线拟合:最小二乘法可以用于非线性曲线拟合。

通过选择合适的函数形式,并通过最小二乘估计求解参数,可以拟合出复杂的非线性曲线。

总之,最小二乘法是一种常用的参数估计方法,可以用于线性回归、非线性拟合、时间序列分析等多种建模问题。

多项式最小二乘拟合

多项式最小二乘拟合

多项式最小二乘拟合是一种常见的数学方法,可以用于解决数据分析和预测问题。

本文将详细介绍的原理、应用以及注意事项。

一、原理是一种基于最小二乘法的数学方法。

最小二乘法是一种寻找函数与数据拟合的方法,它试图寻找一个函数来最小化数据点和该函数之间的距离之和。

最小二乘法通常用于数据拟合、回归分析、统计模型构建和信号处理等领域。

是在多项式模型的基础上使用最小二乘法拟合数据。

多项式模型一般形式为:y = a0 + a1*x + a2*x^2 + …… + an*x^n其中y为因变量,x为自变量,a0、a1、a2……an是待定系数,n为多项式的阶数。

的目标是寻找一组系数a0、a1、a2……an,使得对于给定的数据点(xi, yi),拟合函数f(xi)与实际值yi的偏差最小。

二、应用可以应用于很多领域,例如:1. 数据分析:可以用于分析数据,找出数据中的规律和趋势。

2. 预测分析:可以用于预测未来的趋势和走势。

3. 信号处理:可以用于处理信号,找出信号中的噪声和信号。

4. 工程应用:可以应用于工程设计、系统优化等领域。

三、注意事项1. 数据要求:需要一组数据来进行拟合计算,因此数据质量很重要。

数据应该尽量准确、完整、真实。

2. 模型选择:中的多项式阶数对于模型的精度和复杂度有很大的影响。

因此,在选择模型时应该考虑到模型与数据的适应性和效率。

3. 拟合误差:中的误差也是需要考虑的问题。

拟合误差越小,模型的预测精度就越高。

当拟合误差过大时,需要重新检验数据和模型选择。

四、总结是一种基于最小二乘法的数学方法,可以用于解决数据分析和预测问题。

在实际应用中,应该注重数据的质量、模型的选择和拟合误差的控制,以确保拟合结果的准确性和可靠性。

最小二乘法多项式拟合原理

最小二乘法多项式拟合原理

最小二乘法多项式拟合原理最小二乘法多项式拟合原理最小二乘法是一种数学方法,用于寻找一个函数,使得该函数与已知数据点的残差平方和最小化。

尤其在数据分析和统计学中广泛应用,其中特别重要的应用是曲线拟合。

本文将介绍最小二乘法在多项式拟合中的原理。

多项式拟合多项式拟合是一种常见的曲线拟合方法,它将数据点逼近为一个固定次数的多项式。

假设有N个数据点(x1,y1),(x2,y2),…,(xN,yN),希望找到一个关于x的M次多项式函数y=a0+a1x+a2x^2+...+aMx^M,最小化拟合曲线与数据点之间的残差平方和,即S(a0,a1,…,aM)=∑i=1N(yi−P(x))2其中P(x)=a0+a1x+a2x^2+...+aMx^M。

最小二乘法最小二乘法是一种优化方法,通过最小化残差平方和,寻找最优的拟合函数参数。

在多项式拟合中,残差平方和的最小值可以通过相应的求导数为零来计算拟合函数参数。

设残差平方和S的导数为零得到的方程组为∑xi0,…,xiMaM=∑yi⋅xi0,…,xiM,其中M+1个未知量为a0,a1,…,aM,共有M+1个方程,可以使用线性代数解决。

拟合错误与选择问题使用较高次数的多项式进行拟合,可能会导致过度拟合,使得拟合函数更接近每个数据点,因此更难以预测它们之间的关系。

另一方面,使用过低次数的多项式无法反映出数据点之间的较细节的关系。

因此,在实践中,我们需要权衡多项式次数和误差,以找到一个最合适的拟合结果。

总结最小二乘法是一种常用的曲线拟合方法,在多项式拟合中广泛应用。

通过最小化残差平方和,可以找到最优的拟合函数参数,权衡多项式次数和误差,可以得出最合适的拟合结果。

加权最小二乘法 拟合多项式 matlab

加权最小二乘法 拟合多项式 matlab

加权最小二乘法(Weighted Least Squares, WLS)是一种经典的拟合方法,用于处理数据中的噪声和异常值。

在拟合多项式的过程中,加权最小二乘法能够更好地适应不同的数据权重,从而得到更准确、更可靠的拟合结果。

结合Matlab强大的数学计算和可视化工具,我们可以更方便、更高效地实现加权最小二乘法拟合多项式。

一、加权最小二乘法的基本原理1. 加权最小二乘法的概念在拟合多项式过程中,常常会遇到数据噪声较大或者部分数据异常值较大的情况。

此时,普通的最小二乘法可能无法有效地拟合数据,因此需要引入加权最小二乘法。

加权最小二乘法通过为每个数据点赋予不同的权重,对异常值和噪声进行更有效的处理。

2. 加权最小二乘法的数学原理加权最小二乘法的数学原理主要是在最小化误差的基础上,引入权重矩阵来调整不同数据点的重要性。

通过优化残差的加权和,可以得到适应不同权重的拟合结果。

二、Matlab中的加权最小二乘法1. Matlab工具Matlab提供了丰富的数学计算和拟合工具,通过内置的polyfit函数和curve fitting工具箱,可以方便地实现加权最小二乘法拟合多项式。

Matlab还提供了丰富的可视化工具,可以直观展示加权最小二乘法的拟合效果。

2. 加权最小二乘法的实现在Matlab中,可以通过指定权重向量来调用polyfit函数,实现加权最小二乘法拟合多项式。

利用Matlab内置的拟合评估工具,可以对拟合效果进行全面评估和优化。

三、实例分析以实际数据为例,我们可以在Matlab环境下进行加权最小二乘法的拟合多项式实例分析。

通过构建数据模型、指定权重、调用polyfit函数并结合可视化工具,可以全面了解加权最小二乘法在拟合多项式中的应用效果。

四、个人观点和总结在实际工程和科学研究中,加权最小二乘法拟合多项式是一种非常有效和重要的数据处理方法。

结合Matlab强大的数学计算和可视化工具,可以更方便、更高效地实现加权最小二乘法拟合多项式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最小二乘法的基本原理和多项式拟合
一最小二乘法的基本原理
从整体上考虑近似函数同所给数据点 (i=0,1,…,m)误差
(i=0,1,…,m)的大小,常用的方法有以下三种:一是误差
(i=0,1,…,m)绝对值的最大值,即误差向量
的∞—范数;二是误差绝对值的和,即误差向量r的1—范数;三是误差平方
和的算术平方根,即误差向量r的2—范数;前两种方法简单、自然,但不便于微分运算,后一种方法相当于考虑 2—范数的平方,因此在曲线拟合中常采用误
差平方和来度量误差 (i=0,1,…,m)的整体大小。

数据拟合的具体作法是:对给定数据 (i=0,1,…,m),在取定的函数类中,求,使误差(i=0,1,…,m)的平方和最小,即
=
从几何意义上讲,就是寻求与给定点 (i=0,1,…,m)的距离平方和为最小的曲线(图6-1)。

函数称
为拟合函数或最小二乘解,求拟合函数的方法称为曲线拟合的最小二乘法。

在曲线拟合中,函数类可有不同的选取方法.
6—1
二多项式拟合
假设给定数据点 (i=0,1,…,m),为所有次数不超过的多项式构成的函数类,现求一,使得
(1)
当拟合函数为多项式时,称为多项式拟合,满足式(1)的称为最小二乘拟合多项式。

特别地,当n=1时,称为线性拟合或直线拟合。

显然
为的多元函数,因此上述问题即为求的极值问题。

由多元函数求极值的必要条件,得
(2)

(3)
(3)是关于的线性方程组,用矩阵表示为
(4)
式(3)或式(4)称为正规方程组或法方程组。

可以证明,方程组(4)的系数矩阵是一个对称正定矩阵,故存在唯一解。

从式(4)中解出 (k=0,1,…,n),从而可得多项式
(5)
可以证明,式(5)中的满足式(1),即为所求的拟合多项式。

我们把称为最小二乘拟合多项式的平方误差,记作
由式(2)可得
(6)
多项式拟合的一般方法可归纳为以下几步:
(1) 由已知数据画出函数粗略的图形——散点图,确定拟合多项式的次数n;
(2) 列表计算和;
(3) 写出正规方程组,求出;
(4) 写出拟合多项式。

在实际应用中,或;当时所得的拟合多项式就是拉格朗日或牛顿插值多项式。

例1 测得铜导线在温度(℃)时的电阻如表6-1,求电阻R与温度 T的近似函数关系。

i 0 1 2 3 4 5 6
19.1 25.0 30.1 36.0 40.0 45.1 50.0
(℃)
76.30 77.8 79.25 80.8 82.35 83.9 85.1
解画出散点图(图6-2),可见测得的数据接近一条直线,故取n=1,拟合函数为
列表如下
i
0 19.1 76.30 364.81 1457.330
1 25.0 77.80 625.00 1945.000
2 30.1 79.25 906.01 2385.425
3 36.0 80.80 1296.00 2908.800
4 40.0 82.3
5 1600.00 3294.000
5 45.1 83.90 2034.01 3783.890
6 50.0 85.10 2500.00 4255.000
245.3 565.5 9325.83 20029.445
正规方程组为
解方程组得
故得R与T的拟合直线为
利用上述关系式,可以预测不同温度时铜导线的电阻值。

例如,由R=0得T=-242.5,即预测温度T=-242.5℃时,铜导线无电阻。

6-2
例2已知实验数据如下表
i 0 1 2 3 4 5 6 7 8
1 3 4 5 6 7 8 9 10
10 5 4 2 1 1 2 3 4
试用最小二乘法求它的二次拟合多项式。

解设拟合曲线方程为
列表如下
I
0 1 10 1 1 1 10 10
1 3 5 9 27 81 15 45
2 4 4 16 64 256 16 64
3 5 2 25 125 625 10 50
4 6 1 36 216 1296 6 36
5 7 1 49 343 2401 7 49
6 8 2 64 512 4096 16 128
7 9 3 81 729 6561 27 243
8 10 4 100 1000 10000 40 400
53 32 381 3017 25317 147 1025 得正规方程组
解得
故拟合多项式为
*三最小二乘拟合多项式的存在唯一性
定理1 设节点互异,则法方程组(4)的解存在唯一。

证由克莱姆法则,只需证明方程组(4)的系数矩阵非奇异即可。

用反证法,设方程组(4)的系数矩阵奇异,则其所对应的齐次方程组
(7)
有非零解。

式(7)可写为
(8)
将式(8)中第j个方程乘以 (j=0,1,…,n),然后将新得到的n+1个方程左右两
端分别相加,得
因为
其中
所以
(i=0,1,…,m)
是次数不超过n的多项式,它有m+1>n个相异零点,由代数基本定理,必须有,与齐次方程组有非零解的假设矛盾。

因此正规方程组(4)必
有唯一解。

定理2 设是正规方程组(4)的解,则是满足式(1)的最小二乘拟合多项式。

证只需证明,对任意一组数组成的多项式,恒有
即可。

因为 (k=0,1,…,n)是正规方程组(4)的解,所以满足式(2),因此有
故为最小二乘拟合多项式。

*四多项式拟合中克服正规方程组的病态
在多项式拟合中,当拟合多项式的次数较高时,其正规方程组往往是病态的。

而且
①正规方程组系数矩阵的阶数越高,病态越严重;
②拟合节点分布的区间偏离原点越远,病态越严重;
③ (i=0,1,…,m)的数量级相差越大,病态越严重。

为了克服以上缺点,一般采用以下措施:
①尽量少作高次拟合多项式,而作不同的分段低次拟合;
②不使用原始节点作拟合,将节点分布区间作平移,使新的节点关于原点对称,可大大降低正规方程组的条件数,从而减低病态程度。

平移公式为:
(9)
③对平移后的节点(i=0,1,…,m),再作压缩或扩张处理:
(10)
其中,(r是拟合次数)(11)
经过这样调整可以使的数量级不太大也不太小,特别对于等距节点
,作式(10)和式(11)两项变换后,其正规方程组的系数矩阵设为A,则对1~4次多项式拟合,条件数都不太大,都可以得到满意的结果。

变换后的条件数上限表如下:
拟合次数 1 2 3 4
=1 <9.9 <50.3 <435
④在实际应用中还可以利用正交多项式求拟合多项式。

一种方法是构造离散正交多项式;另一种方法是利用切比雪夫节点求出函数值后再使用正交多项式。

这两种方法都使正规方程组的系数矩阵为对角矩阵,从而避免了正规方程组的病态。

我们只介绍第一种,见第三节。

例如 m=19, =328,h=1, =+ih,i=0,1,…,19,即节点分布在[328,347],作二次多项式拟合时
①直接用构造正规方程组系数矩阵,计算可得
严重病态,拟合结果完全不能用。

②作平移变换
用构造正规方程组系数矩阵,计算可得
比降低了13个数量级,病态显著改善,拟合效果较好。

③取压缩因子
作压缩变换
用构造正规方程组系数矩阵,计算可得
又比降低了3个数量级,是良态的方程组,拟合效果十分理想。

如有必要,在得到的拟合多项式中使用原来节点所对应的变量x,可写为仍为一个关于x的n次多项式,正是我们要求的拟合多项式。

相关文档
最新文档