常微分方程的数值解法(欧拉法、改进欧拉法、泰勒方法和龙格库塔法)

合集下载

常微分方程数值解法-欧拉法、改进欧拉法与四阶龙格库塔法常微分方程数值解法

常微分方程数值解法-欧拉法、改进欧拉法与四阶龙格库塔法常微分方程数值解法

y( xn1)
y( xn
Байду номын сангаас
h)
y(xn )
hy'( xn )
h2 2!
y''( )
进一步: 令
h2 y( xn ) hy'( xn ) 2! y''( xn )
常微分方 yn1 y( xn1 ) , yn y( xn )
程数值解
法-欧拉法 yn1 yn hf ( xn , yn ) h2
、改进欧 y( xn1 ) yn1
2
max y''( x)
a xb
拉法和四
三、Euler方法
已 知 初 值 问 题 的 一 般 形式 为:
dy
dx
f (x, y)
a xb
(1)
y( x0 ) y0
常微分方 用差商近似导数 程数值解 问题转化为
yn1 yn dy
h
dx
法-欧拉法 yn1 yn hf ( xn , yn )
法-欧 y(拉0) 法1
、改进欧
拉法和四
四、几何意义
由 x0 , y0 出发取解曲线 y yx 的切线(存在!),则斜率
dy
f x0, y0
dx x y
,
0
0
常微分方 由于 f x0, y0 及 x0, y0 已知,必有切线方程。
由点斜式写出切程线方数程:值解
法、-改欧进拉欧法 ddxy y y0 x x0
常微分方 程数值解 能用解析方法求出精确解的微分方程为数不多,
而且有的方程即使有解析解,也可能由于解的表达
法-欧拉法 式非常复杂而不易计算,因此有必要研究微分方程

求常微分方程的数值解

求常微分方程的数值解

求常微分方程的数值解一、背景介绍常微分方程(Ordinary Differential Equation,ODE)是描述自然界中变化的数学模型。

常微分方程的解析解往往难以求得,因此需要寻找数值解来近似地描述其行为。

求解常微分方程的数值方法主要有欧拉法、改进欧拉法、龙格-库塔法等。

二、数值方法1. 欧拉法欧拉法是最简单的求解常微分方程的数值方法之一。

它基于导数的定义,将微分方程转化为差分方程,通过迭代计算得到近似解。

欧拉法的公式如下:$$y_{n+1}=y_n+f(t_n,y_n)\Delta t$$其中,$y_n$表示第$n$个时间步长处的函数值,$f(t_n,y_n)$表示在$(t_n,y_n)$处的导数,$\Delta t$表示时间步长。

欧拉法具有易于实现和理解的优点,但精度较低。

2. 改进欧拉法(Heun方法)改进欧拉法又称Heun方法或两步龙格-库塔方法,是对欧拉法进行了精度上提升后得到的一种方法。

它利用两个斜率来近似函数值,并通过加权平均来计算下一个时间步长处的函数值。

改进欧拉法的公式如下:$$k_1=f(t_n,y_n)$$$$k_2=f(t_n+\Delta t,y_n+k_1\Delta t)$$$$y_{n+1}=y_n+\frac{1}{2}(k_1+k_2)\Delta t$$改进欧拉法比欧拉法精度更高,但计算量也更大。

3. 龙格-库塔法(RK4方法)龙格-库塔法是求解常微分方程中最常用的数值方法之一。

它通过计算多个斜率来近似函数值,并通过加权平均来计算下一个时间步长处的函数值。

RK4方法是龙格-库塔法中最常用的一种方法,其公式如下:$$k_1=f(t_n,y_n)$$$$k_2=f(t_n+\frac{\Delta t}{2},y_n+\frac{k_1\Delta t}{2})$$ $$k_3=f(t_n+\frac{\Delta t}{2},y_n+\frac{k_2\Delta t}{2})$$ $$k_4=f(t_n+\Delta t,y_n+k_3\Delta t)$$$$y_{n+1}=y_n+\frac{1}{6}(k_1+2k_2+2k_3+k_4)\Delta t$$三、数值求解步骤对于给定的常微分方程,可以通过以下步骤求解其数值解:1. 确定初值条件:确定$t=0$时刻的函数值$y(0)$。

数值分析常微分方程的数值解法

数值分析常微分方程的数值解法

《计算机数学基础》数值部分第五单元辅导14 常微分方程的数值解法一、重点内容 1. 欧拉公式:),...,,,(),()(1-210=⎩⎨⎧+=+=≈01+1+n k kh x x y x hf y y x y kk k k k k局部截断误差是O (h 2)。

2. 改进欧拉公式:预报-校正公式:⎪⎩⎪⎨⎧++=+=++++)],(),([2),(1111k k k k k k k k k k y x f y x f hy y y x hf y y 校正值预报值即 ))],(,(),([211k k k k k k k k y x hf y x f y x f hy y +++=++ 或表成平均的形式:⎪⎪⎪⎩⎪⎪⎪⎨⎧+21=+=+=1+1+)(),(),(c p k p k k c k k k p y y y y x hf y y y x hf y y改进欧拉法的局部截断误差是O (h 3)3. 龙格-库塔法二阶龙格-库塔法的局部截断误差是O (h 3) 三阶龙格-库塔法的局部截断误差是O (h 4) 四阶龙格−库塔法公式: )22(643211κκκκ++++=+hy y k k其中 κ1=f (x k ,y k );κ2=f (x n +12h ,y k +21h κ1);κ3=f (x k +12h ,y n +21h κ2);κ4=f (x k +h ,y k +h κ3)四阶龙格-库塔法的局部截断误差是O (h 5)。

二、实例例1 用欧拉法解初值问题⎩⎨⎧1=060≤≤0--='2)().(y x xy y y ,取步长h =0.2。

计算过程保留4位小数。

解h =0.2, f (x )=-y -xy 2。

首先建立欧拉迭代格式),,)((.),(210=-420=--=+=21+k y x y y hx hy y y x hf y y k k k kk k k k k k k当k =0,x 1=0.2时,已知x 0=0,y 0=1,有y (0.2)≈y 1=0.2×1(4-0×1)=0.8000当k =1,x 2=0.4时,已知x 1=0.2, y 1=0.8,有 y (0.4)≈y 2=0.2×0.8×(4-0.2×0.8)=0.614 4 当k =2,x 3=0.6时,已知x 2=0.4,y 2=0.6144,有 y (0.6)≈y 3=0.2×0.6144×(4-0.4×0.4613)=0.8000例2 用欧拉预报-校正公式求解初值问题⎩⎨⎧1=10=++'2)(sin y x y y y ,取步长h =0.2,计算y (0.2),y (0.4)的近似值,计算过程保留5位小数。

常微分方程的数值解法(欧拉法、改进欧拉法、泰勒方法和龙格库塔法)

常微分方程的数值解法(欧拉法、改进欧拉法、泰勒方法和龙格库塔法)

[例1]用欧拉方法与改进的欧拉方法求初值问题h 的数值解。

在区间[0,1]上取0.1[解]欧拉方法的计算公式为x0=0;y0=1;x(1)=0.1;y(1)=y0+0.1*2*x0/(3*y0^2);for n=1:9x(n+1)=0.1*(n+1);y(n+1)=y(n)+0.1*2*x(n)/(3*y(n)^2);end;xy结果为x =Columns 1 through 80.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 Columns 9 through 100.9000 1.0000y =Columns 1 through 81.0000 1.0067 1.0198 1.0391 1.0638 1.0932 1.1267 1.1634 Columns 9 through 101.2028 1.2443改进的欧拉方法其计算公式为本题的精确解为()y x=x0=0;y0=1;ya(1)=y0+0.1*2*x0/(3*y0^2);y(1)=y0+0.05*(2*x0/(3*y0^2)+2*x0/(3*ya^2));for n=1:9x(n+1)=0.1*(n+1);ya(n+1)=ya(n)+0.1*2*x(n)/(3*ya(n)^2);y(n+1)=y(n)+0.05*(2*x(n)/(3*y(n)^2)+2*x(n+1)/(3*ya(n+1)^2));end;xy结果为x =Columns 1 through 80.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 Columns 9 through 100.9000 1.0000y =Columns 1 through 81.0000 1.0099 1.0261 1.0479 1.0748 1.1059 1.1407 1.1783 Columns 9 through 101.2183 1.2600[例2]用泰勒方法解x=0.1, 0.2, …, 1.0处的数值解,并与精确解进行比较。

MATLAB常微分方程数值解——欧拉法、改进的欧拉法与四阶龙格库塔方法

MATLAB常微分方程数值解——欧拉法、改进的欧拉法与四阶龙格库塔方法

MATLAB常微分⽅程数值解——欧拉法、改进的欧拉法与四阶龙格库塔⽅法MATLAB常微分⽅程数值解作者:凯鲁嘎吉 - 博客园1.⼀阶常微分⽅程初值问题2.欧拉法3.改进的欧拉法4.四阶龙格库塔⽅法5.例题⽤欧拉法,改进的欧拉法及4阶经典Runge-Kutta⽅法在不同步长下计算初值问题。

步长分别为0.2,0.4,1.0.matlab程序:function z=f(x,y)z=-y*(1+x*y);function R_K(h)%欧拉法y=1;fprintf('欧拉法:x=%f, y=%f\n',0,1);for i=1:1/hx=(i-1)*h;K=f(x,y);y=y+h*K;fprintf('欧拉法:x=%f, y=%f\n',x+h,y);endfprintf('\n');%改进的欧拉法y=1;fprintf('改进的欧拉法:x=%f, y=%f\n',0,1);for i=1:1/hx=(i-1)*h;K1=f(x,y);K2=f(x+h,y+h*K1);y=y+(h/2)*(K1+K2);fprintf('改进的欧拉法:x=%f, y=%f\n',x+h,y);endfprintf('\n');%龙格库塔⽅法y=1;fprintf('龙格库塔法:x=%f, y=%f\n',0,1);for i=1:1/hx=(i-1)*h;K1=f(x,y);K2=f(x+h/2,y+(h/2)*K1);K3=f(x+h/2,y+(h/2)*K2);K4=f(x+h,y+h*K3);y=y+(h/6)*(K1+2*K2+2*K3+K4);fprintf('龙格库塔法:x=%f, y=%f\n',x+h,y);end结果:>> R_K(0.2)欧拉法:x=0.000000, y=1.000000欧拉法:x=0.200000, y=0.800000欧拉法:x=0.400000, y=0.614400欧拉法:x=0.600000, y=0.461321欧拉法:x=0.800000, y=0.343519欧拉法:x=1.000000, y=0.255934改进的欧拉法:x=0.000000, y=1.000000改进的欧拉法:x=0.200000, y=0.807200改进的欧拉法:x=0.400000, y=0.636118改进的欧拉法:x=0.600000, y=0.495044改进的欧拉法:x=0.800000, y=0.383419改进的欧拉法:x=1.000000, y=0.296974龙格库塔法:x=0.000000, y=1.000000龙格库塔法:x=0.200000, y=0.804636龙格库塔法:x=0.400000, y=0.631465龙格库塔法:x=0.600000, y=0.489198龙格库塔法:x=0.800000, y=0.377225龙格库塔法:x=1.000000, y=0.291009>> R_K(0.4)欧拉法:x=0.000000, y=1.000000欧拉法:x=0.400000, y=0.600000欧拉法:x=0.800000, y=0.302400改进的欧拉法:x=0.000000, y=1.000000改进的欧拉法:x=0.400000, y=0.651200改进的欧拉法:x=0.800000, y=0.405782龙格库塔法:x=0.000000, y=1.000000龙格库塔法:x=0.400000, y=0.631625龙格库塔法:x=0.800000, y=0.377556>> R_K(1)欧拉法:x=0.000000, y=1.000000欧拉法:x=1.000000, y=0.000000改进的欧拉法:x=0.000000, y=1.000000改进的欧拉法:x=1.000000, y=0.500000龙格库塔法:x=0.000000, y=1.000000龙格库塔法:x=1.000000, y=0.303395注意:在步长h为0.4时,要将for i=1:1/h改为for i=1:0.8/h。

常微分方程的数值求解

常微分方程的数值求解

常微分方程的数值求解在数学中,常微分方程是一类重要的数学模型,通常用来描述物理、化学、生物等自然现象中的变化规律。

对于一些复杂的微分方程,无法通过解析方法进行求解,这时候就需要借助数值方法来近似求解。

本文将介绍常微分方程的数值求解方法及其应用。

一、数值求解方法常微分方程的数值求解方法主要包括欧拉法、改进的欧拉法、龙格-库塔法等。

欧拉法是最简单也是最常用的数值求解方法,其基本思想是根据微分方程的导数近似求解下一个时间步上的解,并通过逐步迭代来得到整个解的数值近似。

改进的欧拉法在欧拉法的基础上做出了一定的修正,提高了数值求解的精度。

而龙格-库塔法则是一种更加精确的数值求解方法,通过考虑多个点的斜率来进行求解,从而减小误差。

二、应用领域常微分方程的数值求解方法在科学研究和工程实践中有着广泛的应用。

在物理学中,通过数值求解微分方程可以模拟天体运动、粒子运动等现象;在生物学领域,可以模拟生物种群的增长和变化规律;在工程领域,可以通过数值求解微分方程来设计控制系统、优化结构等。

三、实例分析以一个简单的一阶常微分方程为例:dy/dx = -y,初始条件为y(0) = 1。

我们可以用欧拉法来进行数值求解。

将时间间隔取为0.1,通过迭代计算可以得到y(1)的近似值为0.367。

而利用改进的欧拉法或者龙格-库塔法可以得到更加精确的数值近似。

这个例子展示了数值方法在解决微分方程问题上的有效性。

四、总结常微分方程是求解自然界中变化规律的重要数学工具,而数值方法则是解决一些难以解析求解的微分方程的有效途径。

通过本文的介绍,读者可以了解常微分方程的数值求解方法及其应用,希望可以对相关领域的研究和实践有所帮助。

至此,关于常微分方程的数值求解的文章正文部分结束。

常微分方程组数值解法

常微分方程组数值解法

常微分方程组数值解法一、引言常微分方程组是数学中的一个重要分支,它在物理、工程、生物等领域都有广泛应用。

对于一些复杂的常微分方程组,往往难以通过解析方法求解,这时候数值解法就显得尤为重要。

本文将介绍常微分方程组数值解法的相关内容。

二、数值解法的基本思想1.欧拉法欧拉法是最基础的数值解法之一,它的思想是将时间连续化,将微分方程转化为差分方程。

对于一个一阶常微分方程y'=f(x,y),其欧拉公式为:y_{n+1}=y_n+hf(x_n,y_n)其中h为步长,x_n和y_n为第n个时间点上x和y的取值。

2.改进欧拉法改进欧拉法是对欧拉法的改良,其公式如下:y_{n+1}=y_n+\frac{h}{2}[f(x_n,y_n)+f(x_{n+1},y_n+hf(x_n,y_n))] 3.四阶龙格-库塔方法四阶龙格-库塔方法是目前最常用的数值解法之一。

其公式如下:k_1=f(x_n,y_n)k_2=f(x_n+\frac{h}{2},y_n+\frac{h}{2}k_1)k_3=f(x_n+\frac{h}{2},y_n+\frac{h}{2}k_2)k_4=f(x_n+h,y_n+hk_3)y_{n+1}=y_n+\frac{h}{6}(k_1+2k_2+2k_3+k_4)其中,k_i为中间变量。

三、常微分方程组的数值解法1.欧拉法对于一个二阶常微分方程组:\begin{cases} y'_1=f_1(x,y_1,y_2) \\ y'_2=f_2(x,y_1,y_2)\end{cases}其欧拉公式为:\begin{cases} y_{n+1,1}=y_{n,1}+hf_1(x_n,y_{n,1},y_{n,2}) \\y_{n+1,2}=y_{n,2}+hf_2(x_n,y_{n,1},y_{n,2}) \end{cases}其中,x_n和y_{n,i}(i=1, 2)为第n个时间点上x和y_i的取值。

常微分方程与数值解法

常微分方程与数值解法

常微分方程与数值解法数学是自然界中最美丽的语言之一,常微分方程是数学中的一个重要分支。

常微分方程是研究随着时间推移而发生的连续变化的数学模型,是许多科学领域的数学基础,如物理学、天文学、生物学、化学、经济学等。

通过对微分方程的求解,我们可以预测未来的变化和趋势,制定相应的政策措施和科学研究方向。

一、常微分方程的基本概念常微分方程是包含未知函数及其导数的方程。

一般形式为dy/dx=f(x,y),其中y为未知函数,x为自变量,f(x,y)是已知函数,称为方程的右端函数。

常微分方程可以分为初值问题和边值问题。

初值问题是指求解微分方程时需要给出一个特定的初值y(x)=y0,边值问题是指给出方程在一些点的值,而求出未知函数在整个区间上的值。

二、常微分方程的解法常微分方程有许多解法,例如分离变量法、齐次方程、全微分方程、一阶线性方程、变量分离法等。

其中,变量分离法是最基本和最重要的方法之一。

变量分离法的基本思想是将微分方程的未知函数y和自变量x分开,变成dy/g(y)=f(x)dx的形式,然后对两边进行积分。

三、数值解法的发展与应用数值解法是通过数值计算来求解微分方程的,它主要包括欧拉法、改进欧拉法、龙格-库塔法等。

欧拉法最简单、最基本,但精度较低,适用于解决一些简单的微分方程。

改进欧拉法和龙格-库塔法则精度更高,适用于解决较为复杂的微分方程。

数值解法在科学技术中的应用广泛,如气象学、环境保护、物理学、化学等。

以生态学为例,许多生态系统的动态变化可以用微分方程描述,如种群增长、捕食捕获、竞争关系等。

数值解法可以在一定程度上预测未来的生态状态,有助于制定相应的生态保护措施。

四、结论在现代科学技术中,微分方程和数值解法已经成为不可或缺的工具之一。

通过微分方程的求解,可以预测未来的变化和趋势,制定相应的政策措施和科学研究方向。

数值解法则更加精细和灵活,能够解决更为复杂的微分方程,广泛应用于各个领域。

因此,学习微分方程和数值解法,不仅是数学爱好者的追求,更是科学技术工作者不可或缺的技能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

[例1]用欧拉方法与改进的欧拉方法求初值问题
h 的数值解。

在区间[0,1]上取0.1
[解]欧拉方法的计算公式为
x0=0;
y0=1;
x(1)=0.1;
y(1)=y0+0.1*2*x0/(3*y0^2);
for n=1:9
x(n+1)=0.1*(n+1);
y(n+1)=y(n)+0.1*2*x(n)/(3*y(n)^2);
end;
x
y
结果为
x =
Columns 1 through 8
0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 Columns 9 through 10
0.9000 1.0000
y =
Columns 1 through 8
1.0000 1.0067 1.0198 1.0391 1.0638 1.0932 1.1267 1.1634 Columns 9 through 10
1.2028 1.2443
改进的欧拉方法其计算公式为
本题的精确解为()
y x=
x0=0;
y0=1;
ya(1)=y0+0.1*2*x0/(3*y0^2);
y(1)=y0+0.05*(2*x0/(3*y0^2)+2*x0/(3*ya^2));
for n=1:9
x(n+1)=0.1*(n+1);
ya(n+1)=ya(n)+0.1*2*x(n)/(3*ya(n)^2);
y(n+1)=y(n)+0.05*(2*x(n)/(3*y(n)^2)+2*x(n+1)/(3*ya(n+1)^2));
end;
x
y
结果为
x =
Columns 1 through 8
0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 Columns 9 through 10
0.9000 1.0000
y =
Columns 1 through 8
1.0000 1.0099 1.0261 1.0479 1.0748 1.1059 1.1407 1.1783 Columns 9 through 10
1.2183 1.2600
[例2]用泰勒方法解
x=0.1, 0.2, …, 1.0处的数值解,并与精确解进行比较。

分别用二阶、四阶泰勒方法计算点n
解:二阶泰勒方法
对于本题

使用excel表格进行运算,相应结果如下
x0=0;
y0=1;
y(1)=y0+0.1/(3*y0^2)*(2*x0+0.1*(1-4*x0^2/(3*y0^3)));
for n=1:9
x(n+1)=0.1*(n+1);
y(n+1)=y(n)+0.1/(3*y(n)^2)*(2*x(n)+0.1*(1-4*x(n)^2/(3*y(n)^3)));
end;
x
y
结果为
x =
Columns 1 through 9
0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000
Column 10
1.0000
y =
Columns 1 through 9
1.0033 1.0132 1.0293 1.0510 1.0776 1.1084 1.1427 1.1799 1.2193
Column 10
1.2606
四阶泰勒方法
x0=0;
y0=1;
ya0=2*x0/(3*y0^2);%%一阶导数
yb0=2/(3*y0^2)-8*x0^2/(9*y0^5);%%二阶导数
yc0=-4*x0/(3*y0^5)-80*x0^3/(27*y0^8);%%三阶导数
yd0=-4/(3*y0^5)+40*x0^2/(3*y0^8)-1280*x0^4/(81*y0^11);%%四阶导数
x(1)=0.1;
y(1)=y0+0.1*ya0+0.01/2*yb0+0.001/6*yc0+0.0001/24*yd0; ya(1)=2*x(1)/(3*y(1)^2);%%一阶导数
yb(1)=2/(3*y(1)^2)-8*x(1)^2/(9*y(1)^5);%%二阶导数
yc(1)=-4*x(1)/(3*y(1)^5)-80*x(1)^3/(27*y(1)^8);%%三阶导数
yd(1)=-4/(3*y(1)^5)+40*x(1)^2/(3*y(1)^8)-1280*x(1)^4/(81*y(1)^11);%%四阶导数 for n=1:9
x(n+1)=0.1*(n+1);
y(n+1)=y(n)+0.1*ya(n)+0.01/2*yb(n)+0.001/6*yc(n)+0.0001/24*yd(n); ya(n+1)=2*x(n+1)/(3*y(n+1)^2);%%一阶导数
yb(n+1)=2/(3*y(n+1)^2)-8*x(n+1)^2/(9*y(n+1)^5);%%二阶导数
yc(n+1)=-4*x(n+1)/(3*y(n+1)^5)-80*x(n+1)^3/(27*y(n+1)^8);%%三阶导数
yd(n+1)=-4/(3*y(n+1)^5)+40*x(n+1)^2/(3*y(n+1)^8)-1280*x(n+1)^4/(81*y(n+1)^11);%%四阶导数 end ; x
Y 结果为 x =
Columns 1 through 8
0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 Columns 9 through 10 0.9000 1.0000 y =
Columns 1 through 8
1.0033 1.0132 1.0292 1.0508 1.0773 1.1081 1.1423 1.1793 Columns 9 through 10
1.2187 1.2598 [例3]用标准四阶R -K 方法求
在区间[0, 1]上,
0.1h =的数值解以及在区间[1, 10]上,1=h 的数值解,并与精确解
进行比较。

解:对于本题
使用excel 表格进行运算,相应结果如下
x0=0;
y0=1;
k10=2*0.1*x0/(3*y0^2);
k20=2*0.1*(x0+0.05)/(3*(y0+k10/2)^2);
k30=2*0.1*(x0+0.05)/(3*(y0+k20/2)^2);
k40=2*0.1*(x0+0.1)/(3*(y0+k30)^2);
x(1)=0.1;
y(1)=y0+(k10+2*k20+2*k30+k40)/6;
k1(1)=2*0.1*x(1)/(3*y(1)^2);
k2(1)=2*0.1*(x(1)+0.05)/(3*(y(1)+k1(1)/2)^2);
k3(1)=2*0.1*(x(1)+0.05)/(3*(y(1)+k2(1)/2)^2);
k4(1)=2*0.1*(x(1)+0.1)/(3*(y(1)+k3(1))^2);
for n=1:9
x(n+1)=0.1*(n+1);
y(n+1)=y(n)+(k1(n)+2*k2(n)+2*k3(n)+k4(n))/6;
k1(n+1)=2*0.1*x(n+1)/(3*y(n+1)^2);
k2(n+1)=2*0.1*(x(n+1)+0.05)/(3*(y(n+1)+k1(n+1)/2)^2);
k3(n+1)=2*0.1*(x(n+1)+0.05)/(3*(y(n+1)+k2(n+1)/2)^2);
k4(n+1)=2*0.1*(x(n+1)+0.1)/(3*(y(n+1)+k3(n+1))^2);
end;
x
y
结果为
x =
Columns 1 through 8
0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 Columns 9 through 10
0.9000 1.0000
y =
Columns 1 through 8
1.0033 1.0132 1.0291 1.0507 1.0772 1.1079 1.1422 1.1793 Columns 9 through 10
1.2187 1.2599。

相关文档
最新文档