基坑稳定验算书

合集下载

单桩竖向极限承载力和抗拔承载力计算书

单桩竖向极限承载力和抗拔承载力计算书

塔吊基础计算书一、计算参数如下:非工作状态工作状态基础所受的水平力H:66.2KN22.5KN基础所受的竖向力P:434KN513KN基础所受的倾覆力矩M:1683KN.m1211KN.m 基础所受的扭矩Mk:067KN.m取塔吊基础的最大荷载进行计算,即F=513KN M=1683KN.m二、钻孔灌注桩单桩承受荷载:根据公式:(注:n为桩根数,a为塔身宽)带入数据得单桩最大压力:Qik压=872.04KN单桩最大拔力:Qik拔=-615.54KN三、钻孔灌注桩承载力计算1、土层分布情况:层号土层名称土层厚度(m)侧阻qsia(Kpa)端阻qpa(Kpa)抗拔系数λi4粉质粘土0.9522/0.755粉质粘土4.613/0.757粉质粘土5.616/0.758-1砾砂7.33810000.68-2粉质粘土8.9255000.758-3粗砂4.68306000.68-4a粉质粘土4.05327500.75桩顶标高取至基坑底标高,取至场地下10m处,从4号土层开始。

2、单桩极限承载力标准值计算:钻孔灌注桩直径取Ф800,试取桩长为30.0米,进入8-3层根据《建筑地基基础设计规范》(GB50007-2002)8.5.5条:单桩竖向承载力特征值计算公式:式中:Ra---单桩竖向承载力特征值;qpa,qsia---桩端端阻力,桩侧阻力特征值;Ap---桩底端横截面面积;up---桩身周边长度;li---第i层岩土层的厚度。

经计算:Ra=0.5024×600+2.512×(22×0.95+13×4.6+16×5.6+38×7.3+25×8.9+30×2.65)=2184.69KN>872.04KN满足要求。

单桩竖向抗拔承载力特征值计算公式:式中:Ra,---单桩竖向承载力特征值;λi---桩周i层土抗拔承载力系数;Gpk ---单桩自重标准值(扣除地下水浮力)经计算:Ra,=2.512×(22×0.95×0.75+13×4.6×0.75+16×5.6×0.75+38×7.3×0.6+25×8.9×0.7 5+30×2.65×0.6)+0.5024×30×15=1504.03KN>615.54KN满足要求。

4m基坑土坡稳定性计算书

4m基坑土坡稳定性计算书

4m基坑土坡稳定性计算书计算依据:1、《建筑基坑支护技术规程》JGJ120-20122、《建筑施工计算手册》江正荣编著3、《实用土木工程手册》第三版杨文渊编著4、《施工现场设施安全设计计算手册》谢建民编著5、《地基与基础》第三版计算土坡稳定性采用圆弧条分法进行分析计算,由于该计算过程是大量的重复计算,故本计算书只列出相应的计算公式和计算结果,省略了重复计算过程。

本计算书采用瑞典条分法进行分析计算,假定滑动面为圆柱面及滑动土体为不变形刚体,还假定不考虑土条两侧上的作用力。

一、参数信息:基本参数:根据土坡极限平衡稳定进行计算。

自然界匀质土坡失去稳定,滑动面呈曲面,通常滑动面接近圆弧,可将滑裂面近似成圆弧计算。

将土坡的土体沿竖直方向分成若干个土条,从土条中任意取出第i条,不考虑其侧面上的作用力时,该土条上存在着:1、土条自重,2、作用于土条弧面上的法向反力,3、作用于土条圆弧面上的切向阻力。

将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规范》要求,安全系数要满足≥1.35的要求。

圆弧滑动法示意图三、计算公式:K sj=∑{c i l i+[ΔG i b i+qb i]cosθi tanφi}/∑[ΔG i b i+qb i]sinθi式子中:K sj --第j个圆弧滑动体的抗滑力矩与滑动力矩的比值;c i --土层的粘聚力;l i--第i条土条的圆弧长度;ΔG i-第i土条的自重;θi --第i条土中线处法线与铅直线的夹角;φi --土层的内摩擦角;b i --第i条土的宽度;h i --第i条土的平均高度;q --第i条土条土上的均布荷载;四、计算安全系数:将数据各参数代入上面的公式,通过循环计算,求得最小的安全系数K sjmin:------------------------------------------------------------------------------------计算步数安全系数滑裂角(度) 圆心X(m) 圆心Y(m) 半径R(m) 第1步 1.881 35.726 0.119 7.182 7.183示意图如下:--------------------------------------------------------------------------------------计算结论如下:第 1 步开挖内部整体稳定性安全系数 K sjmin= 1.881>1.350 满足要求! [标高-4.700 m]。

基坑支护设计任务书范本

基坑支护设计任务书范本

基坑支护设计任务书范本基坑支护设计任务书1.项目概况1.1 项目名称:1.2 建设单位:1.3 项目位置:1.4 项目概况:1.5 工程设计单位:1.6 工程勘察单位:2.基坑支护设计范围、内容及设计人提供的服务2.1 设计范围:本项目的基坑支护工程;2.2 设计内容:设计人应选择合理的基坑支护体系,完成方案设计并提交基坑支护方案论证文本。

同时,设计人还应完成基坑支护体系的分析计算以及基坑内外土体的稳定性验算,并绘制支护工程施工图纸。

设计人还应对基坑开挖过程引起的基坑内外土体的变形及其对邻近建筑物和周边环境的影响进行分析,并论证基坑开挖施工方法的可行性。

设计人还应提出基坑监测要求以及施工注意事项等。

2.3 设计人提供的服务及内容:设计人应根据发包人提供的工程地质勘察报告、项目初步设计方案等资料,提出多个支护方案,并进行支护方案的技术经济比较。

设计人还应编制基坑论证方案,修改完善基坑支护方案,并完成支护工程的施工图设计。

设计人应明确基坑支护工程的监测要求,提出有效、经济的基坑监测方案,并参与审核施工单位提交的基坑土方开挖及基坑支护施工方案。

设计人还应参与解决基坑开挖及支护施工期间存在的工程技术问题,确保基坑工程施工安全,并参与基坑支护工程施工过程中的重要节点验收。

3.设计周期:未说明。

2)基坑开挖及支护方案的设计思路、施工方案和施工期间的安全措施;(3)基坑支护结构的稳定性验算和变形控制措施;(4)地下水控制方案和降水方案;(5)基坑支护体系的监测措施和预警值;(6)施工图的编制要求和出图质量要求。

7.2图表部分应包括基坑开挖及支护方案的平面布置图、剖面图、立面图、施工工艺流程图等,图纸应清晰、准确、完整。

7.3投标技术方案的编制应根据拟建工程的实际情况和要求,充分考虑技术可行性、经济合理性和安全性等因素,提出切实可行的方案。

7.4投标技术方案的编制应符合招标文件的要求,同时应注重技术创新和提高,展现出公司的技术实力和专业水平。

基坑支护设计任务书

基坑支护设计任务书

基坑支护设计任务书1、工程概况工程名称:1.1建设单位:L3工程位置:L4工程概况:1.5工程设计单位:1.6工程勘察单位:2、基坑支护设计范围、内容及设计人提供的服务设计范围:本工程的基坑支护工程;2.2设计内容:基坑支护体系的选择、分析计算及稳定性验算,完成施工图绘制等,具体要求如下:1)基于安全、可靠、经济、方便施工的原那么,选择合理的基坑支护体系,完成方案设计并提交基坑支护方案论证文本;2)完成基坑支护体系的分析计算(包括支护体系的强度、稳定性、变形等计算)以及基坑内外土体的稳定性验算(关键支护构件尚应进行承载力验算)。

计算书的编制应到达国家或行业规定的深度并满足施工图审的要求。

3)在支护体系(方案)分析计算的基础上,绘制支护工程施工图纸(包括设计说明、基坑平面图纸图、配筋图、基坑监测点位图纸、节点大样等详图),系统地明确施工应急预案(措施)和相应的施工要求等。

此外,设计人还应系统地对基坑开挖过程引起的基坑内外土体的变形及其对邻近建筑物和周边环境的影响进行分析,论证基坑开挖施工方法的可行性,并在设计成果中系统地提出基坑监测要求以及施工考前须知等;3设计人提供的服务及内容,至少包括:1)根据发包人提供的工程地质勘察报告、工程初步设计方案等资料,结合自身设计经验和工程实际情况,提出多个支护方案,并进行支护方案的技术经济比拟(各方案的技术经济比拟应在各方案的支护体系计算分析并确保可行的前提下进行);按选定的支护方案编制基坑论证方案(用于基坑方案论证)。

2)结合基坑论证意见,修改完善基坑支护方案,并完成支护工程的施工图设计、为基坑支护工程的施工提供依据;3)明确基坑支护工程的监测要求,提出有效、经济的基坑监测方案,提供监测点位置及有关监测预警值,协助发包人选择基坑监测单位;4)参与审核施工单位提交的基坑土方开挖及基坑支护施工方案,提出基坑施工考前须知,确保基坑开挖过程、工艺等与基坑支护设计计算假定条件相吻合;5)及时参与解决基坑开挖及支护施工期间存在的工程技术问题,确保基坑工程施工安全;6)参与基坑支护工程施工过程中的重要节点验收(发包人提前24小时通知)、发表设计方意见。

理正深基坑软件应用参数说明

理正深基坑软件应用参数说明

理正深基坑软件应用参数说明1. 各种支护结构计算内容排桩、连续墙单元计算包括以下内容:⑴土压力计算;⑵嵌固深度计算;⑶内力及变形计算;⑷截面配筋计算;⑸锚杆计算;⑹稳定计算:整体稳定、抗倾覆、抗隆起、抗管涌承压水验算。

其中内力变形计算、截面配筋计算及整体稳定计算与规范无关,其他计算按选择的规范采用相应计算方法。

水泥土墙单元计算包括以下内容:⑴土压力计算;⑵嵌固深度计算;⑶内力及变形计算;⑷截面承载力验算;⑸锚杆计算;⑹稳定验算:整体稳定、抗倾覆、抗滑移、抗隆起、抗管涌承压水验算。

其中内力变形计算、截面配筋计算及整体稳定计算与规范无关,其他计算按选择的规范采用相应计算方法。

土钉墙单元计算包括以下内容:⑴主动土压力计算;⑵土钉抗拉承载力计算;⑶整体稳定验算;⑷土钉选筋计算。

系统仅提供〈建筑基坑支护技术规程》JGJ 120-99 )及石家庄地区王长科法》计算方法,放坡单元计算包括以下内容:系统仅提供整体稳定验算.2. 增量法和全量法?(1)全量法是4.3版本以前采用多计算方法,采用这种计算时不能任意指定工况顺序。

(注意:采用该方法会使5.0版本某些新增数据丢失。

)所谓总量法,就是在施工的各个阶段,外力是实际作用在围护结构上的有效土压力或其它荷载,在支承处应考虑设置支承前该点墙体已产生的位移。

由此就可直接求得当前施工阶段完成后围护结构的实际位移和内力。

(2)增量法:采用这种方法,可以更灵活地指定工况顺序。

所谓增量法计算,就是在各个施工阶段,对各阶段形成的结构体系施加相应的荷载增量,该增量荷载对该体系内各构件产生的内力与结构在以前各阶段中产生的内力叠加,作为构件在该施工阶段的内力,这样就能基本上真实地模拟基坑开挖的全过程。

因此,在增量法中,外力是相对于前一个施工阶段完成后的荷载增量,所求得的围护结构的位移和内力也是相对于前一个施工阶段完成后的增量,当墙体刚度不发生变化时.与前一个施工阶段完成后已产生的位移和内力叠加,可得到当前施工阶段完成后体系的实际位移和内力。

土钉墙支护计算说明书

土钉墙支护计算说明书

土钉墙支护计算书一、计算依据1、《建筑基坑支护技术规程》JGJ120-20122、《建筑施工计算手册》江正荣编著3、《实用土木工程手册》第三版文渊编著4、《施工现场设施安全设计计算手册》建民编著二、计算参数序号 直径d(mm) 长度l(m)入射角α(°)横向间距Sx(m)竖向间距Sz(m) 土钉杆体材料 杆体截面积As(mm 2) 抗拉强度标准值fyk(N/mm 2) 抗拉强度设计值fy(N/mm 2)1 2 120 1206 715 151 11.5 3钢筋 钢管314 314400 400360 360三、土钉承载力计算1、主动土压力计算剖面图1)主动土压力系数Kai=tan 2(45°- φi/2)第1层土:Ka1=tan2(45°-18/2)=0.527864 第2层土:Ka2=tan2(45°-12/2)=0.65575 第3层土:Ka3=tan2(45°-20/2)=0.490291 2)土压力、地下水产生的水平荷载各层土所受的土压力:(1)地表处:Pak1上=qKa1-2c1Ka10.5=10*0.527864-2*12*0.5278640.5=-12.1584kN/m2(2)第2层土:Pak2上=(q+γ1*h1)Ka1-2c1Ka10.5=46*0.527864-2*12*0.5278640.5=6.84473kN/m2Pak2下=(q+γ1*h1)Ka2-2c2Ka20.5=46*0.65575-2*10*0.655750.5=13.9688kN/m2(3)第3层土:P ak3=(q+γ1*h1+γ2*h2)Ka2-2c2Ka20.5=112*0.65575-2*10*0.655750.5=57.2483kN/m23)水平荷载(1)第1层土:E ak1=h1Pak1ba/1=2*-12.1584*1/1=-24.3168kN(2)第2层土:E ak2=h2(Pak2上+Pak2下)ba/2=2*(6.84473+13.9688)*1/2=20.8136kN(3)第3层土:E ak3=h3Pak3ba/3=3*57.2483*1/3=57.2483kN土压力合力:E ak =ΣEaki=53.7451kN2、单根土钉的轴向拉力标准值Nk,j:由公式JGJ120-2012 5.2.2公式得:Nk,j=ζηjPak,jSxjSzj/cosαjφak =(φ1h1+φ2h1+...+φihi)/h=24ζ=tan((β-φak )/2)(1/tan((β+φak)/2))-1/tan(β))/tan2(45°-φak/2)=0.199964ΝΑ¶¤1:S x1=1 Sz1=1.5N k1=ζη1Pak1Sx1Sz1/cos(α1)=4.62022N 1=γγFNk,1=5.77527N 1=5.77527≤fy*As=113.04kNΒϊΧγΗσΝΑ¶¤2:S x2=1 Sz2=3N k2=¦Ζ¦Η2Pak2Sx2Sz2/cos(α2)=28.4169N 2=γγFNk,2=35.5211N 2=35.5211≤fy*As=113.04kNΒϊΧγΗσ3、单根土钉的极限抗拔承载力计算:如图计算可知:——根据建筑基坑支护技术规程JGJ120-2012,表5.2.5取值故Rk,j=πdji故极限抗拔承载力为Rk,j/Nk,j土钉1:L1=2.43867Rk,1=110323土钉2:L2=1.39353Rk,2=173365序号Rk,j /Nk,jNj(kN) fyAs(kN) 抗拔安全性抗拉安全性1 2 23878.36100.765.7752735.5211113.04113.04满足要求满足要求满足要求满足要求四、抗滑动与抗倾覆稳定性验算1)抗滑动稳定性验算δ=φ/3=5.55556B=0.6H-0.8H,取B=0.7H=0.7*5=3.5W=γHB=350kNσ=(W+qB)/A=385f=τ=σtanφ+c=116.261由公式,抗滑移安全系数计算得:γ=(qB+W+Ea sinδ)f/Eacosδ=487.062≥1.3满足要求2)抗倾覆稳定性验算抗倾覆安全系数按以下公式计算,由下式确定γt =3B(qB+W+2Easinδ)/2*H*Eacosδ=4.50097≥1.3满足要求。

排桩(钻孔灌注桩)基坑围护计算书

排桩(钻孔灌注桩)基坑围护计算书

M法计算书土压力计算依据《上海市标准基坑工程设计规程》(DBJ08-61-97)。

1.地质勘探数据如下:—————————————————————————————————————序号 h(m) (kN/m3) C(kPa) (°) M值计算方法1 1.90 19.00 18.00 20.00 7800.0 水土合算2 1.29 18.70 18.00 20.00 7800.0 水土合算3 5.00 17.50 16.00 14.00 4120.0 水土合算4 3.34 16.90 11.00 10.00 2100.0 水土合算5 3.99 19.70 42.00 20.00 10200.0 水土合算6 4.89 18.90 7.00 31.50 17395.0 水土合算—————————————————————————————————————表中:h为土层厚度(m),为土重度(kN/m3),C为内聚力(kPa),为内摩擦角(℃)2.基底标高为-8.40m,支撑分别设置在标高计算标高分别为-8.40m处,3.地面超载:—————————————————————————————————————序号布置方式作用标高m 荷载值kPa 距基坑边线m 作用宽度m—————————————————————————————————————基坑侧壁重要性系数为1.10,为一级基坑采用单排桩排桩直径为0.6m,砼标号为C30,桩间距为0.85m.抗隆起、抗倾覆、抗渗流验算结果按地基承载力验算抗隆起基坑外侧支护结构底部至地面之间土层的加权重度1=18.17(kN/m3)基坑内侧支护结构底部至坑底之间土体的加权重度2=18.37(kN/m3)支护结构嵌入深度D=6.60(m)基坑开挖深度h=8.40(m)基坑地表附加荷载q=0.00(kPa)坑底被动区附加荷载q pa=0.00(kPa)支护结构底部滑裂面上地基土的粘聚力c=42.00(kPa)支护结构底部滑裂面上地基土的内摩擦角=20.00°Nq=6.40Nc=14.83计算的抗隆起安全系数为Kwz=[42.00×14.83+(18.37×6.60+0.00)×6.40]/[18.17×(8.40+6.60)+0.00]=5.13达到规范规定安全系数2.50,合格!按滑弧稳定验算抗隆起围护墙底以上地基土各土层天然重度的加权平均值=18.23(kN/m3) 围护墙在基坑开挖面以下的入土深度D=6.60(m)主动土压力系数Ka=tg2(45o-15.47o/2)=0.58滑裂面上地基土的粘聚力加权平均值c=23.15(kPa)滑裂面上地基土的内摩擦角加权平均值=0.27(弧度)基坑开挖深度h0=8.40(m)最下一道支撑距地面的深度h0'=8.40(m)最下一道支撑面与基坑开挖面间的水平夹角a1=0.00(弧度)以最下一道支撑点为圆心的滑裂面圆心角a2=3.14(弧度)坑外地面荷载q=0.00(kPa)q f=18.23×8.40+0.00=153.14(kPa)M SL=0.5×(18.23×8.40+0.00)×6.602=3335.35(kN.m/m)R3=8.40×6.60+(3.14-0.00)×6.602=192.29(m2)R2=0.5×6.602×153.14+{3.14-0.00-0.5×[sin(2×3.14)-sin(2×0.00)]}-1/3×18.23×6.603×{sin2(3.14)×cos(3.14)-sin2(0.00)×cos(0.00)+2×[cos(3.14)-cos(0.00)]} =10326.84(kN.m/m)R1=6.60×(18.23×8.402/2+0.00×8.40)+0.5×6.602×153.14×[3.14-0.00+sin(3.14)×cos(3.14)-sin(0.00)×cos(0.00)]-1/3×18.23×6.603×[cos3(3.14)-cos3(0.00)]=18217.48(kN.m/m)M RL=18217.48×0.58×tg(0.27)+10326.84×tg(0.27)+192.29×23.15=10270.03(kN.m/m)计算的抗隆起安全系数为:K L=3.08=10270.03/3335.35=3.08达到规范规定安全系数2.50,合格!按经验公式计算基坑隆起量:基坑开挖深度H=8.40(m)地表超载q=0.00(kPa)支护结构底部处土的粘聚力c=42.00(kPa)支护结构底部处土的内摩擦角=20.00(°)基坑外侧支护结构底部至地面之间土层的加权重度1=18.17(kN/m3)基坑外侧坑底至地面之间土的加权重度2=18.01(kN/m3)支护结构入土深度D=6.60(m)基坑底最大隆起量=-291.67-25.21+141.02+172.01=0.01(mm)验算抗倾覆稳定最下一道支撑(若无支撑,则为桩顶)以下的主动土压力合力为Ea=951.05(kN/m),合力标高为Elva=-9.43(m)被动土压力合力为Ep=1504.14(kN/m),合力标高为Elvp=-12.90(m)最下一道支撑(若无支撑,则为桩顶)的标高为Elvs=0.00(m)主动土压力对最下一道支撑产生的力矩为Moc=Ea×(Elvs-Elva)=951.05×(9.43-0.00)=8970.47(kN.m/m)被动土压力对最下一道支撑产生的力矩为Mrc=Ep×(Elvs-Elvp)=1504.14×(12.90-0.00)=19408.13(kN.m/m)计算的抗倾覆安全系数为:2.16达到规范规定安全系数1.20,合格!验算抗渗流稳定的公式为:基坑外水位标高为Elvwout=-0.50(m),基坑内水位标高为Elvwin=-10.30(m)基坑内外水头差hw=Elvwout-Elvwin=-0.50-(-10.30)=9.80(m)坑底标高为Elvebot=-8.40(m),桩墙底标高为Elvpbot=-15.00(m),桩墙宽度为Pw=0.60(m) 水的渗流路径长度L =(Elvwin-Elevpbot)+Pw+(Elvwout-Elevpbot )=[-10.30-(-15.00)]+0.60+[-0.50-(-15.00)]=19.80(m)坑底土的渗流水力坡度i=hw/L=9.80/19.80=0.49坑底土的浮重度'=6.90(kN/m3) (近似取坑底土的天然容重为其饱和容重)坑底土的临界水力坡度ic='/w=6.90/10.=0.69计算的抗渗流安全系数k=ic/i=0.69/0.49=1.39计算的渗流稳定安全系数为:1.39没有达到规范规定安全系数1.50,不合格!内力及位移计算采用m法计算计算采用位移法有限元,单元最大长度为0.1m。

理正深基坑支护设计软件6.5版说明书

理正深基坑支护设计软件6.5版说明书

理正深基坑支护设计软件6.5版说明书系统操作说明1 操作流程图1-1 深基坑支护结构设计流程图2 流程说明2.1 开始通过两个途径可以进入【深基坑支护结构设计软件】的主界面:⑴在开始菜单中,打开【理正深基坑】;⑵双击桌面上的快捷图标。

系统主界面如图2.1-1所示:图2.1-1 主界面2.2 路径设置有两种设置工程路径的方法:⑴在主界面设置路径:点主界面的【工作目录】按钮,弹出指定工作路径对话框,既可以从右侧上方选择路径处的树形目录中选择当前路径,也可以在工作路径文本输入框中直接输入当前的路径字符串。

然后点【确定】按钮。

⑵在单元计算界面设置路径:进入单元计算模块后,点【选工程】,弹出指定工作路径对话框,在树形目录或文本输入框中进行路径设置。

注意:1. 主界面设置的工作路径为单元计算、整体计算文件的默认路径。

同时单元计算文件还可以在单元计算模块设置的路径下保存;2. 单元计算界面与主界面设置的工作路径最好保持一致;3. 路径设置支持输入“空格”;4. 单元计算控制菜单下的“打开工程”功能同【选工程】。

2.3 单元计算和整体计算分别参见第一、二、三和四部分。

2.4 数据存盘及备份原始数据和结果数据均保存在设置的工作目录下:单元计算原始数据文件名:*.SPW;图形结果文件名:*.DXF;计算书文件名:*.RTF。

2.5 退出在单元计算界面下点击“退出”按钮或菜单,退出单元计算模块;在主界面下点击“退出”按钮或菜单,退出软件。

第一部分单元计算操作说明1 操作流程图1-1 单元计算操作流程图1.1 进入单元计算点击“”按钮,进入单元计算模块。

1.2 增加计算项目⑴第一次进入单元模块时,计算项目为空,如图1.2-1所示。

图1.2-1 单元计算输出界面⑵必须点“增”按钮,弹出图1.2-2所示模板,并从中选取计算项目。

确认后进入设计数据录入界面。

图1.2-2 项目选用模板注意:1. 已经进行过单元计算的项目,进入单元计算后,既可以点“增”按钮,从模板中增加新项目,也可从项目列表中选择已有项目(如图1.2-3所示),再点“算”直接进入数据录入界面;图1.2-3 项目选用列表2. 点“删”按钮,可删除列表中的计算项目,存放于工作路径中的该项目的工程数据将全部被删除,且无法恢复;3. “工程操作”菜单(如图1.2-4)功能同“增”、“删”和“算”按钮。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基坑稳定验算书一、基坑稳定分析验算主要考虑基坑的失稳类型:a、支撑强度不够,刚度不够;b、整体滑动失稳;c、踢脚引起隆起失稳;d、砂地层管涌失稳;e、低鼓失稳(本工程地下无承压水)。

本次论证主要是关于钢板桩及支撑结构的稳定问题,其中以支撑强度不够或刚度不够、整体滑动失稳和踢脚引起隆起失稳为主要验算对象。

(一)、W47钢板桩挡土结构的内力简化模型与分析计算1、W47工作井参数的选用地层情况,见表1,地下水位地面以下6米,接收坑开挖深度为6.58米,基坑宽×长为B×L=3.5×7.5m。

地层可分为粘性土层和砂层(如图1),并将粘性土层和砂层的γ、c、ϕ值各自算得加权平均值。

(1)、粘性土层:3118 1.918.7 1.718.1 1.918.3/5.5i ih KN m h γγ⨯+⨯+⨯===∑116 1.914 1.719 1.916.45.5i ia c h c KP h ⨯+⨯+⨯===∑11.90.287 1.70.394 1.90.133tan tan 0.2675.5i ih h ϕϕ⨯+⨯+⨯===∑tan0.1312ϕ=(2)、砂层:则有加权浮重度'''329.8/iihKN m h γγ==∑,'tan 0.732ϕ=,'tan0.3272ϕ=。

2、内力的计算(1)、钢板桩外侧主动土压力(采用粘性土层和砂层分开计算主动土压力的方法其中将水头压力看作为主动土压力的一部分)2001tan (45)2tan(45)22a P h c ϕϕγ=---'''22tan (45)2aP h ϕγ=-其中 20tan (45)0.5902a K ϕ=-=''20tan (45)0.2572aK ϕ=-=式中:a P —粘土层主动土压力; 'a P —砂土层主动土压力; a K —粘土层主动土压力系数;'a K —砂土层主动土压力系数。

则粘性土的主动土压力合力为:2212212221216.418.3 5.50.59216.4218.354.13a a c E h K ch KNγγ=-⨯=⨯⨯⨯-⨯⨯= 式中:1h 为粘土层厚度。

则砂土的主动土压力合力为'''12121()21(218.3 5.59.87.66)7.660.2572272.03a aE h h h h K KNγγγ=++⨯=⨯⨯⨯+⨯⨯⨯= 式中:2h 为砂土层顶端至工字钢底端的距离。

水头压力可记为0.58m ,则水压力合力E 为:21 1.682E h KN γ==水差式中:γ水—水的重度;h 差—为水头高度。

主动土压力的合力F 为:'327.84a a F E E E KN =++=(2)、钢板桩内即坑内侧被动土压力p P''2013tan (45)2p P h ϕγ=+其中 '20tan (45) 3.8882p K ϕ=+=则被动土压力的合力为:'2'13122p p E h K ch γ=+0c =)式中:'1γ—为砂层的浮重度;3h —为基坑开挖面至钢板桩桩底的距离。

即'2'213119.8 6.58 3.888824.8422p p E h K KN γ==⨯⨯⨯=(二)、W47基坑稳定性分析1、工字钢强度以及整体倾覆失稳验算有前面内力计算得知,p E F >,由此可以看出基坑不会发生严重的倾覆现象,是稳定的。

以钢板桩底端为支点转动: 可由被动土压力提供力矩为p M :3116.58824.841809.1533p p M h E KN m =⨯⨯=⨯⨯=主动土压力提供的力矩由粘土、砂土和水共同提供分别为M 粘土、M 砂土和M 水:11(7.66)455.233a M h E KN m =⨯+⨯=粘土2''2'212211947.55223a a h M h K h K h KN m γγ=⨯⨯+⨯⨯=砂土31[11.392h M h h KN m γ=⨯差2差水水+]=3主动土压力合力矩:1414.17a M M M M KN m =++=粘土砂土水 根据力矩平衡原理,则支撑提供的力矩M 支有:1548.411809.15394.99a p M M M KN m =-=-=-支支撑基本不需要提供水平向支撑力。

该工字钢支撑系统的强度足够抗拒基坑的倾覆力矩。

综合上述两方面的验算,不会出现工字钢支撑强度问题和整体倾覆失稳现象。

2、踢脚引起基坑底部隆起失稳性验算根据前面所算出的坑壁和坑底的内力a E 、'a E 、E 和p E ,以支撑点为支点计算主动和被动力矩。

221122254.13a a c E h K ch KNγγ=-= '''12121()2272.03a aE h h h h K KNγγγ=++=21 1.682E h KN γ==水差'2'131782.762p p E h K KN γ==同上,可由被动土压力提供力矩为p M :32( 5.08)32( 6.58 5.08)782.767410.133p pM h E KN m =⨯+⨯=⨯+⨯=同上,主动土压力提供的力矩由粘土、砂土和水共同提供分别为M 粘土、M 砂土和M 水:12( 1.5)117.283a M h E KN m =⨯-⨯=粘土''2'212122112( 1.5)( 1.5)2232224.34a a h M h h K h h K h h KN mγγ=⨯⨯⨯+-+⨯⨯+-=砂土 1( 4.58.222M h h KN m γ=⨯+=差2水水差2)3主动土压力合力矩:2349.84a M M M M KN m =++=粘土砂土水可以看出:7410.133.15 1.0~1.52349.84p T aM K M ===>因此,不会发生踢脚引起基坑底部隆起失稳。

(三)、W44钢板桩挡土结构的内力简化模型与分析计算1、W44接收井参数的选用 地层情况,见表1,地下水位地面以下6.2米,接收坑开挖深度为6.48米,基坑宽×长为B ×L=3.5×5m (如图3)。

地层可分为粘性土层和砂层,并将粘性土层和砂层的γ、c 、ϕ值各自算得加权平均值。

(1)、粘性土层:3118 1.118.7 1.818.1 2.718.9 1.618.4/7.2i ih KN m h γγ⨯+⨯+⨯+⨯===∑116 1.114 1.819 2.714 1.616.27.2i ia c h c KP h ⨯+⨯+⨯+⨯===∑11.10.292 1.80.3942.70.133 1.60.439tan tan 0.297.2i ih h ϕϕ⨯+⨯+⨯+⨯===∑tan0.1422ϕ=(2)、砂层:则有浮重度'''329.3/iihKN m h γγ==∑,'tan 0.732ϕ=,'tan0.3272ϕ=。

2、内力的计算 (1)、钢板桩外侧主动土压力(采用粘性土层和砂层分开计算主动土压力的方法其中将水头压力看作为主动土压力的一部分)2001tan (45)2tan(45)22a P h c ϕϕγ=---'''22tan (45)2aP h ϕγ=-其中 20tan (45)0.5642a K ϕ=-=''20tan (45)0.2572aK ϕ=-=式中:a P —粘土层主动土压力; 'a P —砂土层主动土压力; a K —粘土层主动土压力系数;'a K —砂土层主动土压力系数。

则粘性土的主动土压力合力为:2212212221216.218.47.20.564216.2218.4122.32a a c E h K ch KNγγ=-⨯=⨯⨯⨯-⨯⨯=式中:1h 为粘性土层厚度。

则砂土的主动土压力合力为'''12121()21(218.47.29.3 5.76) 5.760.2572235.76a aE h h h h K KNγγγ=++⨯=⨯⨯⨯+⨯⨯⨯= 式中:2h 为砂土层顶端至工字钢底端的距离。

水头压力可记为0.28m ,则水压力合力E 为:210.3922E h KN γ==水差(可以忽略不计)式中:γ水—水的重度;h 差—为水头高度。

主动土压力的合力F 为:'358.47a a F E E E KN =++=(2)、钢板桩内侧被动土压力粘性土层(层厚为0.72m )被动土压力p P :1'''2011112tan (45)2tan(45)2218.90.72 2.344214 1.53174.76/p P h c KN m ϕϕγ=+++=⨯⨯+⨯⨯=粘式中: '1γ—坑内粘土层的天然重度;h 粘—坑内粘土层厚度。

粘性土层的被动土压力的合力为:1'''2200111121tan (45)2tan(45)222118.90.72 2.3442140.72 1.531242.35p E h c h KNϕϕγ=+++=⨯⨯⨯+⨯⨯⨯=粘粘砂土层(层厚为2 5.76h =m )被动土压力2p P :21''20222tan (45)2(74.769.3 5.76) 3.888498.94/p p P P h KN m ϕγ=++=+⨯⨯=()其中 '2tan (45) 3.8882p K ϕ=+=;'2γ—坑内砂土层的浮重度。

粘性土层的被动土压力的合力为:21221()21(74.76498.94) 5.7621652.26p p p E P P h KN=+⨯=⨯+⨯=基坑开挖面以下至桩端的被动土压力合力为:1142.351652.261694.61p p p E E E KN =+=+=(四)、W44基坑稳定性分析1、工字钢强度以及整体倾覆失稳验算有前面内力计算得知,p E F >,由此可以看出基坑不会发生严重的倾覆现象,是稳定的。

以钢板桩底端为支点转动:可由被动土压力提供力矩为p M :112'2222221111()3232111(0.72 5.76)42.359.3 5.7674.76 5.763221521.06p p p M h h E h h P h KN mγ=++⨯+=⨯+⨯+⨯⨯+⨯⨯=粘 主动土压力提供的力矩由粘土、砂土和水共同提供分别为M 粘土、M 砂土和M 水(可以忽略):121()31(7.2 5.76)122.323998.13aM h h E KN m=⨯+⨯=⨯+⨯=粘土222''222212235.76 5.76150.399.3 5.760.257223221.25a ah h M P h K KN mγ=+⨯⨯=⨯+⨯⨯⨯⨯=砂土主动土压力合力矩:1219.38a M M M KN m =+=粘土砂土 根据力矩平衡原理,则支撑提供的力矩M 支有:1219.381521.06301.68a p M M M KN m =-=-=-支支撑基本不需要提供水平向支撑力。

相关文档
最新文档