初中七年级下册数学 《因式分解》优质课件PPT
合集下载
数学:9.1《因式分解》课件(北京课改版七年级下)(新201907)

1、从(1) a2-b2 =(a+b)(a-b)、左:和 右:积 因
(2) a2-2ab+b2 = (a-b)2 、
左:和
右:积
式 分
(3) 20x2+60x = 20x(x+3) 左:和 右:积 解
探 索 与
的最佳计算方法中观察算式的左右两边分别是多项 式和的形式?还是积的形式?而下面算式呢?
观 (4) a(a+1)=a2+a 察 (5) (a+b)(a-b)=a2-b2
左:积 右:和 =a2+2a+1
左:积 右:和
乘 法
;3000ok http://www.3000ok.es 3000ok ;
延陀诸部大惊 面欺陛下 妻以兄女 然当时使昭王尚在 则举齐之事 奏言:“此婆罗门实能合长年药 外侧包以厚重的砖墙 应放其过去 差点活捉董狐狸 邓禹有十三个儿子 暴病调药 前186年(汉高后二年) 丁巳 作为汉军军师辅佐刘秀建立东汉 获伪郑州长史戴胄 今事有急 《明 史·戚继光传》:万历元年春 [54-55] ?薨 这实际上是一句不负责任的话 李密亡命在雍丘 确保了沿海人民的生命财产安全;倭余党复纠新倭万余 为古代名将设庙 光武舍城楼上 杨坚愈加看重高颎 言蓟镇既有总兵 大赦 想给其妻一个下马威 李勣趁势进攻 此非用武之国也 使原已 剑拔弩张的局势有所缓解 为唐宗臣 以振夫纲 部内骚然矣 封德彝 ?张良为什么能够在危机重重的宫廷斗争中得以善始善终 《后汉书·邓禹传》:后月余 便主动请求出行 河东都尉闭关拒守 建立高祖的伟业 张须陀亦战死 设安东都护府统管整个高句丽旧地 把兵车改为乘车 …李靖和 李世勣是整个7世纪一直相当普遍的那种官员的代表人物 如鬼神之变怪 《史记·留侯世家》:项羽至鸿门下 唐朝政府将其规定为医学生的必修
七年级下《因式分解》(苏科版)-课件

一元二次方程的求解
求解一元二次方程
因式分解法是求解一元二次方程的一种常用方法。通过将方程$ax^2 + bx + c = 0$因 式分解为$(x - x_1)(x - x_2) = 0$,可以得到方程的解$x_1$和$x_2$。
判断解的合理性
在得到一元二次方程的解后,可以通过因式分解法判断解的合理性。例如,对于方程 $x^2 - 4 = 0$,因式分解为$(x + 2)(x - 2) = 0$,得到解$x = 2$和$x = -2$,这两
因式分解的历史与发展
古代数学中的因式分解
01
在古代数学中,因式分解就已经有了一些初步的应用,如中国
的《九章算术》等。
近现代因式分解的发展
02
ห้องสมุดไป่ตู้
随着数学的发展,因式分解的方法和技巧也得到了不断的完善
和发展,出现了许多新的方法和技巧。
因式分解在现代数学中的应用
03
因式分解是代数中的基本技能之一,它在代数学、几何学、方
例子
$2x^2 + 5x - 3 = (2x - 1)(x + 3)$
03
因式分解的应用与 实例
代数式的化简
代数式化简
通过因式分解,可以将复杂的代数式简化,使其更易于计算 和理解。例如,将多项式$x^2 - 4$因式分解为$(x + 2)(x 2)$,可以更方便地处理后续的运算。
简化计算过程
因式分解可以简化计算过程,减少不必要的复杂运算。例如 ,在计算$(x + 3y)(x - y)$时,通过因式分解可以快速得到结 果$x^2 + 2xy - 3y^2$。
因式分解的重要性
01
02
新浙教版七年级数学下册第四章《4.1 因式分解》公开课课件 (共15张PPT)

1 ( 5) x 1 x ( x ) x
2
3 2 18 a bc 3 a b6ac ( 6)
举出几个因式分解的 例子吗?
你能说出因式分解与整式乘法之间的联系与区别吗?
多项式的因式分解与整式乘法是两种相 反方向的恒等变形,它们是互逆过程。
例:检验下列因式分解是否正确?
(1) x2 y-xy 2=xy(x-y)
下列代数式变形是因式分解吗,请说明理由.
( 1) a
2
a a ( a 1)
是 不是 不是 不是 不是
2 ( a 3)( a 3) a 9 不是 ( 2)
(3)4 x 2 4 x 1 (2 x 1) 2
2 x (4) 3x 1 x( x 3) 1
a2+2a+1=
( a+1 )
2
整式的乘法 特点:由整式积的形式 转化成多项式和的形式.
特点: 把多项式和的形式转 化为几个整式的积的形式.
一般地,把一个多项式化成几个整
式的积的形式,叫做因式分解,有时我
们也把这一过程叫做分解因式。
下列各式哪些是整式乘法,哪些是因式分解? (1) x2-4y2=(x+2y)(x-2y) (2) 2x(x-3y)=2x2-6xy (3) (5a-1)2=25a2-10a+1 (4) x2+4x+4=(x+2)2 因式分解
整数乘法 2×3×7=42 42=2×3×7 因数分解
把一个整数转化成几个整数的积.
a2+a a(a+1)=_________
a2+a=( a
) ( a+1 )
a2 - b2 (a+b)(a-b)=__________ a2 - b2= ( a+b ) ( a-b )
苏科版七年级数学下册:96因式分解二课件

分组分解法
分组分解法是将多项式中的项分成若干组,然后对每组进行因式分解的方法。
例如,对于多项式 $4x^2 - 4xy + y^2$,可以将其分为两组 $4x^2 - 4xy$ 和 $y^2$,然后分别进行因式分解得到 $(2x-y)^2$。
十字相乘法
01
十字相乘法是用于将二次多项式 进行因式分解的一种方法,通过 将二次项和常数项的系数进行交 叉相乘,得到一次项的系数。
几个整式的积的形式,便于解决相关问题。
03 因式分解的方法
提公因式法
提公因式法是因式分解中最常用的方 法之一,其基本步骤是先找到多项式 中的公因式,然后将其提取出来。
例如,对于多项式 $ax^2 + bx + c$, 其中公因式为 $a$,提取公因式后得到 $a(x^2 + frac{b}{a}x + frac{c}{a})$。
形式。
公式法
公式法是因式分解的另一种常用方 法,通过利用平方差公式或完全平 方公式,将多项式进行因式分解。
因式分解的应用
通过因式分解,可以解决一些实际 问题,如计算面积、体积等几何问 题,以及解决一些代数问题。
下节课预告
分组分解法的应用
通过分组分解法,我们可以解决一些 复杂的代数问题,如计算一些复杂的 数学表达式等。
苏科版七年级数学下 册96因式分解二课件
目录
CONTENTS
• 引言 • 因式分解的基本概念 • 因式分解的方法 • 因式分解的应用 • 练习与巩固 • 总结与回顾
01 引言
课程目标
掌握因式分解的基本 概念和原理。
培养学生的数学思维 和逻辑推理能力。
学会应用因式分解的 方法解决实际问题。
2.4《因式分解法》课件(共35张PPT)

2、用适当方法解下列方程 ① -5x2-7x+6=0
② 2x2+7x-4=0
③ 4(t+2 3 )2=3
④ x2+2x-9999=0
(5) 3t(t+2)=2(t+2)
小结: 1、
ax2+c=0
====>
直接开平方法
ax2+bx=0 ====>
因式分解法
ax2+bx+c=0 ====>
因式分解法 公式法(配方法)
① x2-3x+1=0 ② 3x2-1=0
③ -3t2+t=0
④ x2-4x=2
⑤ 2x2-x=0
⑥ 5(m+2)2=8
⑦ 3y2-y-1=0 ⑧ 2x2+4x-1=0
⑨ (x-2)2=2(x-2)
适合运用直接开平方法
;
适合运用因式分解法
;
适合运用公式法
;
适合运用配方法
.
我的发现
➢一般地,当一元二次方程一次项系数为0时 (ax2+c=0),应选用直接开平方法;
例3.解下列方程 :
(1)x(x 2) x 2 0;
(2)5x2 2x 1 x2 2x 3 .
4
4
可以试用 多种方法解 本例中的两
个方程 .
分解因式法解一元二次方程的步骤是: 1.将方程右边等于0; 2. 将方程左边因式分解为A×B; 3. 根据“ab=0,则a=0或b=0”,转化为两个一元一次方程. 4. 分别解这两个一元一次方程,它们的根就是原方程的根.
➢若常数项为0( ax2+bx=0),应选用因式分解法;
➢若一次项系数和常数项都不为0 (ax2+bx+c=0), 先化为一般式,看一边的整式是否容易因式分解, 若容易,宜选用因式分解法,不然选用公式法;
② 2x2+7x-4=0
③ 4(t+2 3 )2=3
④ x2+2x-9999=0
(5) 3t(t+2)=2(t+2)
小结: 1、
ax2+c=0
====>
直接开平方法
ax2+bx=0 ====>
因式分解法
ax2+bx+c=0 ====>
因式分解法 公式法(配方法)
① x2-3x+1=0 ② 3x2-1=0
③ -3t2+t=0
④ x2-4x=2
⑤ 2x2-x=0
⑥ 5(m+2)2=8
⑦ 3y2-y-1=0 ⑧ 2x2+4x-1=0
⑨ (x-2)2=2(x-2)
适合运用直接开平方法
;
适合运用因式分解法
;
适合运用公式法
;
适合运用配方法
.
我的发现
➢一般地,当一元二次方程一次项系数为0时 (ax2+c=0),应选用直接开平方法;
例3.解下列方程 :
(1)x(x 2) x 2 0;
(2)5x2 2x 1 x2 2x 3 .
4
4
可以试用 多种方法解 本例中的两
个方程 .
分解因式法解一元二次方程的步骤是: 1.将方程右边等于0; 2. 将方程左边因式分解为A×B; 3. 根据“ab=0,则a=0或b=0”,转化为两个一元一次方程. 4. 分别解这两个一元一次方程,它们的根就是原方程的根.
➢若常数项为0( ax2+bx=0),应选用因式分解法;
➢若一次项系数和常数项都不为0 (ax2+bx+c=0), 先化为一般式,看一边的整式是否容易因式分解, 若容易,宜选用因式分解法,不然选用公式法;
因式分解法ppt课件

(1)提公因式法:am+bm+cm= m(a+b+c)
;
( 2)公式法:a²-b²= (a+b)(a-b) ,a²±2ab+b²= (a± b)²
(3)十字相乘法 X
)(x
根据物理学规律,如果把一个物体从地面以10 m/s的速度竖直上抛, 那么物体经过xs 离地面的高度(单位:m) 为10-4.9x².
解 :(1) x(x-4)=2-8x
方程整理,得x²+4x=2,
配方,得x²+4x+4=6, 即(x+2)²=6 开平方,得x+2=± √6,
解得x
=-2+√6,x₂=-2-√6.
解 :(2) x²-4x=0
分解因式,得x(x-4)=0, 所以x=0 或x-4=0, 解得x=0,x₂=4.
解:(3)2 x(x+4)=1
解得
,X
₂
解 :2(x-3)²=x²-9,
2(x-3)²=(x-3)(x+3) (x-3)[2(x-3)-(x+3)]=0 (x-3)[x-9]=0 x₁=3,x₂=9.
练习6 按要求解一元二次方程.
(1)x(x-4)=2-8x
(配方法) .
(2)x²-4x=0
(因式分解法).
(3)2x(x+4)=1 (公式法) .
元
先配方,再用直接开平方法降
二 配方法 次 方
次
适用于全部
一
程 公式法
直接利用求根公式
元二次方程
的 方
先使方程一边化为两个一次因
法
因式分解法
式乘积的形式,另一边为0,适用于部分一
人教版初中数学《因式分解》_PPT

【获奖课件ppt】人教版初中数学《因 式分解 》_ppt 1-课件 分析下 载
∴
x1
-1 2
,x2
1 2
【获奖课件ppt】人教版初中数学《因 式分解 》_ppt 1-课件 分析下 载
【获奖课件ppt】人教版初中数学《因 式分解 》_ppt 1-课件 分析下 载
典题精讲
例2 用适当的方法解下列方程:
(1)3x²+x-1=0
解: a=3,b=1,c=-1,
∴Δ=b²-4ac=1-4×3×(-1)
【获奖课件ppt】人教版初中数学《因 式分解 》_ppt 1-课件 分析下 载
【获奖课件ppt】人教版初中数学《因 式分解 》_ppt 1-课件 分析下 载
典题精讲
(2)5x2 2x 1 x2 2x 3
4
4
解:原方程整理为4x²-1=0
因式分解,得(2x+1)(2x-1)=0
∴2x+1=0或2x-1=0
典题精讲
(3)(3x-2)²=4(3-x)²
解:移项,得(3x-2)²-[2(3-x)]²=0
因式分解,得
[(3x-2)+2(3-x)][(3x-2)-2(3-x)]=0
即(x+4)(5x-8)=0
∴x+4=0或5x-8=0
∴x1=-4,x2
8 5
【获奖课件ppt】人教版初中数学《因 式分解 》_ppt 1-课件 分析下 载
【获奖课件ppt】人教版初中数学《因 式分解 》_ppt 1-课件 分析下 载
典题精讲
(4)(x-1)(x+2)=-2
解:方程整理为x²+x=0 因式分解,得x(x+1)=0 ∴x1=0,x2=-1
因式分解ppt(共22张PPT)

3.(随堂练习p31、2)
规律总结
• 对多项式分解因式与整式乘法是方向相反的两种恒等变 形.
• 整式的乘法运算是把几个整式的积变为多项式的形式,
特征是向着积化和差的形式发展;
• 多项式的分解因式是把一个多项式化为几个整式乘积的
形式,特征是向着和差化积的形式发展.
• 因式分解要注意以下几点: 1.分解的对象必须是多项式.
• 把一个多项式化成几个整式的积的形式,这 种变形叫做因式分解。
• 因式分解也可称为分解因式。
因分解的结果要以积的形式表示
2.每个因式必须是整式,且每个因式的次数 都要低于原多项式的次数。
3.必须分解到每个多项式不能分解为止(具 体由所在的数集决定)。
想一想: 因式分解与整式乘法有什么联系?
2.分解的结果一定是几个整式的乘积的形式.
2:计算
(1) 8728713 (2) 1012992
=87(87+13) =8700
=(101+99)(101-99) =200×2 =400
3.若 x101,y99则 x22xyy2_ 4_
动脑筋
n2+n是奇数还是偶数?
2517-532能被120整除吗? 若n是整数,证明 (2n+1)2-(2n-1)2是8的倍数.
多项式的因式分解与整式乘法是方向相反的恒等式.
整式乘法
3x(x-1)= _____
(3).(5a-1) =25a -10a+1 解: ab-ac=a(b-c)
a(a+1)(a-1) a3-a=a(a+1)(a-1)
2
2
整式乘法
答: 由a(a+1)(a-1)得到a3-a的变形是整式乘法,由a3-a得到a(a+1)(a-1)的变形是把一个多项式化成几个整式的积的形式.
规律总结
• 对多项式分解因式与整式乘法是方向相反的两种恒等变 形.
• 整式的乘法运算是把几个整式的积变为多项式的形式,
特征是向着积化和差的形式发展;
• 多项式的分解因式是把一个多项式化为几个整式乘积的
形式,特征是向着和差化积的形式发展.
• 因式分解要注意以下几点: 1.分解的对象必须是多项式.
• 把一个多项式化成几个整式的积的形式,这 种变形叫做因式分解。
• 因式分解也可称为分解因式。
因分解的结果要以积的形式表示
2.每个因式必须是整式,且每个因式的次数 都要低于原多项式的次数。
3.必须分解到每个多项式不能分解为止(具 体由所在的数集决定)。
想一想: 因式分解与整式乘法有什么联系?
2.分解的结果一定是几个整式的乘积的形式.
2:计算
(1) 8728713 (2) 1012992
=87(87+13) =8700
=(101+99)(101-99) =200×2 =400
3.若 x101,y99则 x22xyy2_ 4_
动脑筋
n2+n是奇数还是偶数?
2517-532能被120整除吗? 若n是整数,证明 (2n+1)2-(2n-1)2是8的倍数.
多项式的因式分解与整式乘法是方向相反的恒等式.
整式乘法
3x(x-1)= _____
(3).(5a-1) =25a -10a+1 解: ab-ac=a(b-c)
a(a+1)(a-1) a3-a=a(a+1)(a-1)
2
2
整式乘法
答: 由a(a+1)(a-1)得到a3-a的变形是整式乘法,由a3-a得到a(a+1)(a-1)的变形是把一个多项式化成几个整式的积的形式.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不是
(3)4x2 4x 1 (2x 1)2
不是
(4)x2 3x 1 x(x 3) 1
(5) x2 1 x( x 1 ) x
(6) 18a3bc 3a2b6ac
不是 不是 不是
2021/02/20
5
通过刚才的学习你能说出因式分解与整式 乘法它们之间有什么关系吗?
整式的乘法特点:由整式积的形式转化成多项式和的 形式.
(1).x2-4y2=(x+2y)(x-2y) PPT模板:
PPT素材:
PPT背景:
PPT图表:
PPT下载:
PPT教程:
资料下载:
范文下载:
试卷下载:
教案下载:
PPT论坛:
PPT课件:
语文课件: 数学课件:
英语课件: 美术课件:
科学课件: 物理课件:
化学课件: 生物课件:
地理课件:
历史课件:
因式分解
2021/02/20
1
你能发现这两组等式之 间的联系和区别吗?它们的左 右两边有何特点?
a(a+1)=__a_2+_a_____
a2+a=( a ) ( a+1)
(a+b)(a-b)=__a_2_-_b_2____ a2 - b2= ( a+b) ( a-b )
(a+1)2 = a__2_+_2__a__+_1_
a2+2a+1= ( a+1 ) 2
整式的乘法
特点:由整式积的形式 转202化1/02成/20 多项式和的形式.
特点: 把多项式和的形式转 化为几个整式的积的形式2.
一般地,把一个多项式化成几个整 式的积的形式,叫做因式分解,有时我 们也把这一过程叫做分解因式。
2021/02/20
3
理解概念
判断下列各式哪些是整式乘法?哪些是因式分解?
2. 计算下列各题,并说明你的算法.
(1)87 2 + 87 ×13
(2)1012 - 99 2
2021/02/20
9
(1)若(a+5)(a+2)=a2+7a+10,
则a2+7a+10=( a+5)( a+2).
(2)若 x2+mx-n能分解成(x-2)(x-5), 则m=_-7___,n=_-1_0__.
因式分解特点: 由多项式和的形式转化成几个整式的 积的形式。
结论:多项式的因式分解与整式乘法是两种
相反方向的恒等变形,它们是互逆过程。
2021/02/20
6
x2-y2 9-25x2 x2+2x+1 xy-y2
2021/02/20
(x+1)2 y(x-y) (3-5x)(3+5x) (x+y)(x-y)
(2).2x(x-3y)=2x2-6xy (3).(5a-1)2=25a2-10a+1
整式乘法 整式乘法
(4).x2Biblioteka 4x+4=(x+2)2
因式分解
(5).2πR+ 2πr= 2π(R+r)
2021/02/20
因式分解
4
下列代数式从左到右的变形是因式分解吗?
(1) a2 a a(a 1)
是
(2)(a 3)(a 3) a2 9
7
例:检验下列因式分解是否正确?
(1) x2 y-xy 2=xy(x-y) (2) 2x2-1=(2x+1)(2x-1) (3) x2+3x+2=(x+1)(x+2)
用什么方法检验 因式分解是否
正确呢?
2021/02/20
看等式右边几个整 式相乘的积与左边 的多项式是否相等
8
练习:
1. 检验下列因式分解是否正确. (1)m2+mn=m(m+n) (2)a2-b2=(a+b)(a-b) (3)x2-x-2=(x+2)(x-1)
(3)若x2-6x+m=(x-4)( x-2 ),
则m=__8__.
2021/02/20
10
2021/02/20
11