运筹学 第2章 线性规划的图解法
管理运筹学第二章 线性规划的图解法

B、约束条件不是等式的问题:
若约束条件为 ai1 x1+ai2 x2+ … +ain xn ≤ bi 可以引进一个新的变量si ,使它等于约束右 边与左边之差 si=bi–(ai1 x1 + ai2 x2 + … + ain xn ) 显然,si 也具有非负约束,即si≥0, 这时新的约束条件成为 ai1 x1+ai2 x2+ … +ain xn+si = bi
第二章 线性规划 的图解法
一、线性规划的概念 二、线性规划问题的提出 三、线性规划的数学模型 四、线性规划的图解法 五、线性规划解的情况 六、LP图解法的灵敏度分析
一、线性规划的概念
线性规划Linear Programming 简称LP,是一 种解决在线性约束条件下追求最大或最小的 线性目标函数的方法。 线性规划的目标和约束条件都可以表示成线 性的式子。
max z 3 x1 2 x2
2 x1 x2 ≤ 10 设备B台时占用 s.t. x1 x2 ≤ 8 x , x ≥ 0 产量非负 1 2
决策变量 (decision variable) 目标函数 (objective function) 约束条件 (subject to)
-ai1
x1-ai2 x2- … -ain xn = -bi 。
例1.3:将以下线性规划问题转化为标准形式 Min f = 3.6 x1 - 5.2 x2 + 1.8 x3 s. t. 2.3 x1 + 5.2 x2 - 6.1 x3 ≤15.7 4.1 x1 + 3.3 x3 ≥8.9 x1 + x2 + x3 = 38 x 1 , x 2 , x3 ≥ 0
管理运筹学作业 韩伯棠第3版高等教育出版社课后答案

课程:管理运筹学管理运筹学作业第二章线性规划的图解法P23:Q2:(1)-(6);Q3:(2)Q2:用图解法求解下列线性规划问题,并指出哪个问题具有唯一最优解,无穷多最优解,无界解或无可行解。
(1)Min f=6X1+4X2约束条件:2X1+X2>=1,3X1+4X2>=3X1, X2>=0解题如下:如图1Min f=3.6X1=0.2, X2=0.6本题具有唯一最优解。
图1(2)Max z=4X1+8X2约束条件:2X1+2X2<=10-X1+X2>=8X1,X2>=0解题如下:如图2:Max Z 无可行解。
图2(3) Max z =X1+X2 约束条件 8X1+6X2>=24 4X1+6X2>=-12 2X2>=4 X1,X2>=0 解题如下:如图3: Max Z=有无界解。
图3(4) Max Z =3X1-2X2 约束条件:X1+X2<=1 2X1+2X2>=4 X1,X2>=0 解题如下:如图4: Max Z 无可行解。
图4(5)Max Z=3X1+9X2 约束条件:X1+3X2<=22-X1+X2<=4X2<=62X1-5X2<=0X1,X2>=0解题如下:如图5:Max Z =66;X1=4 X2=6本题有唯一最优解。
图5(6)Max Z=3X1+4X2 约束条件:-X1+2X2<=8X1+2X2<=122X1+X2<=162X1-5X2<=0X1,X2>=0解题如下:如图6Max Z =30.669X1=6.667 X2=2.667本题有唯一最优解。
图6Q3:将线性规划问题转化为标准形式(2)min f=4X1+6X2约束条件:3X1-2X2>=6X1+2X2>=107X1-6X2=4X1,X2>=0解题如下:1)目标函数求最小值化为求最大值:目标函数等式左边min改为max,等式右边各项均改变正负号。
运筹学线性规划图解法

引理1.线性规划问题的可行解X为基本可行解的充分 必要条件是X的正分量所对应的系数列向量是线性独立的. 证明:
必要性:已知X为线性规划的基本可行解,要证X的 正分量所对应的系数列向量线性独立。
因为X为基本解,由定义,其非零分量所对应的系数 列向量线性独立;又因为X还是可行解,从而其非零分量 全为正。
•有唯一解
例1: max z=2x1+ 3x2 s.t. x1+2x2≤8 4x1≤16 x1,x2≥0
画图步骤: 1、约束区域的确定 2、目标函数等值线 3、平移目标函数等值线求最优值
x2
可行域
(4,2) z=14
目标函数 等值线
x1
•有无穷多解
例2 max z =2x1+4x2 s.t. x1+2x2≤8 4x2 ≤ 12 3x1 ≤12 x1, x2 ≥0
X(0)=Σ α iX(i) α i0,Σ α i=1 记X(1),X(2), …,X(k)中满足max CX(i)的顶点为X(m)。于是,
k
k
CX (0) Ci X (i) Ci X (m) CX (m)
i 1
i 1
由假设CX(0)为最优解,所以CX(0)=CX(m),即最优解可在顶点
充分性:已知可行解X的正分量所对应的系数列向量 线性独立,欲证X是线性规划的基本可行解。
若向量P1, P2,…, Pk线性独立,则必有k≤m;当k=m时, 它们恰构成一个基,从而X=(x1,x2,…,xk,0…0)为相 应的基可行解。K〈m时,则一定可以从其余的系数列向量 中取出m-k个与P1, P2,…, Pk构成最大的线性独立向量组, 其对应的解恰为X,所以根据定义它是基可行解。
§2 线性规划图解法
管理运筹学第二章线性规划的图解法

02
图解法的基本原理
图解法的概念
图解法是一种通过图形来直观展示线性规划问题解的方法。它通过在坐标系中绘 制可行域和目标函数,帮助我们理解问题的结构和最优解的位置。
图解法适用于线性规划问题中变量和约束条件较少的情况,能够直观地展示出最 优解的几何意义。
图解法的步骤
确定决策变量和目标函数
明确问题的决策变量和目标函数,以便在图 形中表示。
目标函数是要求最小化或最大化的函数,通常表示为 $f(x) = c_1x_1 + c_2x_2 + ldots + c_nx_n$。
04
约束条件是限制决策变量取值的条件,通常表示为 $a_1x_1 + a_2x_2 + ldots + a_nx_n leq b$或 $a_1x_1 + a_2x_2 + ldots + a_nx_n = b$。
LINDO是一款开源的线性规划求解器,用 户可以免费使用。
软件工具的使用方法
Excel
用户需要先在Excel中设置好线性规划模型,然后使 用“数据”菜单中的“规划求解”功能进行求解。
Gurobi/CPLEX/LINDO
这些软件通常需要用户先在软件界面中输入线性规划 模型,然后通过点击“求解”按钮进行求解。
实例三:分配问题
总结词
分配问题是指如何根据一定的分配原则 或目标,将有限的资源分配给不同的需 求方,以最大化整体效益。
VS
详细描述
分配问题在实际生活中广泛存在,如物资 分配、任务分配等。通过图解法,可以将 分配问题转化为线性规划模型,并利用图 形直观地展示最优解的资源分配方案。在 分配问题中,通常需要考虑不同需求方的 重要性和优先级,以及资源的有限性等因 素,以实现整体效益的最大化。
运筹学课件 第2章:线性规划的对偶理论

min w 16y1 36y2 65y3
90 y1 3 y 2 y1 2 y 2 5 y 3 70 y , y , y 0 1 2 3
原问题 A b C 约束系数矩阵
对偶问题 约束系数矩阵的转臵
约束条件的右端项向量 目标函数中的价格系数向量 目标函数中的价格系数向量 约束条件的右端项向量 Max z=CX Min w=Y’b 目标函数 AX≤b A’Y≥C’ 约束条件 X≥0 Y≥0 决策变量
若原问题为求极小形式的对称形式线性规划问题, 对偶问题应该具有什么形式?
Min w Y 'b A'Y C Y 0
max w Y 'b A'Y C Y 0
min z CX
Max z CX
AX b X 0
AX b X 0
min w 5 y1 4 y2 6 y3 4 y1 3 y2 2 y3 2 y1 2 y2 3 y3 3 3 y1 4 y3 5 2 y 7 y y 1 2 3 1 y1 0, y2 0, y3无约束
对偶问题 约束系数矩阵的转臵
目标函数中的价格系数向量
目标函数 约束条件
变量
Max z=CX m个 ≤ ≥ = n个 ≥0 ≤0 无约束
约束条件的右端项向量 目标函数 Min w=Y’b m个 ≥0 变量 ≤0 无约束 n个 ≥ 约束条件 ≤ =
【例2-3】写出下列线性规划问题的对偶问题
min 2x1 3x2 5x3 x4
1.初始表中单位阵在迭代后单纯形表中对应的位臵就是B-1 2.对于原问题的最优解,各松弛变量检验数的相反数恰好 是其对偶问题的一个可行解,且两者具有相同的目标函数 值。根据下面介绍的对偶问题的基本性质还将看到,若原 问题取得最优解,则对偶问题的解也为最优解。
管理运筹学_第二章_线性规划的图解法

线性规划中超过约束最低限的部分,称为剩余量。 记s1,s2为剩余变量,s3为松弛变量,则s1=0, s2=125,
s3=0,加入松弛变量与剩余变量后例2的数学模型变为 标准型: 目标函数: min f =2x1+3x2+0s1+0s2+0s3 约束条件: x1+x2-s1=350, x1-s2=125, 2x1+x2+s3=600, x1, x2, s1,s2,s3≥0.
阴影部分的每 一点都是这个线 性规划的可行解, 而此公共部分是 可行解的集合, 称为可行域。
B
X2=250
100
100
300
x1
B点为最优解, X1+X2=300 坐标为(50, 250), Z=0=50x1+100x2 此时Z=27500。 Z=10000=50x1+100x2 问题的解: 最优生产方案是生产I产品50单位,生产Ⅱ产品250单位,可得 最大利润27500元。
Z=10000=50x1+50x2
线段BC上的所有点都代表了最优解,对应的最优值相 同: 50x1+50x2=15000。
10
3. 无界解,即无最优解的情况。对下述线性规划问题:
目标函数:max z =x1+x2 约束条件:x1 - x2≤1 -3x1+2x2≤6 x1≥0, x2≥0.
x2 -3x1+2x2=6 3
其中ci为第i个决策变量xi在目标函数中的系数, aij为第i个约束条件中第j个决策变量xj的系数, bj(≥0)为第j个约束条件中的常数项。
16
灵敏度分析
灵敏度分析:求得最优解之后,研究线性规划的
运筹学课件 第二章线性规划

2020/11/23
广东工业大学管理学院
10
配料问题:由若干种不同价格、不同成分含量的原料,用 不同的配比混合调配出一些不同规格的产品,在原料的供 应量限制和保证产品成分含量的前提下,如何进行配料来 获取最大利润或使总成本最低。
投资问题:如何从不同的投资项目中选出一个投资方案, 使得投资的回报达到最大。
甲
乙
丙
A B C 加工费
x11 60%以上 x12 20%以下 x13 0.50
x21 15%以上 x22 60%以下 x23 0.40
x31 x32 50%以下 x33 0.30
售价
3.40
2.85
2.25
原料成本 2.00 1.50 1.00
限制用量 2000 2500 1200
设该厂每月生产甲品牌糖果(x11 x12 x13)千克,其中用原料A x11千克,用原料B x12千克,用原料C x13千克; 生产乙品牌糖果(x21 x22 x23)千克,其中用原料A x21千克,用原料B x22千克,用原料C x23千克; 生产丙品牌糖果(x31 x32 x33)千克,其中用原料A x31千克,用原料B x32千克,用原料C x33千克。
设一共植了y棵树,男生中有x1人挖坑, x2人栽树, x3人浇水; 女生中有x4人挖坑, x5人栽树, x6人浇水.
max z y
20x1 10x4 y 0 30x2 20x5 y 0
s.t.
25x3
x1
x2
15x6 x3
y 30
0
x4
x5
x6
20
x1, x2 , x3 , x4 , x5 , x6 , y 0
松弛变量
xs 2 (2x1 3x2 x3)
运筹学线性规划问题与图解法

线性规划问题的一般形式
Max(min)Z=C1X1+ C2X2+…+CnXn a11X1+ a12X2+…+ a1nXn (=, )b1 a21X1+ a22X2+…+ a2nXn (=, )b2 … … … am1X1+ am2X2+…+ amnXn (=, )bm Xj 0(j=1,…,n)
简写式
Max(min)z c j x j
j 1 n
aij x j (, )bi , i=1, 2,..., m st. j 1 x 0, j 1, 2,..., n j
n
向量式 Max(min)z CX
Pj x j (, )b st . j 1 x 0
min z C T X
线性规划的标准型
下列情况具体处理 若要求目标函数求最大化 若约束方程为不等式:非负松弛变量,非负 剩余变量 若变量不是非负:非正,自由变量, 右边为非正 任何形式的线性规划模型都可以化为标准型。
Ai
配料问题:每单位原料i含vitamin如下:
原料
1
A
4
B
1
C
0
每单位成本
2
2
3
6
1
1
7
2
1
5
6
4
每单位添 加剂中维生 素最低含量
2
5
3
8
12
14
8
求:最低成本的原料混合方案
解:设每单位添加剂中原料i的用量为 xi (i =1,2,3,4)
minZ= 2x1 + 5x2 +6x3+8x4 4x1 + 6x2 + x3+2x4 12
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
朱晓辉 管理科学与工程
管理运筹学
2-1
第二章 线性规划的图解法
教学目标:
• 掌握线性规划的数学模型,能够结合问 题列出模型
• 理解图解法求解 • 了解图解法的灵敏度分析
管理运筹学
2-2
第二章 线性规划的图解法
• §1 问题的提出 • §2 图解法 • §3 图解法的灵敏度分析
管理运筹学
管理运筹学
2-8
§2 图 解 法
对于只有两个决 例1.目标函数:
策变量的线性规划问
Max z = 50 x1 + 100 x2
题,可以在平面直角 约束条件:
坐标系上作图表示线 性规划问题的有关概 念,并求解。
下面通过例1详细讲 解其方法:
s.t.
x1 + 2 x1 +
x2 ≤ 300 (A) x2 ≤ 400 (B) x2 ≤ 250 (C) x1 ≥ 0 (D) x2 ≥ 0 (E)
2-3
第二章 线性规划的图解法
在管理中一些典型的线性规划应用: • 合理利用线材问题:如何在保证生产的条件下,下料最少 • 配料问题:在原料供应量的限制下如何获取最大利润 • 投资问题:从投资项目中选取方案,使投资回报最大 • 产品生产计划:合理利用人力、物力、财力等,使获利最
大 • 劳动力安排:用最少的劳动力来满足工作的需要 • 运输问题:如何制定调运方案,使总运费最小
• 一般形式:
目标函数:
约束条件:
Max (Min) z = c1 x1 + c2 x2 + … + cn xn
s.t. aa…x2m11a…1,1xx111xx++21a,+a2…m2a…2…1x2x2,x2+2+x…+n……+≥+a+0a2nam1xnnnxxnn≤≤(≤((==, =,≥,≥)≥))bb2bm1
2 x1 + x2 +s3= 600
x1 , x2 , s1, s2, s3 ≥ 0
管理运筹学
2-24
§3 图解法的灵敏度分析
线性规划的标准化
• 一般形式
目标函数: 约束条件:
• 标准形式
Max (Min) z = c1 x1 + c2 x2 + … + cn xn
s.t.
…aa…1211
xx11
管理运筹学
2-26
§3 图解法的灵敏度分析
1.极小化目标函数的问题: 设目标函数为
Min f = c1x1 + c2x2 + … + cnxn (可以)令 z = -f ,
则该极小化问题与下面的极大化问题有相同的最优解,
即 Max z = - c1x1 - c2x2 - … - cnxn
但必须注意,尽管以上两个问题的最优解相同,但它们 最优解的目标函数值却相差一个符号,即
把所有的约束条件都写成等式,称为线性规划模型的 标准化。
管理运筹学
2-20
进一步讨论
例2 某公司由于生产需要,共需要A,B两种原料至少350 吨(A,B两种材料有一定替代性),其中A原料至少购进125 吨。但由于A,B两种原料的规格不同,各自所需的加工时间 也是不同的,加工每吨A原料需要2个小时,加工每吨B原料需 要1小时,而公司总共有600个加工小时。又知道每吨A原料的 价格为2万元,每吨B原料的价格为3万元,试问在满足生产需 要的前提下,在公司加工能力的范围内,如何购买A,B两种 原料,使得购进成本最低?
• 对于“ ”约束条件,可以增加一些最低
限约束的超过量,称之为剩余变量。从而把
“ ” 约束条件变为等式约束条件。
管理运筹学
2-23
• 加了松弛变量和剩余变量后的例2的数学模型 为:
目标函数: Min f = 2x1+3x2+0s1+0s2+0s3
约束条件:
s.t.
x1+ x2 - s1= 350
x1 -s2 = 125
2-18
§2 图 解 法
• 在最优生产方案下资源消耗的情况:把x1=50, x2=250代入约束条件得
• 设备台时:1*50+1*250=300 • 原料A:2*50+1*250=350 • 原料B:0*50+1*250=250
• 说明:生产50单位Ⅰ产品和250单位Ⅱ产品将消 耗完所有可能的设备台时数及原料B,但对原料A则 还剩余50千克。
线性规划的组成:
•目标函数 Max F 或 Min F
•约束条件 s.t. (subject to) 满足于
•决策变量 用符号来表示可控制的因素
管理运筹学
2-4
§1 问题的提出
例1. 某工厂在计划期内要安排Ⅰ、Ⅱ两种产品的生产,已知生产单位产 品所需的设备台时及A、B两种原材料的消耗、资源的限制,如下表:
x2
z=10000=50x1+100x2
AB C
z=0=50x1+100x2
E
z=27500=50x1+100x2
z=20000=50x1+100x2
D
x1
图2-2
管理运筹学
2-14
§2 图 解 法
• 重要结论:
– 如果线性规划有最优解,则一定有一个可行域的顶 点对应一个最优解;
– 无穷多个最优解。若将例1中的目标函数变为max z优=解50;x1+50x2,则线段BC上的所有点都代表了最
管理运筹学
2-21
进一步讨论
解:目标函数: Min f = 2x1 + 3 x2 约束条件:
s.t.
x1 + x2 ≥ 350
x1 ≥ 125
2 x1 + x2 ≤ 600
x1 , x2 ≥ 0
采用图解法。如下图:得Q点坐标(250,100)为最优解。
x2
x1 =125
600
500
2x1+3x2 =1200
xx22++
… …
+ +
aa12nn
xxnn
= =
bb12
axm11,x1x+2 ,am…2 x,2 +xn…≥+0a,mnbxin≥0= bm
管理运筹学
2-25
§3 图解法的灵敏度分析
可以看出,线性规划的标准形式有如下四个特 点:
– 目标最大化; – 约束为等式; – 决策变量均非负; – 右端项非负。 对于各种非标准形式的线性规划问题,我们总可 以通过以下变换,将其转化为标准形式:
• 可行域的几何形状由于问题不同可以千变万 化,但可行域的几何结构是凸集
• 要求集合中的任何两点的连线段落在这个集 合中
管理运筹学
2-13
§2 图 解 法
到(一4条)直目线标,函直数线z上=5的0每x1+一1点00都x具2,有当相z取同某的一目固标定函值数时值得, 称之为“等值线”。平行移动等值线,当移动到B点时,z 在可行域内实现了最大化。A,B,C,D,E是可行域的顶 点,对有限个约束条件则其可行域的顶点也是有限的。
Min f = - Max z
管理运筹学
2-27
§3 图解法的灵敏度分析
2、约束条件不是等式的问题: 设约束条件为
ai1 x1+ai2 x2+ … +ain xn ≤ bi 可以引进一个新的变量s ,使它等于约束右边与左
边之差
s=bi–(ai1 x1 + ai2 x2 + … + ain xn ) 显然,s 也具有非负约束,即s≥0,
++…aa…1222
xx22++
… …
+ +
aa12nn
xxnn
≤ ≤
( (
=, =,
≥ ≥
))bb12
x1a,m1xx21,+ a…m2,x2xn+
…+ ≥0
amn
xn
≤
(
=,
≥
)bm
目标函数: 约束条件:
Max z = c1 x1 + c2 x2 + … + cn xn
s.t.
……aa1211
xx11 ++…aa…1222
x1,x2≥0.
(4 )
max z=3x1+9x2;
约束条件:
x1+3x2≤22,
-x1+x2≤4,
x2≤6,
2x1-5x2≤0,
x1,x2≥0
管理运筹学
2-17
答案
• (1)有唯一解x1 = 0.2, x2= 0.6函数值为 3.6 • (2)无可行解 • (4) 无可行解 • (5)无穷多解
管理运筹学
– 无界解。即可行域的范围延伸到无穷远,目标函数 值可以无穷大或无穷小。一般来说,这说明模型有 错,忽略了一些必要的约束条件;
– 无可行解。若在例1的数学模型中再增加一个约束 条足件约束4x条1+件3x的2≥解1,20当0,然则也可就行不域存为在空最域优,解不了存。在满
管理运筹学
2-15
练习题
• 2. 用图解法求解下列线性规划问题,并指出哪 个问题具有惟一最优解、无穷多最优解、无界解或 无可行解.
பைடு நூலகம்
X1=0
x1
管理运筹学
x1
2-10
§2 图 解 法
(2)对每个不等式(约束条件),先取其等式在坐标系中 作直线,然后确定不等式所决定的半平面。
300
200
x1+x2=300