准静态和动态载荷下的人体胸部响应有限元分析

准静态和动态载荷下的人体胸部响应有限元分析
准静态和动态载荷下的人体胸部响应有限元分析

风与结构的耦合作用及风振响应分析(精)

第17卷第5期工程力学Vol.17 No.52000年 10 月ENGINEERING MECHANICS Oct. 2000 收稿日期修订日期 国家自然科学基金资助项目(59578050 作者简介 女 浙江大学土木系副教授 主要从事结构工程研究 文章编号 孙炳楠 (浙江大学土木系 在目前的风振响应计算中 但对于超高层建筑 由于基频较低 本文基于准定常假定推论出 风与结构的耦合作用实质上就是气动阻尼效应就可建立考虑风与结构耦合作用的风振响应模态分析方法确定了风与 结构耦合作用所产生的气动阻尼比较了采用Davenport 谱和Kaimal 谱对计算结果的差异性

采用Kaimal 谱并考虑风与 结构的耦合作用所得计算结果能与风洞试验结果吻合较好 风振响应 气动阻尼 中图分类号 A 1前言 作用于高耸建筑物 地震荷载和风荷载 结构显得越来越柔性振动频率随之降低 建筑物越柔而地震能量集中在高频区 因此 当建筑物总高度超过某一值时 深入分析高耸结构的风振效应就显得十分重要 大部分的研究都集中在顺风向的抖振分析上 从原理上讲 只是在计算过程中针对具体的分析对象有不同的处理方式对结构的计算模式作不同的简化等等 频域分析法比较直接方便

并且所需机时较长 在目前的风振响应计算中这对于一阶频率高于 0.5Hz 的悬臂结构是可以接受的[5] ???ê?t?|?á11 óè ??ê?×è?á??D?μ????á11 ±????ùóú×??¨3£?ù?¨ 风与结构的耦合作用及风振响应分析17 虑风与结构耦合作用的风振响应模态分析方法确定了不同风速下风 与结构耦合作用所产生的气动阻尼采用三维离散的 桁架单元和梁单元模型并着重探讨了两个问题 (2 采用Davenport 谱和Kaimal 谱对结构风振响应的差 异性 2风振响应频域分析法 任一结构采用合适的有限单元离散后在风荷载作用下的运动平衡方程为大气湍流可以看成是一个平稳随机过程为了求得 风振响应的均方根值x σ?????↓? ≥?(1进行求解 并且对于小阻尼体系

单层平面索网幕墙结构的风振响应分析及实用抗风设计方法

第24卷第5期2007年lO月 计算力学学报 ChineseJournalofComputationalMechanics 、bl_24.No.5 October2007 文章编号:1007—4708(2007)05—0633—05单层平面索网幕墙结构的风振响应分析 及实用抗风设计方法 武岳。,冯若强,沈世钊 (略尔滨工业大学空间结构研究中心,黑龙江哈尔滨150090) 摘要:单层平面索网玻璃幕墙结构是广泛应用于大型公共建筑中的一种新型结构形式,由于其具有秉性大’质量轻、阻尼小、自振频率低的特点.属风敏蓐结构.由于单索幕墙具有较高的几何非线性,丰文采用基于随机振葡理论的模态叠加频域方法进行了单索幕墙结构的风振响应分析.将模杰叠加频蛾方法的计算结果和非线性时程分析方法的精确计算结果进行了比较,证明了谈方法的准确性.并且丰文通过分析各阶模态对单索幕墙结构风振响应的重献,得到脉动风荷载下结构的振神以第一阶模态为主的结论.根据该结论本文采用频域方法推导了单索幕墙结构的位移均方差和索内力均方差的实用计算公式.同时考虑单索摹墙的结构特点提出了基于结构响应的单索幕墙结构实用抗风设计方法. 关键词:点支武玻璃幕墙;风振响应;索结构;频蛾方法;抗风设计方法 中图分类号:TU383文献标识码:A 1引言 近年来,随着玻璃工艺的提高和大量公共建筑的兴建,以预应力拉索作为支承结构的单层平面索网玻璃幕墙结构(以下简称单索幕墙)以其简洁、通透的特点在国内得到广泛应用.单层平面索网作为一种新型张力结构体系,具有柔性大、质量轻、阻尼小、自振频率低的特点,属风敏感结构,但由于其为新型结构体系,目前国内外对该类体系的动力性能研究较少,对其风激动力性能缺乏了解。同时现行荷载规范中提出的等效静风荷载法仅适用于高层、高耸等悬臂型结构,幕墙规范提出的阵风系数也仅适用于单块玻璃的抗风设计,不适用于支承结构设}卜“,因此需要提出一套考虑风荷载动力作用且在工程上简便易行的单索幕墙结构实用抗风设计方法。 对于单层平面索网结构,基于随机振动理论的颓域法是进行结构风振响应实用计算的主要方法之一.本文采用模态叠加频域方法进行了结构的风振响应分析,然后根据分析结果采用频域方法对于单索幕墙结构的风振响应简化计算公式进行了推导,并给出了实用化的计算表格。 收稿日期:2005—07—17}謦改稿收到日期:2005-09-03. 基金项目:国家自然科学基盒(50478028)资助项目. 作者筒舟:武岳。(1972-).男.副教授(E-mail?wuyuc_Z000 @153.corn)I 玛若强(1789-),男,博士生l 沈世钊(1933-),男.教授冲国工程院晓士. 需要指出的是,单层平面索网玻璃幕墙结构由于挠度较大(国内目前常用的设计挠度限值约为结构跨度的1/50左右),结构具有较高的几何非线性.频域方法只能对结构进行线性分析,因此采用频域方法计算此类结构时,可能会产生较大的误差,为此本文在对单索结构进行风振响应频域计算时认为:不是选用竖直平面位置——单索结构初始状态作为计算结构的初始位置,而是选用平均风压作用位置——单索结构平衡状态作为结构的初始位置,此时结构几何非线性的大部分已经完成;其次结构在脉动风作用下在此位置附近作微幅振动,几何非线性较弱,因此可以采用频域方法进行结构的风振计算。 虽然选取平均风压作用位置作为结构风振计算的初始位置,但结构还是具有一定的几何非线性,因此为检验频域计算结果的准确性,本文同时又采用非线性时程分析方法【23即人工生成具有特定频谱密度和空间相关性的风荷载时程,直接求解运动微分方程获得结构的精确响应,同采用频域方法得到的结构响应进行了比较。 2结构风振晌应频域计算方法 2.1频域方法 在脉动风荷载下单索幕墙结构的振动方程: [^幻{藐}+[c]{矗)+[K]{“)一{P(f))(1)式中[M],[K]和[c]分别为结构的质量,刚度矩  万方数据

大跨度平屋面的风振响应及风振系数(精)

第19卷第2期 J: 程 山学 Voll9No2 竺:三』旦 文章编号:1000-4750(2002)02.052-06 !翌2些!型2些皇竺窒 墅!:坠 大跨度平屋面的风振响应及风振系数 陆锋,楼文娟,孙炳楠 {浙江太学土木系.杭州310027) 摘要:本文在有限元分析的基础上建立了大跨度平屋面结构在风荷载作用下的M振响应谱分析方法.并采用Davenport谱和由风洞试验得到的屋盖表面的平均风压分布系数计算了屋面的风振响应及风振系数。文中还深入探讨了屋面刚度、来流风速及风向等参数对太跨度平屋面竖向风振响应及风振系数的影响。计算表明:①大跨度平尾面的竖向风振响应丰要是由第一振型所支配,高阶振型对属面板竖向风振响应的影响很小;②屋面刚度及来流风速对人跨度平屋面的轻向风振响应影响比较大,但对位移风振系数的影响不太明显:③在工程设计中,建议粟用位移风振系数来计算大跨度平屋面的等效静力风荷载。 关键词:大跨度平屋面;有限元;谱分折方法;风振响应:风振系数中图分类号:TU3II.3 文献标识码:A 1 前言 对于风流场中的屋面结构.由于在檐角处出现 本文的主要目的是结合有限元方法推导出大跨度平屋面结构在风荷载作用下的风振响应谱分析方法;然后采用Davenport谱和由风洞试验得到的屋盖表面的平均风压分布系数来计算这种屋面的风振响应及风振系数:最后通过讨论屋面刚度、来流风速及风向等参数对大跨度平屋面竖向风振响应及风振系数的影响,得出~些有益的结论,为进一步深入研究奠定基础。 来流附面层的分离而引起复杂的绕流现象以及作用在屋面结构上的气动力的复杂性,使得它常常成为风工程研究的主要对象。许多研究者对某些特定外形的屋面风荷载进行了研究,并做了大量的风洞试验,例如:双坡屋面…、四坡屋面121、有女儿墙的平屋面pJ、弧状屋面H1及柱形和球形屋面【5I等。由于这

直齿圆柱齿轮传动的轮齿弯曲强度计算

直齿圆柱齿轮传动的轮齿弯曲强度计算准则 为了保证在预定寿命内齿轮不发生轮齿断裂失效,应进行轮齿弯曲强度计算。 直齿圆柱齿轮传动的轮齿弯曲强度计算准则为:齿根弯曲应力σF 小于或等于许用弯曲应力[σ F ],即 σF ≤[σF ] 轮齿弯曲强度计算公式 轮齿弯曲强度的验算公式 计算弯曲强度时,仍假定全部载荷仅由一对轮齿承担。显然,当载荷作用于齿顶时,齿根所受的弯曲力矩最大。 图 11-8 齿根危险截面 计算时将轮齿看作悬臂梁(如图11-8所示)。其危险截面可用切线法确定,即作与轮齿对称中心线成夹角并与齿根圆角相切的斜线,而认为两切点连线是危险截面位置(轮齿折断的实际情况与此基本相符)。危险截面处齿厚为。 法向力Fn 与轮齿对称中心线的垂线的夹角为 ,Fn 可分解为 使齿根产生弯曲应力,则产生压缩应力。因后者较小故通常略去不计。 齿根危险截面的弯曲力矩为 式中:K 为载荷系数;为弯曲力臂。 危险截面的弯曲截面系数W 为 故危险截面的弯曲应力为 3030F s F α1F 2F F h F σ

令 式中称为齿形系数....。因和均与模数成正比,故值只与齿形中的尺寸比例有关而与模数无关,对标准齿轮仅决定于齿数。由此可得轮齿弯曲强度的验算公式 Mpa (a) 通常两齿轮的齿形系数和并不相同,两齿轮材料的许用弯曲应力[]和[] 也不相同,因此应分别验算两个齿轮的弯曲强度。 轮齿弯曲强度设计公式 引入齿宽系数,可得轮齿弯曲强度设计公式为 mm (b) 上式中的负号用于内啮合传动。内齿轮的齿形系数可参阅有关书籍。 式(a )和(b)中为小齿轮齿数;的单位为N ·mm ;b 和m 的单位为mm ; 和[]的单位为MPa 。 式(b)中的应代入和中的较大者。 算得的模数应圆整为标准模数。 传递动力的齿轮,其模数不宜小于1.5mm 。 26( )cos ()cos F F F F h m Y s m αα=F Y F h F s F Y 1 112122[]F F F F KTY KTY bd m bm z σσ= =≤1F Y 2F Y 1F σ2F σa b a ψ=m ≥1z 1T F σF σ[]F F Y σ11[]F F Y σ2 2[]F F Y σ

大跨悬挑屋盖风振响应参与模态分析

第29卷 第5期 2007年5月武 汉 理 工 大 学 学 报JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY Vol.29 No.5 M ay 2007 大跨悬挑屋盖风振响应参与模态分析 吴海洋1,梁枢果1,郭必武 2(1.武汉大学土木建筑工程学院,武汉430072;2.武汉建筑设计院,武汉430014) 摘 要: 根据援巴哈马体育场和援几内亚体育场主看台悬挑屋盖风洞试验数据结果,分析和探讨了采用频域分析法计算大跨度悬挑屋盖风振响应时应考虑的结构模态数和频率范围,得到强风作用下悬挑屋盖结构均方根位移与内力响应随参与计算的模态数和频率范围的变化规律,并从屋盖表面测点风压谱密度的角度解释了这种变化规律。 关键词: 大跨悬挑屋盖; 风洞试验; 风振响应; 参与模态 中图分类号: T U 312文献标志码: A 文章编号:1671 4431(2007)05 0089 05 Participant Mode Analysis of Wind induced Responses of Large Cantilevered Roof W U H ai yang 1,L IAN G Shu guo 1,G UO Bi w u 2 (1.School of Civ il and Building Eng ineering,Wuhan U niversit y,Wuhan 430072,China; 2.W uhan Architectural Design Institute,Wuhan 430014,China) Abstract: T he mode number and t he frequencies range,which were considered during calculating the wind induced respons es o f lar ge cantilevered roof by using the method of frequency do main,w ere analysed and di scussed,according to the results o f wind tunnel tests of Bahamas and Guinea stadium grandstand cantilevered roofs,and the rules that R M S displacement and RM S inter nal force responses under strong w ind for ce chang ing wit h part icipant modes number and frequencies r ange were obtained,and which could be explained fro m t he point of wind pressure pow er spectrum densities of the measured points on sur face of the roof. Key words: large cantilevered roo f; wind tunnel tests; w ind induced responses; participant modes 收稿日期:2006 12 12.作者简介:吴海洋(1981 ),男,博士生.E mail:wuocean1980@https://www.360docs.net/doc/645245575.html, 大跨度悬挑屋盖是大跨空间结构中最典型的风敏感结构,因其具有跨度大、结构柔、材料轻等特点,致使风荷载成为其结构设计的主要荷载之一。基于线性体系随机振动理论的频域分析方法是大跨度屋盖结构风振响应分析的首选方法。由于大跨度悬挑屋盖结构各阶固有频率分布密集、振动模态复杂,因此,运用频域法进行风振响应分析时,如何合理地选取参与计算的模态数或确定参与模态的频率范围成为必须首先解决的问题。针对这一问题,国内外许多学者都进行过深入的研究。模态加速度法的实质是对截断的模态位移响应叠加了荷载在剩余柔度上的响应[1],后者称为剩余位移[2] 。补偿模态法是基于模态对系统应变能的贡献作为选取振型的依据[3]。文献[4]基于Rize POD 法识别结构风振的主要贡献模态。然而,上述各种识别主要贡献模态的方法都需要进行大量繁琐的计算,而且得到的结果随结构形式的不同而异。如何定量地评价大跨度悬挑屋盖结构风致响应计算需要考虑的参与模态数或者频率范围是十分有价值的研究课题。另外,在采用频域法计算结构风致响应时,针对是否考虑振型交叉项,存在2种方法,即CQC [5]和SRSS [6]法。作者以2个实际工程为背景来分析大跨度悬挑屋盖风致响应与参与计算模态的关系,并且计算了当忽略振

高层建筑风敏感性及风振控制方法简述

高层建筑风敏感性及风振控制方法简述 xxx (南京航空航天大学航空宇航学院土木工程系,南京,210016) 摘要:针对高层建筑结构的抗风特性,在考虑风荷载的影响因素及特点基础上,根据结构风振分析的基本理论,就脉动风荷载特性与结构动力特性进行分析,并引出结构风敏感度的概念。通过对风敏感度分析,验证了部分相关理论的可靠性,能在一定程度上反映结构的风振响应本质特征,实现了对结构风敏感度问题的客观、定量描述。同时,介绍了常用抗风设计控制方法,引出了高层建筑结构抗风设计的一些原则和舒适性条件。 关键词:风荷载;风敏感度;风振特征;抗风控制方法;舒适性 Wind-sensitivity and wind-resistant control of high-rise structure Yu Chaofan (School of Civil Engineering, College of Aeronautice and Space, Nanjing University of Aeronautics & Astronautics, Nanjing, 210016, China) Abstract: In consideration of the wind-resistant characteristics of high-rise structure, factors and features of wind load are of great significance in the structural vibration analysis. According to the basic theory, while analyzing the characteristics of fluctuating wind load and structural dynamic, it smoothly draws out the concept of wind-sensitivity. Besides, through the analysis of wind-sensitivity, it verifies that the related theories are of reliability, which reflects the essential characteristics of wind-induced response. And it describes the problems about wind-sensitivity objectively and quantitively. At the same time, some common control method of wind design are also introduced, in wich it leads to some principles of wind design and comfort conditions of high-rise structure. Key words: wind load; wind-sensitivity;characteristics of wind vibration; wind-resistant control; sense of comfort 引言 近年,我国兴建了许多的高层建筑结构,为众多城市抹上一份不同的色彩。对于高层建筑结构而言,其结构设计的显著特点之一就是侧向荷载是其最主要的控制因素。除地震荷载外,高层建筑、高耸结构的主要侧向荷载是风载。由于高层建筑、高耸结构具有柔度大、阻力小、迎风面大等特点,由风荷载引起的结构静、动力反应在整个结构反应中所占的比重较大。对于非地震区及沿海等强风地区来说,风荷载往往是结构设计中控制性荷载。 因此,对高层建筑结构进行抗风设计研究具有十分重要的现实意义。而在结构抗风设计理论中,风荷载和结构风敏感度是其基础性问题,它可以使结构的抗风研究更具有针对性。同时,风振控制方法也是当前抗风研究重点之一,它增大了高层建筑结构的可靠性。本文将就这几个问题进行简单分析。

高层建筑结构av风振响应的特性

高层建筑结构av风振响应的特性 发表时间:2017-08-15T15:28:37.483Z 来源:《建筑学研究前沿》2017年第9期作者:王凌云 [导读] 在整个建设工程中,最重要的部分就是机电设备的安装工作。 四川省森环科技有限公司 620010 摘要:机电设备安装工作和很多学科都有着紧密的联系,安装的环节也相对的比较复杂,这给安装的工作带来了一定的难度,随着科学技术的不断发展创新,对于机电设备的安装质量来要求随着这种发展趋势也提高了要求,这对于机电的安装工程来说也是一个机遇,更是一种挑战;这篇文章主要对机电安装工作中所出现的问题进行了一些简单的分析,并且提出了相应的一些建议和措施,希望能够对机电设备安装工程的质量有一定的帮助。 关键词:机电设备;安装;常见问题;处理措施 一、机电设备安装的基本内容 1.在整个建设工程中,最重要的部分就是机电设备的安装工作;具体的安装工作主要从三个方面来进行:①公用机电设备安装;②民用机电设备安装,③工业机电设备的安装。详细的来说就是主要包括电气设备的安装、采暖设备的安装以及给排水的安装、通风设备的在那装等。对于整个施工环节来说,从设备的具体采购以及到设备的安装调试到运行,直至验收环节,在这整个的安装环节中,必一定要保证设备能够达到最大的使用功能;而在机电设备的安装调试过程中,还包括对新材料、施工工艺以及技术应用;在比较大型的工程进行安装时,还需要对装配吊装进行严格的要求,保证符合相关的检验标准。 二、机电设备安装过程中的常见问题 2.1 电气设备在安装过程中发生问题的原因 电气设备在安装过程中最常见的问题主要表现在以下几个方面:在安装的过程中隔离开关时,用了不够准确的操作方法,错误的操作使动触头的接触压力与静触头的接触压力出现不足的情况,导致接触的面积太小,以致出现了氧化的现象,这在很大程度上造成电阻压力加大,最后发生烧蚀灼伤以及触头等严重的事故;还有在进行装配断路器的弧触指和触头的过程中用了不正确的操作方法,会导致接触压力以及分合闸的速度和现实的要求不符,最后导致触头过热,造成绝缘介质分解、增加压力,断路器就会发生爆炸;检修的不及时会导致电流互感器产生绕组开路,造成过电压太高,使设备安全出现故障。 2.2 螺栓联接过程中常见的问题 在机电设备的具体装配过程中,最基础的安装工作就是螺栓与螺母的连接。在实际的安装过程中,一定要对设备机械的效应和电热的效应进行综合分析;具体的安装要注意以下两个方面:在进行螺栓和螺母的连接时,一定要对压接和联接的情况进行着重的观察,这样会防止在连接过程中出现过松或者太紧的情况发生;部件间的装配如果是处于松动的状态,就会导致所接触的电阻加大,在通电的时候就容易出现接触面氧化以及发热等状况,如果情况严重甚至会将联接处烧熔,导致发生接地断开和短路等事故。 2.3 配件安装过程中的常见问题 由于机电设备配件市场的规范程度不够标准,以及设备采购人员的自身专业技术、专业素质过低,导致采购配件与实际要求不符;螺栓和螺母等配件需要考虑到机器和电磁力的作用,一旦出现松动的现象,就会出现断裂的情况;不符合标准的产品配件不具备统一性,导致各配件在连接的过程中不够严实,出现松动的情况,这会在很大程度上降低机电设备的在实际安装过程中的质量。 2.4工程承包管理中的常见问题 没有完善的管理制度就会使相应的管理工作不够具体,再加上管理部门对于质量关把控的不够严格,导致工程量过大、资金投入不足、工程利润较小,也会使很多的施工队伍的施工意愿降低,资质高的施工队伍会将工程进行转包,承接的施工方往往施工的资质不够,会导致在施工的过程中出现很多问题。 三、机电设备安装过程中常见问题的处理措施 3.1 必须严格安装相关的施工原则进行安装 在安装进行之前一定要合理选择相关的设施设备,在进行选择的过程中,规定相关操作人员必须要进行相关的技术计算工作与验算工作,将设备和设施进行定向,这样在能保证其使用的价值与实际的工程规定相符合,这样才能在最大程度上优化施工的组织和设计;安装工作要做到统筹兼顾,对总体的布局进行一定的强化,还需要加强技术的相关论证,保证能够合理的按照计划进行安装的每个环节;保证工程的进度能够按时的完成;在进行施工之前,还要做好压风机以及变电所等各项设备的安装工作,相关的动力源以及电源安装程序要进行明确,还要保证提升绞车与井架的的配备时要及时,施工程序的先后要明确,保证合理有序的进行相关的安装工作,才能保证安装的保量。 3.2 施工人员的相关素质要进行提高 施工人员在作业之前要加强相关的岗前培训,一定要扎实的掌握安装相关知识和安装的规定标准,还要能够保障配件以及设备的主体能够进行严密的连接,这样才能保证安装的质量;机械施工者连接机械、电气施工者安装电气等环节,一定要严格的执行相关的操作规范,还需要做好供配电的相关连接作业;在电路安装环节完成之后还需要开始进行设备的试运转工作,这样可以及时的发现问题进行相关的处理;安装完成之后,还需要检查设备的安装是否完整合理,是否严的格按照安装的工艺流程进行的。 3.3 做好施工前的准备工作 在设备安装之前前,施工人员要详细的了解设计图纸中的内容,这样才能够及时的发现图纸中不合理之处,也能保证作业的安排能够进行及时的调整;明确相关的技术文件的标准和要求,对工程所需要的设备机械进行核查,保证操作的流程和工序科学合理,还需要考虑施工人员在施工进行中的流动性,各施工环节的交底工作也要明确。 3.4 施工过程中的质量控制 依照相关的设计图纸和相关的技术文件进行严格合理的施工,对于图纸中所发现的问题要能够及时的处理,还需要提出相关的处理措

基于ANSYS的多齿轮动态接触分析

龙源期刊网 https://www.360docs.net/doc/645245575.html, 基于ANSYS的多齿轮动态接触分析 作者:高飞 来源:《科协论坛·下半月》2013年第06期 摘要:基于ANSYS建模,分析多齿轮在动态接触过程中齿面各处应力的分布与变化,对于合理设计齿轮副提高齿轮寿命具有重要意义,并且避免设计过程中复杂的人工计算,以此为依据进行齿轮设计可以大大加快设计过程提高可靠性。 关键词:ANSYS 有限元应力齿轮动态接触 中图分类号:TH132.41 文献标识码:A 文章编号:1007-3973(2013)006-051-02 1 引言 随着齿轮传动向重载、高速、低噪、高可靠性方向发展,现代齿轮设计对齿轮传动系统的静、动态特性提出了更高的要求。基于ANSYS对齿轮副建模,然后划分为有限个单元体并设置边界条件,将复杂力学问题的计算求解过程交由计算机完成可以大大节省人力,并且计算迅速,结果可靠。本文以一对齿轮副的动态啮合过程为例,利用ANSYS对其进行建模、加载、求解从而分析其在啮合过程中的应力变化,为以后的齿轮设计提供力学上的理论依据。 2 有限元模型的建立与网格划分 2.1 模型参数 两个齿轮的基本参数如下: 大齿轮:齿数45,模数2mm,压力角20€埃荻ジ呦凳?.0,顶隙系,0.5 小齿轮:齿数36,模数2mm,压力角20€埃荻ジ呦凳?.0,顶隙系,0.5 材料参数:45#,泊松比0.3,弹性模量206GPa,密度7850 2.2 单元选择及边界条件 分析单元采用SOLID185单元,具有超弹性、应力钢化、蠕变、大变形和大应变能力。通过接触向导建立齿轮之间的接触对和齿轮的刚性约束,则接触单元和目标单元将自动分配。 小齿轮为主动轮,约束齿轮内缘的径向位移和轴向位移;大齿轮为被动轮,约束径向位移和轴向位移。小齿轮匀速转动,转速为0.2rad/s,大齿轮承受1200N·m的阻力矩,计算时间为1秒(小齿轮转过约11.5€埃邢拊P偷慕⑷缤?所示。

高层建筑结构风振响应的特性

高层建筑结构风振响应的特性 发表时间:2017-08-15T15:27:47.360Z 来源:《建筑学研究前沿》2017年第9期作者:成佩玲 [导读] 根据风振响应阵型分解基本理论,通常将结构的动力响应分为共振响应和背景响应分别进行求解[1]。 新疆大学建筑设计研究院新疆 830000 摘要:高层建筑结构风振响应具有多模态参振及模态耦合效应显著的特点。基于振型分解,本文采用分量叠加法对高层建筑结构的风振响应进行计算,其中,背景响应采用拟静力分析方法,共振响应采用SRSS和CQC两种组合形式进行计算。同时,根据分量叠加法、优化的分量叠加法分析了高层建筑结构风振响应的特性,并将计算结果进行了分析比对。最后,通过某高层建筑结构各分量的比例关系、位移响应等计算结果对所提出的结论进行了验证。 关键词:高层建筑结构,风振响应,背景响应,共振响应 1引言 根据风振响应阵型分解基本理论,通常将结构的动力响应分为共振响应和背景响应分别进行求解[1]。根据分量叠加理论、优化的分量叠加理论、模态叠加理论等基本理论,分别推导适合高层建筑结构的风振响应计算公式。已有研究成果表明,大跨屋盖结构风振响应计算须考虑多阶阵型的影响,以及模态间的耦合效应[2]。本文以某一高层建筑结构为研究对象,分析此类高层建筑结构风振响应的特性。 2基于随机振动理论的分析方法 高层建筑结构在脉动风荷载作用下的运动方程为: 图4-1 顺风向(X轴)背景响应图4-2 横风向(Y轴)背景响应 由图4-1、图4-2所示的结果表明,背景响应随着建筑高度的增加,背景响应也在逐步增大,且采用SRSS组合方法与CQC组合方法得到的结果很相近。以上说明在该高层建筑结构中,背景响应各个振型之间的耦合效应不明显,所以背景响应振型间的耦合作用基本上可以忽略,对计算结果影响不大。与此同时,我们发现采用拟静力方法与振型叠加法得出的结果较为一致。故采用拟静力方法求解更高效。 为反映共振响应振型之间的相关性对计算结果的影响,其计算分别采用了参振模态的背景响应和共振响应的CQC组合结果、SRSS组合结果,并将两种计算结果进行了对比。计算结果显示,无论在横风向还是顺风向,采用CQC组合法和SRSS组合法进行振型叠加得到的共振响应都存在明显差异。说明共振响应各振型之间的耦合效应对响应结果存在较大影响,振型间的耦合作用不能忽略。 传统的CQC法计算精度较为精确,但计算成本较高,尤其三针对高层建筑结构,消耗大量的计算资源。若采用优化共振位移响应分量的计算,计算效率会大大提高。故本文选取了10个不同高度位置且具有代表性的节点,采用SRSS组合法、CQC组合法和优化方法分别计算X向、Y向的位移极值响应的共振分量,并将统计结果进行误差分析。计算结果将CQC组合得到的共振响应结果作为参考基准,发现采用SRSS组合计算出的共振响应方差会产生较大的误差。与Y轴方向的结果相比,X轴方向的误差较明显,最大误差接近20%,在工程中这样的误差是不被允许的。优化后共振响应的计算结果误差范围在2%以内,尤其是在Y轴方向更接近CQC组合法的结果。

轮齿的受力分析

图式中:为分度圆螺旋角;为法向压力角,标准齿轮

直大拇指,大拇指所指即为主动轮所受轴向力的方向。从动轮所受轴向力与主动轮的大小相等、方向相反(图6-13 b)。 二、齿根弯曲疲劳强度计算 斜齿轮的强度计算与直齿轮相似,但斜齿轮齿面上的接触线是倾斜的,故轮齿往往是局部折断,其计算按法平面当量直齿轮进行、以法向参数为依据。另外,斜齿圆柱齿轮接触线较长、重合度增大,故其计算公式与直齿轮的公式有所不同。具体如下: =≤(6-11) 或≥(6-12) 式中:y fs为齿形系数,应根据当量齿数z v查图6-8;其中z v=z / cos3; 为斜齿轮螺旋角,一般=8~ 20°;其他符号代表的意义、单位及确定方法均与直齿圆柱齿轮相同。 三、齿面接触疲劳强度计算 斜齿圆柱齿轮传动的齿面接触疲劳强度,也按齿轮上的法平面当量直齿圆柱齿轮计算。一对钢制斜齿圆柱齿轮传动的计算公式如下: σh =≤(6-13) 或 d1≥ (6-14) 式中:为螺旋角系数,考虑螺旋角造成接触线倾斜而对接触强度产生的影 响,;其余各符号所代表的意义、单位及确定方法均与直齿圆柱齿轮相同。

例6-2 试设计一单级减速器中的标准斜齿圆柱齿轮传动,已知主动轴由电动机直接驱动,功率p=10kw,转速n1=970 r/min ,传动比i=4.6,工作载荷有中等冲击。单向工作,单班制工作10年,每年按300天计算。 解:列表给出设计计算过程 ≥ = =600mpa

= = 取 cos 计算螺旋角

/ cos / cos = =240mpa, =220mpa =240mpa =

单层网壳结构等效静风荷载分布估计

第23卷第1期 Vol.23 No.1 工 程 力 学 2006年 1 月 Jan. 2006 ENGINEERING MECHANICS 57 ——————————————— 收搞日期:2004-04-12;修改日期:2004-06-16 基金项目:日本东京工艺大学21世纪COE 项目;国家自然科学基金项目(50508024) 作者简介:*李元齐(1971),男,湖北云梦人,副研究员,博士后,从事结构工程研究(liyq@https://www.360docs.net/doc/645245575.html,); Yukio Tamura(1947),男,日本神奈川县大和市人,教授,博士,同济大学顾问教授,从事结构工程及风工程研究; 沈祖炎(1935),男,浙江杭州人,教授,博导,从事结构工程研究. 文章编号:1000-4750(2006)01-0057-05 单层网壳结构等效静风荷载分布估计 * 李元齐1 ,田村幸雄2,沈祖炎1 (1. 同济大学建筑工程系,上海 200092;2. 东京工艺大学风工程研究中心,日本 厚木 243-0297) 摘 要:单层网壳对外荷载分布极为敏感,且稳定问题是其结构设计中的主要问题,因此风荷载分布的估计对其结构静力抗风分析非常重要。但目前常采用的等效静风荷载分布并不能有效反映其脉动分量对结构稳定性的可能不利影响。首先简单回顾了目前单层网壳抗风分析的方法,并介绍了一种基于风洞试验的有效风荷载分布估计方案。随后从稳定分析角度提出了一种新方法,可用来简单高效地估计单层网壳的有效风荷载分布,同时还可就风荷载的影响进行保守分析。最后,分别采用单层球面和柱面网壳作为算例,基于风洞试验结果,比较了不同估计方法在分析这类结构极限承载能力及稳定性问题时的效率,表明了所提出方法在单层网壳稳定分析中估计有效风荷载分布时的优点。 关键词:单层网壳;稳定性;风荷载;风洞试验;有效风荷载分布;最不利风荷载分布 中图分类号:TU311.4; TU394 文献标识号:A ESTIMATION OF EQUIVALENT STATIC WIND LOAD DISTRIBUTION FOR SINGLE-LAYER RETICULATED SHELLS * LI Yuan-qi 1 , Tamura Yukio 2 , SHEN Zu-yan 1 (1. Tongji University, Shanghai 200092, China; 2. Tokyo Polytechnic University, Atsugi 243-0297, Japan) Abstract: Wind load estimation is very important to single-layer reticulated shells since this system is sensitive to external load distribution, and stability analysis is a main problem in structural design. However, the current estimated equivalent static wind load may not reflect the actual effect of fluctuating wind load on the stability of the shells. In this paper, existing methods used to estimate equivalent static wind load distribution are briefly reviewed. A framework to estimate the effective static wind load distribution for the single-layer reticulated shells based on wind tunnel tests is introduced. Then, a new simple method on the basis of stability analysis is presented to give a conservative estimation of wind load effects, and to improve the efficiency in estimating the effective static wind load distribution. Finally, by comparative analysis of a spherical and a cylindrical single-layer reticulated shell with different methods mentioned and wind tunnel tests, the efficiency of the present method for limit load-carrying capacity and stability analysis of single-layer reticulated shells is demonstrated. Key words: single-layer reticulated shells; stability; wind load; wind tunnel test; effective static wind load distribution; most unfavorable wind load distribution 网壳结构是一种同时具有杆系结构及薄壳结构优点的空间网格结构体系。在其结构设计中,结构变形及稳定性通常是主要问题,且有时必须考虑 其几何非线形特性[1,2]。同时,这种结构体系对初始缺陷的分布非常敏感。另一方面,结构使用阶段实际可能遭受的外荷载分布与设计阶段估计的荷载

结构随机风振响应分析的复模态法_李暾

图1 单自由度模型 文章编号 1004-6410(2002)04-0014-04 结构随机风振响应分析的复模态法 李 暾 1,2 ,李创第2,章本照1,邹万杰2,黄天立 2 (1、浙江大学力学系,浙江杭州 310027;2广西工学院土木系,广西柳州 545006) 摘 要:对单自由度结构的随机风振响应问题进行了研究。首先建立运动方程,并用线性滤波过程生成脉动风谱,用复模态理论和扩阶法进行解耦,获得了等效风谱对应的结构风振响应的解析解,从而建立了结构风振响应分析的复模态法。该方法可用于带T M D 和T LD 结构的风振分析和优化设计。关 键 词:复模态;扩阶法;随机风振 中图分类号:T U311.3;O 313.2 文献标识码:A 收稿日期:2002-08-06 基金项目:广西青年科学基金(0007009)和同济大学防灾国家重点实验室访问学者基金联合资助。作者简介:李 暾(1973-),男,广西柳州人,广西工学院助教,硕士研究生。 0 前 言 在结构的随机风振响应计算中,通常采用的方法是实模态法,这要求结构具有经典阻尼。而实际的许多组合结构体系如:带TM D 、TLD 的高层建筑,都具有非经典阻尼和为非对称结构,故传统的实模态法已不再适用,只能用复模态法进行求解。本文对单自由度体系结构的随机风振复模态分析法进行了系统的研究,针 对脉动风谱为非有理分式风谱的情况,利用线性滤波生成脉动风谱,用复模态法和扩阶法进行解耦,得出了等效风谱对应的结构风振响应的解析解,从而建立了结构风振响应分析的复模态法,为将复模态分析法应用于带TM D 或T LD 、土与结构相互作用的体系等非经典阻尼,非对称结构的风振响应分析奠定了理论基础。 1 运动方程的建立和求解 考虑如图1所示的单自由度模型,在脉动风压P f (t )作用下,根据质点m 的力平衡,可得结构的运动方程为: m x ¨+cx +k x =P f (t )(1) 将方程(1)两边同除以m ,得 x ¨+2Y k n x +k 2 n x =P f (t )m (2) 其中: k 2 n =k m ;2Y k n =c m 令: y 1=x ;y 2=x (3) 将(3)代入方程(2),得 y 2-y 1=0y 1+2Y k n y 2+k 2n y 2= P f (t )m 即: [M ]{y }+[K ]{y }={f (t )}(4) 其中: [M ]= 0 11 2Y k n ; [K ]= -1 00 k 2 n 第13卷 第4期 广西工学院学报 V o l.13 No.4 2002年12月 JO U RN A L O F GU AN GX I U N IV ERSI T Y O F T ECHN O LO G Y Dec.2002

沃辛碰撞理论

跨江公路特大桥船撞力学分析研究 田钦,程海根 华东交通大学土木建筑学院,南昌(330013) E-mail:tianqin224@https://www.360docs.net/doc/645245575.html, 摘要:随着经济和交通运输的发展,航运量不断增大,受船舶撞击而诱发的桥梁跨塌事件日益增多。根据统计资料表明,最近几十年来,世界上发生的船舶撞毁桥墩的重大事故就超过百余起。这类事件往往造成桥梁倒塌、船舶沉没、人员伤亡和水陆运输干线长期中断的严重后果,经济损失巨大。因此,船-桥碰撞及桥梁的防撞研究已成为具有广泛意义的国际性课题,日益引起各国政府、学者、工程界的关注。本文针对跨江公路特大桥船撞事故,概述了国内外船-桥碰撞力学的一般计算方法,特别是如何用有限元软件ANSYS建立船-桥碰撞模型。最后进行结构损伤分析并提出防撞设施的设置方法。 关键词:碰撞力;桥梁防撞;有限元 中图分类号:TU235 1. 引言 根据国内外有关资料文献的介绍,船撞桥事故在世界各地一直在不断地发生,船撞桥事故的频率更是超出我们的想象。由船撞桥事故所导致的人员伤亡、财产损失以及环境破坏是惊人的。众多船撞桥事故轻则船桥两败俱伤,损失数万元,重则桥塌人亡,损失则以数百万、甚至更多计,大量的间接损失更是难以计算。 船撞桥问题在国外从20世纪80年代初开始得到认真的研究,经过20年的努力,欧洲和美国等国家已经制定了专门的设计规范或指南。虽然目前我国有关大桥的安全保障部门采取了一系列的安全措施,但是一直未得到足够的重视,也没有专门的设计规范或指南可供工程师使用。在公路桥梁设计规范中的相应条款过于简单,设计船撞力过低,对桥梁设计几乎没有影响,这不符合实际情况。随着跨江的公路特大桥越建越多,以及大江航道等级的提高,大吨位的船只越来越多地进入了大江,加之建桥后的航道演变,这些跨大江桥梁被船撞的风险明显加大,对这些特大桥进行船撞安全风险评价,并提出一些防范措施,就显得尤为重要。 2. 船桥相撞有限元计算方法的研究 2.1船-桥碰撞力学计算研究方法 2.1.1 Minorsky理论 Minorsky船-船碰撞理论[5-7]自1975年公开发表后,已为众多的实验所证实,由此奠定了船-船碰撞的分析基础,并推广应用于船-桥碰撞,为国际桥梁工程界和各国学者公认。Minorsky 的研究工作主要是将船-船碰撞问题分为两个相互独立的部分,即动能损失和结构损伤,并用统计分析方法将它们联系在一起。 2.1.2 汉斯—德鲁彻理论 汉斯和德鲁彻教授根据CG—71955—A合同研究提出的,主要是研究公路桥梁预防船舶的撞击[5-7]。该理论将船舶碰撞桥墩及其防撞设施等效成一个弹簧质量系统的数学模型,计算碰撞中桥墩或防护系统受撞位置处的最大位移、船舶的最大加速度、船舶的最大撞击力、撞击过程的持续时间。

矩形高层建筑结构横向风振反应的分析计算_侯艾波

矩形高层建筑结构横向风振反应的分析计算 侯艾波1 周锡元2 葛楠2 (1 北京工业大学建筑工程学院,100022;2 中国建筑科学研究院 北京100013) (1 Department of Architecture,BJP U,Beijing,100022;2 Department of Aseismic Engineering,C AB R,Beijing,100013)[摘要]本文根据结构随机振动理论,考虑到国外有关规范中根据风洞试验数据提出的横风向脉动风压谱与足尺观测数据有差异的现象[1] ,根据已经得出的横向湍流脉动风压谱密度函数[2] ,提出了一个湍流脉动风压作用下结构横风向风振反应的计算方法供参考。采用本文中提出的风振反应计算方法可能不至于漏失结构在非共振风速时较大的风振反应值,从而不至于低估设计基准期内最大风速下的横风向风振加速度反应值。用本文提出的方法针对一个具体的工程实例计算了风振反应值,并与采用国外规范中现行方法的计算结果作了对比。计算结果表明,在出现设计基准期内最大风速时,结构湍流脉动风压诱发的横风向风振可能大于由国外现行规范中公式计算的风振反应值。[关键词]脉动风压 谱密度函数 湍流 风洞试验 ABSTRAC T:In this paper ,according to the theory o f structure random vibration,a method for evaluating across wind induced vibration has been presented from the derived turbulence pressure s pectrum density f unction,considering that there existed the di f ference between the datum from full scale observation and the results in the overseas design codes from wind tunnel test.With this method ,the potential large wind induced vibration in the across wind direction will not be neglected when evaluating the structure vibration under non -resonant wind velocity ,and that the maximum acceleration in the structure designing period will not be underestimated.Evaluation work has been done on a building with this metho d and the results have been com pared with thosefrom the methods in the overseas design codes.The re -sults sho w that under the maximum wind velocity in the designing period ,the turbulence induced vibration is probably larger than the results evaluated with the present methods in the overseas design codes. KEYW ORDS:Wind pressure fluctuation Spectrum density f unction Turbulence Wind tunnel test 前言 来风在建筑物的周围会形成湍流风场并可能会引起建筑物一定幅度的风振(图1)。对于高层和超高层建筑的风振动力反应主要有以下三方面的考虑:其一,由风振产生的惯性力在结构中引起附加应力;例如我国现行建筑结构荷载规范中考虑了顺风向风振反应惯性力,高耸结构设计规范中同时考虑了顺风向与横风向风振反应的惯性力[1];其二,建筑结构振动加速度会使生活和工作在其中的人产生不舒适感,例如 高层民用建筑钢结构技术规程JGJ99-98 采用了最大加速度值控制结构的风振反应,并规定重现期为10年的最大(峰值)加速度限制标准如下:0 28(m/s 2)(公共建筑),0 20(m/s 2)(公寓建筑)。其三,由于风振反应发生的频度较高,有可能使结构产生疲劳效应。 目前在某些国家的建筑规范中已经规定了高层、超高层建筑横风向风力谱函数和风振反应值的计算方法[3,4]。在我国的 建筑结构荷载规范GBJ5009-2001 、 高层建筑混凝土结构技术规程JGJ3-2002 与 高层民用建筑钢结构技术规程JGJ99-98 均没有规定非圆截面的横向风荷载。仅在 高层民用建筑钢结构技术规程JGJ99-98 规定了最大横风向加速度的计算方法.在 建筑结构荷载规范GBJ5009-2001 及 高耸结构设计规范GBJ135-90 中规定了圆形截面建筑物或构筑物横风向风振力的计算方法。 目前日本及加拿大的建筑规范中规定了横风向脉动风力谱(由漩涡脱落机制形成)。其中的计算公式都是根据风洞实验数据总结归纳得出的。这些规定虽然在一定程度上满足了结构设计的要求。但是通过有些足尺观测数据与风洞实验数据 的对比说明二者之间存在一定的差别[1] ,这些差 34 第23卷 第3期2006年9月 特 种 结 构 Vol.23 No.3 Sept.2006 SPECIAL S TRUCTURES No.3 2006

相关文档
最新文档