(完整版)高考三角函数经典解答题及答案

(完整版)高考三角函数经典解答题及答案
(完整版)高考三角函数经典解答题及答案

1在△ABC 中,角A 、B 、C 所对的边分别是a ,b ,c ,且.2

1222ac b c a =-+ (1)求B C

A 2cos 2

sin 2

++的值; (2)若b=2,求△ABC 面积的最大值. 解:(1) 由余弦定理:conB=1

4

sin

2

2

A B ++cos2B= -1

4

(2)由.4

15

sin ,41cos ==

B B 得 ∵b=2, a

2

+c 2=12ac+4≥2ac,得ac ≤3

8

,S △ABC =12acsinB ≤315(a=c 时取等号)

故S △ABC 的最大值为

3

15

2在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且.cos cos 3cos B c B a C b -= (I )求cosB 的值;

(II )若2=?BC BA ,且22=b ,求c a 和b 的值.

解:(I )由正弦定理得C R c B R b A R a sin 2,sin 2,sin 2===,

,

0sin .cos sin 3sin ,cos sin 3)sin(,cos sin 3cos sin cos sin ,cos sin cos sin 3cos sin ,cos sin 2cos sin 6cos sin 2≠==+=+-=-=A B A A B A C B B A B C C B B C B A C B B C R B A R C B R 又可得即可得故则

因此.3

1

cos =B

(II )解:由2cos ,2==?B a 可得,

,

,0)(,12,cos 2,

6,3

1

cos 222222c a c a c a B ac c a b ac B ==-=+-+===即所以可得由故又 所以a =c = 6

3已知向量m =()B B cos 1,sin -, 向量n = (2,0),且m 与n 所成角为π

3

其中A 、B 、C 是ABC ?的内角。 (1)求角B 的大小;

(2)求 C A sin sin +的取值范围。

解:(1)Θ m =()B B cos 1,sin -,且与向量n = (2,0)所成角为3

π

, ∴

3sin cos 1=-B

B

∴1cos sin 3=+B A

∴21)6

sin(=

+

π

B 又Θπ<

6

766

ππ

π

<

+

∴3

2π=B

(2)由(1)知,3

2π=

B ,∴A+C= 3π

∴C A sin sin +=)3sin(sin A A -+π

=A A cos 23sin 21+

=)3

sin(A +π

Θ3

<

3

23

3

π

π

π

<

+

A +π

??? ??∈1,23,∴ C A sin sin +??

?

??∈1,23 4已知向量(1,2sin )m A =u r

,(sin ,1cos ),//,.n A A m n b c =++=r u r r

满足 (I )求A 的大

小;(II )求)sin(6

π

+

B 的值.

解:(1)由m//n 得0cos 1sin 22

=--A A ……2分

即01cos cos 22=-+A A 1cos 21cos -==∴A A 或

1cos ,-=?A ABC A 的内角是Θ舍去 3

π=∴A

(2)a c b 3=+Θ

由正弦定理,2

3sin 3sin sin ==+A C B

π

3

2

=+C B Θ

2

3)32sin(

sin =-+∴B B π

2

3)6sin(23sin 23cos 23=+=+∴

πB B B 即 5在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,C =2A ,4

3

cos =

A , (1)求

B

C cos ,cos 的值; (2)若2

27

=

?,求边AC 的长。 解:(1)8

1116921cos 22cos cos 2=-?

=-==A A C 4

7

sin ,43cos ;873sin ,81cos ====

A A C C 得由得由 ()16

9

814387347cos cos sin sin cos cos =?-?=-=+-=∴C A C A C A B (2)24,2

27

cos ,227=∴=∴=

?ac B ac ① 又a A a c A C C c A a 2

3cos 2,2,sin sin ==∴== ②

由①②解得a=4,c=6

2516

9

483616cos 2222=?

-+=-+=∴B ac c a b 5=∴b ,即AC 边的长为5.

6已知A B 、是△ABC 的两个内角,向量, sin 22

A B A B

a +-=r )

,若||2a =r . (Ⅰ)试问B A tan tan ?是否为定值?若为定值,请求出;否则请说明理由;

(Ⅱ)求C tan 的最大值,并判断此时三角形的形状.

解:(Ⅰ)由条件

223||22

a ==r 2

21cos()

2cos sin 1cos()222

A B A B A B A B +---=+=+++

∴1

cos()cos()2

A B A B +=-

∴3sin sin cos cos A B A B = ∴1

tan tan 3

A B ?=为定值.

(Ⅱ)tan tan tan tan()1tan tan A B

C A B A B +=-+=--

由(Ⅰ)知1

tan tan 3

A B ?=,∴tan ,tan 0A B >

从而3tan (tan tan )2C A B =-

+≤3

22

-?=

∴取等号条件是tan tan A B ==

, 即6

A B π

== 取得最大值, 7在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c.已知a+b=5,c =

7,且

.2

7

2cos 2sin 42

=-+C B A (1) 求角C 的大小; (2)求△ABC 的面积.

解:(1) ∵A+B+C=180°

由27

2cos 2cos 4272cos 2sin 422

=-=-+C C C B A 得 ∴2

7

)1cos 2(2cos 142=--+?C C

整理,得01cos 4cos 42=+-C C

解 得:2

1

cos =

C ……5分 ∵?<

(2)解:由余弦定理得:c 2

=a 2

+b 2

-2abcosC ,即7=a 2

+b 2

-ab

∴ab b a 3)(72

-+=

由条件a+b=5得 7=25-3ab ab=6……10分 ∴2

3

323621sin 21=

??==

?C ab S ABC 8已知角C B A ,,为ABC ?的三个内角,其对边分别为c b a ,,,若)2

sin ,2cos

(A

A -=m ,)2sin ,2(cos A A =n ,32=a ,且2

1

=?n m .

(1)若ABC ?的面积3=S ,求c b +的值.

(2)求c b +的取值范围.

解:(1))2sin ,2cos

(A A m -=,)2sin ,2(cos A A n =,且2

1

=?n m . 212sin 2cos 22=+-∴A A ,即21cos =-A ,又),0(π∈A ,32π

=

∴A ………..2分 又由3sin 2

1

=?=?A bc S ABC ,4=∴bc

由余弦定理得:bc c b bc c b a ++=?-+=222223

2cos 2π

2)(16c b +=∴,故4=+c b

(2)由正弦定理得:

43

2sin 32sin sin sin ====πA a C c B b ,又3π

π=-=+A C B ,

)3

sin(4)3

sin(4sin 4sin 4sin 4π

π

+

=-+=+=+∴B B B C

B c b

3

<

3

23

3

π

π

π

<

+

9在锐角△ABC 中,已知内角A 、B 、C 所对的边分别为a 、b 、c ,且

(tanA -tanB)=1+

tanA ·tanB .

(1)若a 2-ab =c 2-b 2

,求A 、B 、C 的大小;

(2)已知向量m =(sinA ,cosA),n =(cosB ,sinB),求|3m -2n |的取值范围.

10在ABC ?中,角A B C 、、的对边分别为a b c 、、,(2,)b c a =-m ,

(cos ,cos )A C =-n ,且⊥m n 。

⑴求角A 的大小;

⑵当22sin sin(2)6

y B B π

=++

取最大值时,求角B 的大小

解:⑴由⊥m n ,得0=g m n ,从而(2)cos cos 0b c A a C --= 由正弦定理得2sin cos sin cos sin cos 0B A C A A C --=

2sin cos sin()0,2sin cos sin 0B A A C B A B -+=-=

Q ,(0,)A B π∈,∴1sin 0,cos 2

B A ≠=

,∴3A π

= (6

分)

⑵22sin sin(2)(1cos 2)sin 2cos

cos 2sin

6

6

6

y B B B B B π

π

π

=++

=-++

112cos 21sin(2)26

B B B π

=-=+- 由(1)得,270,2,366662

B B ππππππ

<<-<-<=∴2B -时, 即3

B π

=

时,y 取最大值2

11在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,且cos cos B C b

a c

=-

+2. (I )求角B 的大小;

(II )若b a c =+=134,,求△ABC 的面积. 解:(I )解法一:由正弦定理

a A

b B c

C

R sin sin sin ===2得 a R A b R B c R C ===222sin sin sin ,, 将上式代入已知

cos cos cos cos sin sin sin B C b a c B C B

A C

=-+=-

+22得 即20sin cos sin cos cos sin A B C B C B ++= 即20sin cos sin()A B B C ++=

∵A B C B C A A B A ++=+=+=π,∴,∴sin()sin sin cos sin 20 ∵sin cos A B ≠,∴,01

2=-

∵B 为三角形的内角,∴B =

2

3

π. 解法二:由余弦定理得cos cos B a c b ac C a b c ab =+-=+-222222

22,

将上式代入cos cos B C b a c a c b ac ab a b c

b

a c =-++-+-=-+2222222222

得×

整理得a c b ac 222+-=-

∴cos B a c b ac ac ac =

+-=-=-222221

2

∵B 为三角形内角,∴B =

2

3

π (II )将b a c B =+==1342

3

,,π代入余弦定理b a c ac B 2222=+-cos 得 b a c ac ac B 2

2

22=+--()cos ,

∴13162112

3=--=ac ac (),∴

∴S ac B ABC △=

=1234

3sin . 12ABC ?中,a 、b 、c 是三个内角A 、B 、C 的对边,关于x 的不等式

2cos 4sin 60x C x C ++<的解集是空集. (1)求角C 的最大值;

(2)若72c =

,ABC ?

的面积S =,求当角C 取最大值时a b +的值. 解析:(1)显然0cos =C 不合题意, 则有cos 0

0C >???≤?

即2

cos 016sin 24cos 0C C C >??-≤?, 即cos 0

1cos 2cos 2

C C C >???≤-≥??或, 故1

cos 2

C ≥

,∴角C 的最大值为60?。 …………………6分

(2)当C =60?

时,1sin 24ABC S ab C ab ?==

=6ab =, 由余弦定理得2222

2cos ()22cos c a b ab C a b ab ab C =+-=+--,

∴22121()34a b c ab +=+=,∴11

2

a b +=。

13在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且满足(2a -c )cosB=bcosC.

(Ⅰ)求角B 的大小;

(Ⅱ)设()()()2411m sin A,cos A ,n k,k ,m n ==>?u r r u r r

且的最大值是5,求k 的值.

解:(I )∵(2a -c)cosB=bcosC ,

∴(2sinA -sinC )cosB=sinBcosC.……………………………………………2分 即2sinAcosB=sinBcosC+sinCcosB =sin(B+C)

∵A+B+C=π,∴2sinAcosB=sinA.…………………………………………4分 ∵0

∴cosB=

2

1

.…………………………………………………………………5分 ∵0

π

.…………………………………………………………6分

(II )m n ?u r r

=4ksinA+cos2A.…………………………………………………………7分

=-2sin 2

A+4ksinA+1,A ∈(0,3

22

)……………………………………10分 设sinA=t ,则t ∈]1,0(.

则m n ?u r r =-2t 2+4kt+1=-2(t -k)2+1+2k 2

,t ∈]1,0(.…………………………12分 ∵k>1,∴t=1时,m n ?u r r

取最大值.

依题意得,-2+4k+1=5,∴k=

2

3. 14已知锐角△ABC 三个内角为A 、B 、C ,向量()22sin ,cos sin p A A A =-+u v

与向量

()sin cos ,1sin q A A A =-+v

是共线向量.

(Ⅰ)求角A. (Ⅱ)求函数232sin cos

2

C B

y B -=+的最大值. 解:(Ⅰ)

,p q u r r Q 共线 ()()()()22sin 1sin cos sin cos sin A A A A A A ∴-+=+-……2分

23

sin 4

A ?=…………4分

又A

为锐角,所以sin 2A =3

A π

?=………6分

(Ⅱ)232sin cos 2

C B y B -=+2332sin cos 2B B B ππ??--- ???=+

22sin cos(2)3

B B π

=+

-11cos 2cos 222B B B =-++

12cos 212B B =-+sin(2)16

B π

=-+……………9分 50,2,2666B B ππππ??

??∈?-∈- ? ?????Q …………10分

2623

B B πππ

∴-=?=时,max 2y =…………12分

15在三角形ABC 中,m =(cos 2C ,sin 2C ), n =(cos 2C ,-sin )2C

且n m ,的夹角为3

π

(1)求C ; (2)已知c=

2

7

,三角形的面积S=233,求a+b (a 、b 、c 分别∠A 、∠B 、∠C 所对的边)

解:(1) C C

C cos 2sin 2cos 22=-=? 2

1

3cos ||||==?πn m n m

cosC=21 C=3

π

(2) c 2=a 2+b 2

-2abcosC c=2

7

449=a 2+b 2-ab=(a+b)2

-3ab. S=21absinC=21absin 3π=4

3ab=233

Ab=6 (a+b)2

=

449+3ab=449+18=4

121 a+b=211

16已知ABC ?中,角A ,B ,C ,所对的边分别是,,a b c ,且()

22223a b c ab +-=; (1)求2sin 2

A B +

(2)若2c =,求ABC ?面积的最大值。

解:(Ⅰ)()分24

3

2cos ,232222

2

2

=-+=

∴=-+ab c b a C ab c b a Θ ()()分687

2cos 12cos 12sin ,2

=+=+-=+∴-=+C B A B A C B A πΘ (Ⅱ)ab ,b a ,c ab c b a 23

42,2322222=-+∴==-+且Θ

又()分88,422

3

,222≤∴-≥∴≥+ab ab ab ab b a Θ

()分1047431cos 1sin ,43cos 2

2=

??

?

??-=-=∴=C C C Θ ,7sin 2

1

≤=

∴?C ab S ABC 当且仅当22==b a 时,△ABC 面积取最大值,最大值为7. 17在△ABC 中,角A,B,C 所对的边分别为a,b,c ,且满足csinA=acosC . (Ⅰ)求角C 的大小;

sinA-cos (B+4π

)的最大值,并求取得最大值时角A 、B 的大小。

解析:(I )由正弦定理得sin sin sin cos .C A A C = 因为0,A π<<所以

sin 0.sin cos .cos 0,tan 1,4A C C C C C π

>=≠==

从而又所以则

(II )由(I )知

3.4B A π=

-于是

cos()cos()4

cos 2sin().

6

3110,,,,

46612623A B A A A A A A A A A π

ππ

πππππππ

-+=--=+=+<<∴<+<+==Q 从而当即时

2sin()

6A π

+取最大值2.

cos()4A B π-+的最大值为2,此时5,.

312A B ππ

==

18 △ABC 的内角A 、B 、C 的对边分别为a 、b 、c .己知A —C=90°,

b ,求 C .

解:由a c +=

及正弦定理可得

sin sin .A C B +=

…………3分

又由于90,180(),A C B A C -=?=?-+故

cos sin )C C A C +=+

2)C =?+

2.C =

…………7分

cos 2,

C C C =

cos(45)cos 2.C C ?-= 因为090C ?<

19在?ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知

cos A-2cosC 2c-a

=

cos B b .

(I )求sin sin C A 的值;(II )若cosB=1

4,b=2,ABC ?的面积S 。

解: (I )由正弦定理,设,sin sin sin a b c

k A B C === 则22sin sin 2sin sin ,

sin sin c a k C k A C A

b k B B ---== 所以cos 2cos 2sin sin .

cos sin A C C A B B --=

即(cos 2cos )sin (2sin sin )cos A C B C A B -=-, 化简可得sin()2sin().A B B C +=+ 又A B C π++=, 所以sin 2sin C A =

因此sin 2.

sin C A =

(II )由sin 2sin C

A =得2.c a =

由余弦定理

2222221

2cos cos ,2,

4

1

44.

4b a c ac B B b a a =+-==+-?及得4=a

解得a=1。因此c=2

又因为1

cos ,.

4B G B π=<<且

所以

sin 4B = 因此

20在ABC ?中,a b c 、、分别为内角A B C 、、的对边,

且2sin (2)sin (2)sin a A b c B c b C =+++ (Ⅰ)求A 的大小;

(Ⅱ)若sin sin 1B C +=,试判断ABC ?的形状.

解:(Ⅰ)由已知,根据正弦定理得c b c b c b a )2()2(22

+++=

即bc c b a ++=2

22

由余弦定理得A bc c b a cos 22

2

2

-+=

故?=-

=120,2

1

cos A A (Ⅱ)由(Ⅰ)得.sin sin sin sin sin 2

2

2

C B C B A ++= 又1sin sin =+C B ,得2

1sin sin ==C B

因为?<

故B C =

所以ABC ?是等腰的钝角三角形。

21在△ABC 中,a, b, c 分别为内角A, B, C 的对边,且

2sin (2)sin (2)sin .a A a c B c b C =+++

(Ⅰ)求A 的大小;

(Ⅱ)求sin sin B C +的最大值. 解:

(Ⅰ)由已知,根据正弦定理得2

2(2)(2)a b c b c b c =+++ 即 2

2

2

a b c bc =++

由余弦定理得 2

2

2

2cos a b c bc A =+- 故 1

cos 2

A =-

,A=120° ……6分 (Ⅱ)由(Ⅰ)得:

sin sin sin sin(60)

B C B B +=+?-

1

sin 2

sin(60)

B B

B =

+=?+ 故当B=30°时,sinB+sinC 取得最大值1。 ……12分

22△ABC 中,角A ,B ,C 所对的边分别为a,b,c,设S 为△ABC 的面积,满

2

22)S a b c =

+-。 (Ⅰ)求角C 的大小;

(Ⅱ)求sin sin A B +的最大值。

23设锐角三角形ABC 的内角A B C ,,的对边分别为a b c ,,,2sin a b A =. (Ⅰ)求B 的大小;

(Ⅱ)求cos sin A C +的取值范围.

解:(Ⅰ)由2sin a b A =,根据正弦定理得sin 2sin sin A B A =,所以1

sin 2

B =, 由AB

C △为锐角三角形得π6

B =

. (Ⅱ)cos sin cos sin A C A A π??+=+π-

- ?6?

?

cos sin 6A A π??

=++ ???

13

cos cos 2A A A =++

33A π?

?=+ ??

?.

由ABC △为锐角三角形知,

22A B ππ->-,2263B ππππ

-=-=. 2336

A πππ<+<, 所以

13

sin 23A π??+<

???.

由此有

333sin 3232A π?

?<+

, 所以,cos sin A C +的取值范围为3322??

? ???

,. 24在ABC ?中,角,,A B C 所对应的边分别为,,a b c ,23a =,tan

tan 4,22

A B C

++= 2sin cos sin B C A =,求,A B 及,b c

解:由

tan

tan 422A B C ++=得cot tan 422

C C

+= ∴cos sin

224sin cos

22

C C C C

+= ∴14sin cos 22C C = ∴1

sin 2C =,又(0,)C π∈

∴566

C C ππ==,或

由2sin cos sin B C A =得 2sin cos sin()B B B C =+ 即sin()0B C -= ∴B C =

6

B C π

==

2()3A B C π

π=-+=

由正弦定理sin sin sin a b c

A B C

==

得 1

sin 2232sin 3

2B

b c a A ===?=

25在锐角△ABC 中,a 、b 、c 分别为角A 、B 、C 所对的边,且A c a sin 23=

(Ⅰ)确定角C 的大小: (Ⅱ)若c =7,且△ABC 的面积为

2

33,求a +b 的值。

解(1)由32sin a c A =及正弦定理得,

sin sin 3

a A c C == 21世纪教育网

3sin 0,sin 2

A C ≠∴=

Q ABC ?Q 是锐角三角形,3

C π∴=

(2)解法1:7,.3

c C π

=

=

Q 由面积公式得

133sin ,6232

ab ab π==即 ① 由余弦定理得21世纪教育网

22222cos

7,73

a b ab a b ab π

+-=+-=即 ②

由②变形得

25,5a b =+=2

(a+b)故 解法2:前同解法1,联立①、②得

2222766

a b ab a b ab ab ??+-=+??

?==??=13

消去b 并整理得4

2

13360a a -+=解得2

2

49a a ==或 所以23

32

a a

b b ==????

==??或故5a b +=

高考三角函数专题(含答案)

高考三角函数专题(含 答案) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

高考专题复习 三角函数专题 模块一 ——选择题 一、选择题:(将正确答案的代号填在题后的括号.) 1.(2010·天津)下图是函数y =A sin(ωx +φ)(x ∈R)在区间??? ?-π6,5π6上的图象,为了得到这个函数的图象,只要将y =sin x (x ∈R)的图象上所有的点( ) A .向左平移π3个单位长度,再把所得各点的横坐标缩短到原来的1 2,纵坐标不变 B .向左平移π 3个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变 C .向左平移π6个单位长度,再把所得各点的横坐标缩短到原来的1 2,纵坐标不变 D .向左平移π 6个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变 解析:观察图象可知,函数y =A sin(ωx +φ)中A =1,2πω=π,故ω=2,ω×????-π6+φ=0,得φ=π3, 所以函数y =sin ????2x +π3,故只要把y =sin x 的图象向左平移π3个单位,再把各点的横坐标缩短到原来的12即可. 答案:A 2.(2010·全国Ⅱ)为了得到函数y =sin ????2x -π3的图象,只需把函数y =sin ??? ?2x +π 6的图象( ) A .向左平移π4个长度单位 B .向右平移π 4个长度单位 C .向左平移π2个长度单位 D .向右平移π 2 个长度单位

解析:由y =sin ????2x +π6――→x →x +φy =sin ????2(x +φ)+π6=sin ????2x -π3,即2x +2φ+π6=2x -π 3,解得φ=- π4,即向右平移π 4 个长度单位.故选B. 答案:B 3.(2010·)已知函数y =sin(ωx +φ)??? ?ω>0,|φ|<π 2的部分图象如图所示,则( ) A .ω=1,φ=π 6 B .ω=1,φ=-π6 C .ω=2,φ=π6 D .ω=2,φ=-π 6 解析:依题意得T =2πω=4? ?? ?? 7π12-π3=π,ω=2,sin ????2×π3+φ=1.又|φ|<π2,所以2π3+φ=π2,φ=-π6,选D. 答案:D 4.已知函数y =2sin(ωx +φ)(ω>0)在区间[0,2π]上的图象如图所示,那么ω=( ) A .1 B .2 C.12 D.13 解析:由函数的图象可知该函数的期为π,所以2π ω=π,解得ω=2. 答案:B 5.已知函数y =sin ????x -π12cos ??? ?x -π 12,则下列判断正确的是( )

三角函数高考题及练习题(含标准答案)

三角函数高考题及练习题(含答案)

————————————————————————————————作者:————————————————————————————————日期:

三角函数高考题及练习题(含答案) 1. 掌握正弦函数、余弦函数、正切函数的图象与性质;会用“五点法”作出正弦函数及余弦函数的图象;掌握函数y =Asin (ωx +φ)的图象及性质. 2. 高考试题中,三角函数题相对比较传统,位置靠前,通常是以简单题形式出现,因此在本讲复习中要注重三角知识的基础性,特别是要熟练掌握三角函数的定义、三角函数图象的识别及其简单的性质(周期、单调性、奇偶、最值、对称、图象平移及变换等). 3. 三角函数是每年高考的必考内容,多数为基础题,难度属中档偏易.这几年的高考加强了对三角函数定义、图象和性质的考查.在这一讲复习中要重视解三角函数题的一些特殊方法,如函数法、待定系数法、数形结合法等. 1. 函数y =2sin 2? ???x -π 4-1是最小正周期为________的________(填“奇”或“偶”) 函数. 答案:π 奇 解析:y =-cos ? ???2x -π 2=-sin2x. 2. 函数f(x)=lgx -sinx 的零点个数为________. 答案:3 解析:在(0,+∞)内作出函数y =lgx 、y =sinx 的图象,即可得到答案.

3. 函数y =2sin(3x +φ),? ???|φ|<π 2的一条对称轴为x =π12,则φ=________. 答案:π4 解析:由已知可得3×π12+φ=k π+π2,k ∈Z ,即φ=k π+π4,k ∈Z .因为|φ|<π 2 ,所 以φ=π4 . 4. 若f(x)=2sin ωx (0<ω<1)在区间? ???0,π 3上的最大值是2,则ω=________. 答案:34 解析:由0≤x ≤π3,得0≤ωx ≤ωπ3<π3,则f(x)在? ???0,π 3上单调递增,且在这个区间 上的最大值是2,所以2sin ωπ3=2,且0<ωπ3<π3,所以ωπ3=π4,解得ω=3 4 . 题型二 三角函数定义及应用问题 例1 设函数f(θ)=3sin θ+cos θ,其中角θ的顶点与坐标原点重合,始边与x 轴非负半轴重合,终边经过点P(x ,y),且0≤θ≤π. (1) 若点P 的坐标是??? ?12,3 2,求f(θ)的值; (2) 若点P(x ,y)为平面区域???? ?x +y ≥1, x ≤1, y ≤1 上的一个动点,试确定角θ的取值范围,并求 函数f(θ)的最小值和最大值. 解:(1) 根据三角函数定义得sin θ= 32,cos θ=1 2 ,∴ f (θ)=2.(本题也可以根据定义及角的范围得角θ=π 3 ,从而求出 f(θ)=2). (2) 在直角坐标系中画出可行域知0≤θ≤π2,又f(θ)=3sin θ+cos θ=2sin ? ???θ+π 6, ∴ 当θ=0,f (θ)min =1;当θ=π 3 ,f (θ)max =2. (注: 注意条件,使用三角函数的定义, 一般情况下,研究三角函数的周期、最值、

中考数学锐角三角函数-经典压轴题含答案解析

中考数学锐角三角函数-经典压轴题含答案解析 一、锐角三角函数 1.某地是国家AAAA 级旅游景区,以“奇山奇水奇石景,古賨古洞古部落”享誉巴渠,被誉为 “小九寨”.端坐在观音崖旁的一块奇石似一只“啸天犬”,昂首向天,望穿古今.一个周末,某数学兴趣小组的几名同学想测出“啸天犬”上嘴尖与头顶的距离.他们把蹲着的“啸天犬”抽象成四边形ABCD ,想法测出了尾部C 看头顶B 的仰角为40o ,从前脚落地点D 看上嘴尖A 的仰角刚好60o ,5CB m =, 2.7CD m =.景区管理员告诉同学们,上嘴尖到地面的距离是3m .于是,他们很快就算出了AB 的长.你也算算?(结果精确到0.1m .参考数据:400.64400.77400.84sin cos tan ?≈?≈?≈,,.2 1.41,3 1.73≈≈) 【答案】AB 的长约为0.6m . 【解析】 【分析】 作BF CE ⊥于F ,根据正弦的定义求出BF ,利用余弦的定义求出CF ,利用正切的定义求出DE ,结合图形计算即可. 【详解】 解:作BF CE ⊥于F , 在Rt BFC ?中, 3.20BF BC sin BCF ?∠≈=, 3.85CF BC cos BCF ?∠≈=, 在Rt ADE ?E 中, 3 1.73tan 3AB DE ADE ===≈∠, 0.200.58BH BF HF AH EF CD DE CF ∴+=﹣=,==﹣= 由勾股定理得,22BH AH 0.6(m)AB =+≈, 答:AB 的长约为0.6m .

【点睛】 考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键. 2.如图,PB为☉O的切线,B为切点,过B作OP的垂线BA,垂足为C,交☉O于点A,连接PA,AO.并延长AO交☉O于点E,与PB的延长线交于点D. (1)求证:PA是☉O的切线; (2)若=,且OC=4,求PA的长和tan D的值. 【答案】(1)证明见解析;(2)PA =3,tan D=. 【解析】 试题分析: (1)连接OB,先由等腰三角形的三线合一的性质可得:OP是线段AB的垂直平分线,进而可得:PA=PB,然后证明△PAO≌△PBO,进而可得∠PBO=∠PAO,然后根据切线的性质可得∠PBO=90°,进而可得:∠PAO=90°,进而可证:PA是⊙O的切线; (2)连接BE,由,且OC=4,可求AC,OA的值,然后根据射影定理可求PC的值,从而可求OP的值,然后根据勾股定理可求AP的值. 试题解析:(1)连接OB,则OA=OB, ∵OP⊥AB,∴AC=BC, ∴OP是AB的垂直平分线,∴PA=PB, 在△PAO和△PBO中,∵,∴△PAO≌△PBO(SSS) ∴∠PBO=∠PAO,PB=PA, ∵PB为⊙O的切线,B为切点,∴∠PBO=90°,∴∠PAO=90°,即PA⊥OA, ∴PA是⊙O的切线; (2)连接BE,

三角函数性质类高考题汇总

6.、[2014·新课标全国卷Ⅰ] 如图1-1,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示成x 的函数f (x ),则y =f (x )在[0,π]上的图像大致为( ) 图1-1 A B C D 6.C [解析] 根据三角函数的定义,点M (cos x ,0),△OPM 的面积为1 2|sin x cos x |,在 直角三角形OPM 中,根据等积关系得点M 到直线OP 的距离,即f (x )=|sin x cos x |=1 2|sin 2x |, 且当x =π 2 时上述关系也成立, 故函数f (x )的图像为选项C 中的图像. 9.[2014·辽宁卷] 将函数y =3sin ? ???2x +π 3的图像向右平移π2个单位长度,所得图像对 应的函数( ) A .在区间????π12,7π 12上单调递减 B .在区间????π12,7π 12上单调递增 C .在区间????-π6,π 3上单调递减 D .在区间??? ?-π6,π 3上单调递增 9.B [解析] 由题可知,将函数y =3sin ? ???2x +π3的图像向右平移π 2个单位长度得到函数 y =3sin ????2x -23π的图像,令-π2+2k π≤2x -23π≤π2+2k π,k ∈Z ,即π12+k π≤x ≤7π12 +k π,k ∈Z 时,函数单调递增,即函数y =3sin ? ???2x -2 3π的单调递增区间为????π12+k π,7π12+k π,k ∈Z ,可知当k =0时,函数在区间????π12,7π12上单调递增. 3.[2014·全国卷] 设a =sin 33°,b =cos 55°,c =tan 35°,则( )

三角函数经典解题方法与考点题型

三角函数经典解题方法与考点题型(教师) 1.最小正周期的确定。 例1 求函数y =s in (2co s|x |)的最小正周期。 【解】 首先,T =2π是函数的周期(事实上,因为co s(-x )=co s x ,所以cos |x |=co s x );其次,当且仅当x =k π+ 2 π 时,y =0(因为|2co s x |≤2<π), 所以若最小正周期为T 0,则T 0=m π, m ∈N +,又s in (2co s0)=s in 2≠s in (2co s π),所以T 0=2π。 过手练习 1.下列函数中,周期为 2π 的是 ( ) A .sin 2x y = B .sin 2y x = C .cos 4 x y = D .cos 4y x = 2.()cos 6f x x πω?? =- ?? ? 的最小正周期为 5 π ,其中0ω>,则ω= 3.(04全国)函数|2 sin |x y =的最小正周期是( ). 4.(1)(04北京)函数x x x f cos sin )(=的最小正周期是 . (2)(04江苏)函数)(1cos 22R x x y ∈+=的最小正周期为( ). 5.(09年广东文)函数1)4 (cos 22 -- =π x y 是 ( ) A .最小正周期为π的奇函数 B. 最小正周期为π的偶函数 C. 最小正周期为 2 π的奇函数 D. 最小正周期为2π 的偶函数 6.(浙江卷2)函数的最小正周期是 . 2.三角最值问题。 例2 已知函数y =s inx +x 2cos 1+,求函数的最大值与最小值。 【解法一】 令s inx =??? ??≤≤=+ππ θθ4304 sin 2cos 1,cos 22 x , 则有y =).4 sin(2sin 2cos 2π θθθ+ =+ 因为 ππ 4304≤≤,所以ππ θπ≤+≤4 2, 所以)4 sin(0π θ+≤≤1, 所以当πθ43=,即x =2k π-2 π (k ∈Z )时,y m in =0, 当4 π θ= ,即x =2k π+ 2 π (k ∈Z )时,y m ax =2. 2 (sin cos )1y x x =++

《三角函数》高考真题理科大题总结及答案

《三角函数》大题总结 1.【2015高考新课标2,理17】ABC ?中,D 是BC 上的点,AD 平分BAC ∠, ABD ?面积是ADC ?面积的 2倍. (Ⅰ) 求 sin sin B C ∠∠; (Ⅱ)若1AD =,DC = BD 和AC 的长. 2.【2015江苏高考,15】在ABC ?中,已知 60,3,2===A AC AB . (1)求BC 的长; (2)求C 2sin 的值. 3.【2015高考福建,理19】已知函数f()x 的图像是由函数()cos g x x =的图像经如下变换得到:先将()g x 图像上所有点的纵坐标伸长到原来的2倍(横坐标不变),再将所得到的图像向右平移2 p 个单位长度. (Ⅰ)求函数f()x 的解析式,并求其图像的对称轴方程; (Ⅱ)已知关于x 的方程f()g()x x m +=在[0,2)p 内有两个不同的解,a b . (1)求实数m 的取值范围; (2)证明:2 2cos ) 1.5 m a b -=-( 4.【2015高考浙江,理16】在ABC ?中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知4 A π =,22b a -=12 2c .

(1)求tan C 的值; (2)若ABC ?的面积为7,求b 的值. 5.【2015高考山东,理16】设()2sin cos cos 4f x x x x π??=-+ ?? ? . (Ⅰ)求()f x 的单调区间; (Ⅱ)在锐角ABC ?中,角,,A B C 的对边分别为,,a b c ,若0,12 A f a ?? == ??? ,求ABC ?面积的最大值. 6.【2015高考天津,理15】已知函数()22sin sin 6f x x x π??=-- ?? ? ,R x ∈ (I)求()f x 最小正周期; (II)求()f x 在区间[,]34 p p -上的最大值和最小值. 7.【2015高考安徽,理16】在ABC ?中,3,6,4 A A B A C π ===点D 在BC 边上,AD BD =,求AD 的长.

三角函数经典题目(带答案)

三角函数经典题目练习 1.已知α123 1、已知角 2、P (x ,5则sin 1、已知2、函数(f 3、已知 象限1. 已知π2 2.设0≤α是 . sin αtan x 若<0___. 5 3 sin +-= m m θ,524cos +-=m m θ(πθπ<<2),则 =θ________. 1tan tan αα,是关于x 的方程2230x kx k -+-=的 个实根,且παπ2 7 3<<,则ααsin cos +的值 . 0)13(22=++-m x x 的两根为 ()πθθθ2,0,cos ,sin ∈,求(1)m =_______ (2)θθθθtan 1cos cot 1sin -+-=________. α )4 15 tan(325cos ππ-+= . θθθθcos sin cos sin -+=2,则sin(θ-5π)·sin ?? ? ??-θπ23= α终边上P (-4,3), ) 2 9sin()211cos() sin()2 cos(απαπαπαπ +---+= . 已知锐角α终边上一点P 的坐标是(2sin2,-2cos2),α= . sin163°·sin223°+sin253°·sin313°= . =-+θ θtan 1tan 1_________ tan 20tan 4020tan 40?+????= α∈(0, 2π),若sin α=5 3 ,则2cos(α+4π)= . 3 36 cos = ?? ? ??-απ,则?? ? ??+απ6 5cos =______,)6 5απ -- =_____..

【知二求多】 1、已知cos ??? ??-2βα= -54,sin ??? ? ? -2αβ=135,且 0<β<2π<α<π,则cos 2 βα+=____. 2已知tan α=43,cos(α+β)=-14 11 , α、β为锐角, 则cos β=______. 【方法套路】 1、设2 1sin sin =+βα,31 cos cos =+βα,则 )cos(βα-=___ . 2.已知ββαcos 5)2cos(8++=0,则 αβαtan )tan(+= . 3,41)sin(,31)sin(=-=+βαβα则___tan tan =βα 【给值求角】 1tan α=7 1 ,tan β=3 1,α,β均为锐角,则 α+2β= . 2、若sinA= 55,sinB=10 10,且A,B 均为钝角, 则A+B= . 【半角公式】 1α是第三象限,2524 sin - =α,则tan 2 α= . 2、已知01342 =+++a ax x (a >1)的两根为αtan , βtan ,且α,∈β ??-2 π,?? ? 2π, 则2 tan βα+=______ 3若 cos 22π2sin 4αα=- ? ?- ? ? ?,则cos sin αα+= . 4、若??????∈27,25ππα,则 ααsin 1sin 1-++= 5x 是第三象限角 x x x x x x x x cos sin 1cos sin 1cos sin 1cos sin 1-++++ ++-+=______ 【公式链】 1=+++οοοοΛ89sin 3sin 2sin 1sin 2222_______ 2sin10o sin30o sin50o sin70o=_______ 3(1+tan1o )(1+tan2o )…(1+tan45o )=_______ 六、给值求角 已知3 1 sin - =x ,写出满足下列关系x 取值集合 ] 3,5[)3()2(]2,0[)1(πππ--∈∈∈x R x x 七、函数性质 【定义域问题】 1. x x y sin 162+-=定义域为_________ 2、1)3 2tan(-- =π x y 定义域为_________ 【值域】 1、函数y =2sin ???? πx 6-π3(0≤x ≤9)的最大值与最小值之和为__________ 2、若函数g (x )=2a sin x +b 的最大值和最小值分别为6和2,则|a |+b 的值为________ 3、函数x x y sin 2sin 1+-= 的值域 4、函数x x y cos 1sin 21+-=的值域 5、函数x x y sin 2cos -=的值域 【解析式】 1、已知函数f (x )=3sin 2ωx -cos 2ωx 的图象关于直 线x =π 3 对称,其中ω∈????-12,52.函数f (x )的解析式为________. 2、已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π 2 ) 的图象在y 轴上的截距为1,在相邻两最值点(x 0, 2),??? ?x 0+32,-2(x 0>0)上f (x )分别取得最大值和最小值.则所得图像的函数解析式是________ 3.将函数sin y x =的图像上所有的点右移 10 π 个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图像的函数解析式是___________ 4、()()sin f x A x h ω?=++(0,0,)2A π ω?>>< 的图象 如图所示,求函数)(x f 的解析式;

2016高考三角函数专题测试题 及答案

高一数学必修4第一章三角函数单元测试班级姓名座号评分 一、选择题:共12小题,在每小题给出的四个选项中,只有一项是符合 题目要求的.(48分) 1、已知A={第一象限角},B={锐角},C={小于90°的角},那么A、B、C关系是() A.B=A∩C B.B∪C=C C.AC D.A=B=C 2、将分针拨慢5分钟,则分钟转过的弧度数是() A. B.- C. D.- 3、已知的值为() A.-2 B.2 C. D.- 4、已知角的余弦线是单位长度的有向线段;那么角的终边() A.在轴上 B.在直线上 C.在轴上 D.在直线或上 5、若,则等于 ( ) A. B. C. D. 6、要得到的图象只需将y=3sin2x的图象()A.向左平移个单 位 B.向右平移个单位C.向左平移个单位D.向右平移个单位 7、如图,曲线对应的函数是() A.y=|sin x| B.y=sin|x| C.y=-sin|x| D.y=-|sin x| 8、化简的结果是 ( ) A. B. C. D. 9、为三角形ABC的一个内角,若,则这个三角形的形状为() A. 锐角三角形 B. 钝角三角形 C. 等腰直角三角形 D. 等腰三角形 10、函数的图象() A.关于原点对称B.关于点(-,0)对称C.关于y轴对称D.关于直线x=对称 11、函数是 () A.上是增函数 B.上是减函数

C.上是减函数 D.上是减函数 12、函数的定义域是 () A. B. C. D. 二、填空题:共4小题,把答案填在题中横线上.(20分) 13、已知的取值范围是 . 14、为奇函数, . 15、函数的最小值是. 16、已知则 . 三、解答题:共6小题,解答应写出文字说明、证明过程或演算步骤. 17、(8分)求值 18、(8分)已知,求的值. 19、(8分)绳子绕在半径为50cm的轮圈上,绳子的下端B处悬挂着物体 W,如果轮子按逆时针方向每分钟匀速旋转4圈,那么需要多少秒钟才能把物体W的位置向上提升100cm? 20、(10分)已知α是第三角限的角,化简 21、(10分)求函数在时的值域(其中为常数)

三角函数高考大题练习.docx

ABC 的面积是30,内角A, B, C所对边长分别为 12 a, b, c ,cos A。 uuur uuur 13 ( Ⅰ ) 求ABgAC; ( Ⅱ ) 若c b 1,求 a 的值。 设函数 f x sin x cosx x 1 , 0 x 2,求函数 f x 的单调区间与极值。 已知函数 f ( x) 2cos 2x sin 2 x (Ⅰ)求 f () 的值; 3 (Ⅱ)求 f ( x) 的最大值和最小值 设函数 f x3sin x,>0 , x,,且以为最小正周期. 62 ( 1)求f0;(2)求f x 的解析式;(3)已知f 129 ,求 sin的值. 45 已知函数 f ( x) sin 2x2sin 2 x ( I )求函数 f (x) 的最小正周期。 (II)求函数 f ( x) 的最大值及 f (x) 取最大值时x 的集合。

在 VABC 中, a、b、c 分别为内角A、B、C 的对边,且 2a sin A (2b c)sin B (2c b)sin C (Ⅰ)求 A 的大小; (Ⅱ)若 sin B sin C 1,是判断 VABC 的形状。 (17)(本小题满分 12 分) 已知函数 f ( x) sin(x)cos x cos2x (0)的最小正周期为,(Ⅰ)求的值; (Ⅱ)将函数 y f ( x) 的图像上各点的横坐标缩短到原来的1 ,纵坐标不变,得到2 函数 y g ( x) 的图像,求函数y g( x) 在区间 0, 16 上的最小值 . 在 ABC中,AC cos B 。AB cosC (Ⅰ)证明 B=C: (Ⅱ)若 cosA =-1 ,求 sin 4B的值。 33 53 VABC 中, D 为边 BC 上的一点, BD 33 , sin B,cos ADC,求AD。 135 设△ ABC的内角 A、 B、 C 的对边长分别为a、 b、 c,且3b23c23a2 4 2bc .

三角函数部分高考题(带答案)

3 22.设/XABC的内角A B, C所对的边长分别为q, b, c , ^acosB-bcosA =-c . 5 (I )求tan A cot B 的值; (U)求tan(A-B)的最大值. 3解析:(1)在左ABC中,由正弦定理及acosB-bcosA = -c 5 3 3 3 3 可得sin 人cos B-sinB cos A = -siiiC = - sin(A + B) = $ sin 人cos B + - cos A sin B 即siii A cos B = 4 cos A siii B ,则tail A cot 8 = 4: (II)由taiiAcotB = 4得tanA = 4tanB>0 一_ x tan A - tan B 3 tan B 3 “ 3 tan( A 一B) = -------------- = ---------- -- = ----------------- W - 1+tail A tail B l + 4taii_B cot B + 4 tan B 4 当且仅当4tanB = cotB,tmiB = i,taiiA = 2时,等号成立, 2 1 3 故当tail A = 2, tan ^ =—时,tan( A - B)的最大值为—. 5 4 23. ----------------------------------在△ABC 中,cosB = , cos C =—. 13 5 (I )求sin A的值; 33 (U)设ZVIBC的面积S AABC = —,求BC的长. 解: 512 (I )由cosB = 一一,得sinB = —, 13 13 4 3 由cos C =-,得sin C =-. 55 一33 所以sin A = sin(B + C) = sin B cos C + cos B sill C = —. (5) ................................................................................................................................... 分 33 1 33 (U)由S.ARC = 一得一xABxACxsinA = —, 2 2 2 33 由(I)知sinA =—, 65 故ABxAC = 65, (8) ................................................................................................................................... 分 又AC =竺主=史仙, sinC 13 20 13 故—AB2 =65, AB = — . 13 2 所以此=性叫11 siiiC (I)求刃的值;10分 24.己知函数/(x) = sin2a)x+j3 sin cox sin 尔+习2)(刃>0)的最小正周期为兀.

三角函数高考试题精选(含详细答案)

三角函数高考试题精选 一.选择题(共18小题) 1.(2017?山东)函数y=sin2x+cos2x的最小正周期为( ) A. B.?C.πD.2π 2.(2017?天津)设函数f(x)=2sin(ωx+φ),x∈R,其中ω>0,|φ|<π.若f()=2,f()=0,且f(x)的最小正周期大于2π,则() A.ω=,φ=B.ω=,φ=﹣ C.ω=,φ=﹣D.ω=,φ= 3.(2017?新课标Ⅱ)函数f(x)=sin(2x+)的最小正周期为()A.4πB.2π?C.π?D. 4.(2017?新课标Ⅲ)设函数f(x)=cos(x+),则下列结论错误的是()A.f(x)的一个周期为﹣2π B.y=f(x)的图象关于直线x=对称 C.f(x+π)的一个零点为x= D.f(x)在(,π)单调递减 5.(2017?新课标Ⅰ)已知曲线C :y=cosx,C2:y=sin(2x+),则下面结论 1 正确的是() A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2 B.把C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平1 移个单位长度,得到曲线C2 C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2 D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左

平移个单位长度,得到曲线C2 6.(2017?新课标Ⅲ)函数f(x)=sin(x+)+cos(x﹣)的最大值为()A.?B.1?C.D. 7.(2016?上海)设a∈R,b∈[0,2π),若对任意实数x都有sin(3x﹣)=sin(ax+b),则满足条件的有序实数对(a,b)的对数为( ) A.1 B.2 C.3?D.4 8.(2016?新课标Ⅲ)若tanα=,则cos2α+2sin2α=() A.? B.C.1 D. 9.(2016?新课标Ⅲ)若tanθ=﹣,则cos2θ=() A.﹣B.﹣C.D. 10.(2016?浙江)设函数f(x)=sin2x+bsinx+c,则f(x)的最小正周期() A.与b有关,且与c有关B.与b有关,但与c无关 C.与b无关,且与c无关? D.与b无关,但与c有关 11.(2016?新课标Ⅱ)若将函数y=2sin2x的图象向左平移个单位长度,则平移后的图象的对称轴为() A.x=﹣(k∈Z)?B.x=+(k∈Z)?C.x=﹣(k∈Z)D.x=+(k∈Z) 12.(2016?新课标Ⅰ)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤),x=﹣ 为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω的最大值为( ) A.11 B.9 C.7 D.5 13.(2016?四川)为了得到函数y=sin(2x﹣)的图象,只需把函数y=sin2x 的图象上所有的点() A.向左平行移动个单位长度?B.向右平行移动个单位长度

高中数学三角函数经典练习题专题训练(含答案)

高中数高中数学三角函数经典练习题专题训练 姓名班级学号得分 说明: 1、本试卷包括第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。满分100分。考试时间90分钟。 2、考生请将第Ⅰ卷选择题的正确选项填在答题框内,第Ⅱ卷直接答在试卷上。考试结束后,只收第Ⅱ卷 第Ⅰ卷(选择题) 一.单选题(每题3分,共60分) 1.已知函数y=sin(ωx+φ)(ω>0,|φ|<)的部分图象如图所示,则ω,φ的值分别为() A.2,-B.2,-C.4,-D.4, 2.下列说法正确的个数是() ①小于90°的角是锐角;

②钝角一定大于第一象限角; ③第二象限的角一定大于第一象限的角; ④始边与终边重合的角为0°. A.0B.1C.2D.3 3.若0<y<x<,且tan2x=3tan(x-y),则x+y的可能取值是()A.B.C.D. 4.已知函数y=tan(ωx)(ω>0)的最小正周期为2π,则函数y=ωcosx的值域是()A.[-2,2]B.[-1,1]C.[-,]D.[-,] 5.在△ABC中,sin2=(a、b、c分别为角A、B、C的对应边),则△ABC的形状为() A.正三角形B.直角三角形 C.等腰直角三角形D.等腰三角形 6.已知函数f(x)=cosxsin2x,下列结论中错误的是() A.f(x)既是偶函数又是周期函数 B.f(x)最大值是1 C.f(x)的图象关于点(,0)对称 D.f(x)的图象关于直线x=π对称 7.sin55°sin65°-cos55°cos65°值为() A.B.C.-D.- 8.若角α终边上一点的坐标为(1,-1),则角α为() A.2kπ+B.2kπ-C.kπ+D.kπ-,其中k∈Z

(完整版)高中数学三角函数历年高考题汇编(附答案)

三角函数历年高考题汇编 一.选择题1、(2009)函数 22cos 14y x π? ?=-- ?? ?是 A .最小正周期为π的奇函数 B .最小正周期为π的偶函数 C .最小正周期为 2π的奇函数 D .最小正周期为2 π 的偶函数 2、(2008)已知函数 2()(1cos 2)sin ,f x x x x R =+∈,则()f x 是( ) A 、最小正周期为π的奇函数 B 、最小正周期为2π 的奇函数 C 、最小正周期为π的偶函数 D 、最小正周期为2 π 的偶函数 3.(2009浙江文)已知a 是实数,则函数()1sin f x a ax =+的图象不可能... 是( ) 4.(2009山东卷文)将函数 sin 2y x =的图象向左平移 4 π 个单位, 再向上平移1个单位,所得图象的函数解析式是 A. 22cos y x = B. 2 2sin y x = C.)4 2sin(1π++=x y D. cos 2y x = 5.(2009江西卷文)函数()(13)cos f x x x =的最小正周期为 A .2π B . 32π C .π D . 2 π 6.(2009全国卷Ⅰ文)如果函数3cos(2)y x φ=+的图像关于点4( ,0)3 π 中心对称,那么φ的最小值为 A. 6π B.4π C. 3π D. 2π 7.(2008海南、宁夏文科卷)函数 ()cos 22sin f x x x =+的最小值和最大值分别为( ) A. -3,1 B. -2,2 C. -3, 3 2 D. -2, 32 8.(2007海南、宁夏)函数 πsin 23y x ??=- ???在区间ππ2?? -???? ,的简图是( )

三角函数的易错点以及典型例题与高考真题

三角函数的易错点以及典型例题与真题 1.三角公式记住了吗两角和与差的公式________________; 二倍角公式:_________________ 万能公式 ______________正切半角公式____________________;解题时本着“三看”的基本原则来进行:“看角,看函数,看特征”,基本的技巧有:巧变角,公式变形使用,化切割为弦,用倍角公式将高次降次。 万能公式: (1) (sinα)2 +(cosα)2 =1 (2)1+(tanα)2=(secα)2 (3)1+(cotα)2=(cscα)2 (4)对于任意非直角三角形,总有 tanA+tanB+tanC=tanAtanBtanC (证明:利用A+B=π-C ) 同理可得证,当x+y+z=n π(n ∈Z)时,该关系式也成立 由tanA+tanB+tanC=tanAtanBtanC 可得出以下结论: (5)cotAcotB+cotAcotC+cotBcotC=1 (6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2) (7)(cosA )2+(cosB )2+(cosC )2=1-2cosAcosBcosC (8)(sinA )2+(sinB )2+(sinC )2=2+2cosAcosBcosC (9)设tan(A/2)=t sinA=2t/(1+t^2) (A≠2kπ+π,k∈Z) tanA=2t/(1-t^2) (A≠2kπ+π,k∈Z) cosA=(1-t^2)/(1+t^2) (A≠2kπ+π,且A≠kπ+(π/2) k∈Z) 2.在解三角问题时,你注意到正切函数、余切函数的定义域了吗正切函数在整个定义域内是否为单调函数你注意到正弦函数、余弦函数的有界性了吗 3.在三角中,你知道1等于什么吗(x x x x 2222tan sec cos sin 1-=+=

高中数学(三角函数)练习题及答案

第一章 三角函数 一、选择题 1.已知 α 为第三象限角,则 2 α 所在的象限是( ). A .第一或第二象限 B .第二或第三象限 C .第一或第三象限 D .第二或第四象限 2.若sin θcos θ>0,则θ在( ). A .第一、二象限 B .第一、三象限 C .第一、四象限 D .第二、四象限 3.sin 3π4cos 6π5tan ??? ??3π4-=( ). A .- 4 3 3 B . 4 3 3 C .- 4 3 D . 4 3 4.已知tan θ+θtan 1 =2,则sin θ+cos θ等于( ). A .2 B .2 C .-2 D .±2 5.已知sin x +cos x =51 (0≤x <π),则tan x 的值等于( ). A .- 4 3 B .- 3 4 C . 4 3 D . 3 4 6.已知sin α >sin β,那么下列命题成立的是( ). A .若α,β 是第一象限角,则cos α >cos β B .若α,β 是第二象限角,则tan α >tan β C .若α,β 是第三象限角,则cos α >cos β D .若α,β 是第四象限角,则tan α >tan β 7.已知集合A ={α|α=2k π±3π2,k ∈Z },B ={β|β=4k π±3 π2,k ∈Z },C = {γ|γ=k π± 3 π 2,k ∈Z },则这三个集合之间的关系为( ). A .A ?B ?C B .B ?A ?C C .C ?A ?B D .B ?C ?A 8.已知cos (α+β)=1,sin α=3 1 ,则sin β 的值是( ).

【单位】三角函数高考题及答案

【关键字】单位 1.(上海,15)把曲线y cos x +2y -1=0先沿x 轴向右平移 2 个单位,再沿y 轴向下平移1个 单位,得到的曲线方程是( ) A.(1-y )sinx+2y -3=0 B.(y -1)sinx+2y -3=0 C.(y+1)sinx+2y+1=0 D.-(y+1)sinx+2y+1=0 2.(北京,3)下列四个函数中,以π为最小正周期,且在区间(,π)上为减函数的是( ) A.y=cos2x B.y =2|sinx| C.y =()cosx D.y=-cotx 3.(全国,5)若f (x )sinx 是周期为π的奇函数,则f (x )可以是( ) A.sinx B.cosx C.sin2x D.cos2x 4.(全国,6)已知点P (sinα-cosα,tanα)在第一象限,则在[0,2π]内α的取值范围是( ) A.(,)∪(π,) B.(,)∪(π,) C.(,)∪(,) D.(,)∪(,π) 5.(全国)若sin2x>cos2x ,则x 的取值范围是( ) A.{x|2kπ-πcot B.tancos D.sin -cos 10.(上海,9)若f (x )=2sin ωx (0<ω<1在区间[0,]上的最大值是,则ω= . 11.(北京,13)sinπ,cosπ,tanπ从小到大的顺序是 . 12.(全国,18)的值为_____. 13.(全国,18)tan20°+tan40°+tan20°·tan40°的值是_____. 14.(全国,18)函数y =sin (x -)cosx 的最小值是 . 15.(上海,17)函数y =sin +cos 在(-2π,2π)内的递加区间是 . 16.(全国,18)已知sinθ+cosθ=,θ∈(0,π),则cotθ的值是 . 17.(全国,17)已知函数y =sinx +cosx ,x ∈R. (1)当函数y 取得最大值时,求自变量x 的集合; (2)该函数的图象可由y =sinx (x ∈R )的图象经过怎样的平移和伸缩变换得到? 18.(全国,22)求sin220°+cos250°+sin20°cos50°的值. 19.(上海,21)已知sinα=,α∈(,π),tan (π-β)=,

2019年高考数学三角函数典型例题

2019年高考数学三角函数典型例题 编制:高中数学群648051755 高中奥数群274712379 1 .设锐角ABC ?的内角A B C ,,的对边分别为a b c ,,,2sin a b A =. (Ⅰ)求B 的大小; (Ⅱ)求cos sin A C +的取值范围. 【解析】:(Ⅰ)由2sin a b A =,根据正弦定理得sin 2sin sin A B A =,所以1sin 2 B = , 由ABC ?为锐角三角形得π6 B = . (Ⅱ)cos sin cos sin A C A A π??+=+π- - ?6?? cos sin 6A A π?? =++ ??? 1cos cos sin 22A A A =++ 3A π? ?=+ ?? ?. 2 .在ABC ?中,角A . B .C 的对边分别为a 、b 、c,且满足(2a-c)cosB=bcos C . (Ⅰ)求角B 的大小; (Ⅱ)设()()()2411m sin A,cos A ,n k,k ,==>且m n ?的最大值是5,求k 的值. 【解析】:(I)∵(2a -c )cos B =b cos C , ∴(2sin A -sin C )cos B =sin B cos C . 即2sin A cos B =sin B cos C +sin C cos B =sin(B +C ) ∵A +B +C =π,∴2sin A cos B =sinA . ∵01,∴t =1时,m n ?取最大值. 依题意得,-2+4k +1=5,∴k = 2 3. 3 .在ABC ?中,角C B A ,,所对的边分别为c b a ,,,22 sin 2sin =++C B A . I.试判断△AB C 的形状; II.若△ABC 的周长为16,求面积的最大值. 【解析】:I.)4 2sin(22sin 2cos 2sin 2 sin ππ+=+=+-C C C C C 2 242π ππ==+∴ C C 即,所以此三角形为直角三角形. II.ab ab b a b a 221622+≥++ +=,2)22(64-≤∴ab 当且仅当b a =时取等号, 此时面积的最大值为() 24632-. 4 .在ABC ?中,a 、b 、c 分别是角A . B .C 的对边,C =2A ,4 3 cos = A , (1)求 B C cos ,cos 的值; (2)若2 27 = ?BC BA ,求边AC 的长?

相关文档
最新文档