2020中考数学操作探究专题复习(含解析)
中考数学专题复习——操作探究(详细答案)

中考数学专题复习——操作探究一.选择题1.(2018•临安•3 分.)如图,正方形硬纸片A BCD的边长是4,点E.F分别是A B.BC的中点,若沿左图中的虚线剪开,拼成如图的一座“小别墅”,则图中阴影部分的面积是()A.2 B.4 C.8 D.102. (2018•嘉兴•3 分)将一张正方形纸片按如图步骤①,②沿虚线对折两次,然后沿③中平行于底边的虚线剪去一个角,展开铺平后的图形是()A. (A)B. (B)C. (C)D. (D)3. (2018•广西南宁•3 分)如图,矩形纸片A BCD,AB=4,BC=3,点P在B C 边上,将△CDP 沿D P 折叠,点C落在点E处,PE.DE 分别交A B 于点O、F,且O P=OF,则c os∠ADF 的值为()A.1113B.1315C.1517D.17194.(2018•海南•3 分)如图1,分别沿长方形纸片A BCD 和正方形纸片E FGH 的对角线A C,EG 剪开,拼成如图2所示的▱KLMN,若中间空白部分四边形O PQR 恰好是正方形,且▱KLMN 的面积为50,则正方形E FGH 的面积为()A.24 B.25 C.26 D.27二、填空题1. (2018•杭州•4 分)折叠矩形纸片 ABCD 时,发现可以进行如下操作:①把△ADE 翻折,点A落在D C 边上的点F处,折痕为D E,点E在A B 边上;②把纸片展开并铺平;③把△CDG 翻折,点C落在直线A E 上的点H处,折痕为D G,点G在B C 边上,若AB=AD+2,EH=1,则A D= 。
2.(2018•临安•3 分.)马小虎准备制作一个封闭的正方体盒子,他先用5 个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子(添加所有符合要求的正方形,添加的正方形用阴影表示).3.(2018•金华、丽水•4分)如图2,小靓用七巧板拼成一幅装饰图,放入长方形A BCD内,装饰图中的三角形顶点E,F分别在边A B,BC上,三角形①的边G D在边A D上,则ABBC的值是.4. (2018·湖北省恩施·3 分)在Rt△ABC 中,AB=1,∠A=60°,∠AB C=90°,如图所示将R t△ABC沿直线l无滑动地滚动至R t△DE F,则点B所经过的路径与直线l所围成的封闭图形的面积为.(结果不取近似值)5.(2018•贵州贵阳•8 分)如图①,在 R t△ABC 中,以下是小亮探究sin a A 与sin bB之间关系 的方法:∵sin A=a c ,sinB=b c ∴c =sin a A ,c=sin b B∴sin a A =sin b B根据你掌握的三角函数知识.在图②的锐角△ABC 中,探究sin a A 、sin b B 、sin cC之间的关 系,并写出探究过程.三.解答题1.(2018•江苏无锡•10 分)如图,平面直角坐标系中,已知点 B 的坐标为(6,4). (1)请用直尺(不带刻度)和圆规作一条直线 A C ,它与 x 轴和 y 轴的正半轴分别交于点 A 和点 C ,且使∠AB C=90°,△ABC 与△AOC 的面积相等.(作图不必写作法,但要保留作图痕迹.) (2)问:(1)中这样的直线 A C 是否唯一?若唯一,请说明理由;若不唯一,请在图中画出 所有这样的直线 A C ,并写出与之对应的函数表达式.2.(2018•江苏徐州•7 分)如图,方格纸中的每个小方格都是边长为 1 个单位的正方形,在 建立平面直角坐标系后,△ABC 的顶点均在格点上,点 B 的坐标为(1,0)①画出△A BC 关于 x 轴对称的△A 1B 1C 1;②画出将△ABC 绕原点 O 按逆时针旋转 90°所得的△A 2B 2C 2;③△A 1B 1C 1 与△A 2B 2C 2 成轴对称图形吗?若成轴对称图形,画出所有的对称轴;④△A 1B 1C 1 与△A 2B 2C 2 成中心对称图形吗?若成中心对称图形,写出所有的对称中心的坐标.3.(2018•山东东营市•10 分)(1)某学校“智慧方园”数学社团遇到这样一个题目:如图1,在△A BC 中,点O在线段B C 上,∠BA O=30°,∠O AC=75°,AO=BO:CO=1:3,求A B 的长.经过社团成员讨论发现,过点B作B D∥A C,交A O 的延长线于点D,通过构造△A BD 就可以解决.问题(如图2)请回答:∠ADB= 75 °,AB= .(2)请参考以上解决思路,解决问题:在四边形A BCD 中,对角线A C 与B D 相交于点O,A C⊥AD,A O=ABC=∠A CB=75°,如图3,BO:OD=1:3,求D C 的长.4.(2018•山东济宁市•7分)在一次数学活动课中,某数学小组探究求环形花坛(如图所示)面积的方法,现有以下工具;①卷尺;②直棒EF;③T 型尺(CD 所在的直线垂直平分线段AB).(1)在图1 中,请你画出用T 形尺找大圆圆心的示意图(保留画图痕迹,不写画法);(2)如图2,小华说:“我只用一根直棒和一个卷尺就可以求出环形花坛的面积,具体做法如下:将直棒放置到与小圆相切,用卷尺量出此时直棒与大圆两交点M,N 之间的距离,就可求出环形花坛的面积”如果测得MN=10m,请你求出这个环形花坛的面积.5.一节数学课上,老师提出了这样一个问题:如图1,点P 是正方形ABCD 内一点,PA=1,PB=2,PC=3.你能求出∠A PB 的度数吗?小明通过观察、分析、思考,形成了如下思路:思路一:将△B PC 绕点B逆时针旋转90°,得到△BP′A,连接P P′,求出∠APB的度数;思路二:将△A PB 绕点B顺时针旋转90°,得到△CP'B,连接P P′,求出∠APB 的度数.请参考小明的思路,任选一种写出完整的解答过程.【类比探究】如图2,若点P是正方形A BCD 外一点,PA=3,PB=1,PB 的度数.答案详解一.选择题(2018•临安•3 分.)如图,正方形硬纸片A BCD的边长是4,点E.F分别是A B.BC的中点,若沿左1.图中的虚线剪开,拼成如图的一座“小别墅”,则图中阴影部分的面积是()A.2 B.4 C.8 D.10【分析】本题考查空间想象能力.【解答】解:阴影部分由一个等腰直角三角形和一个直角梯形组成,由第一个图形可知:阴影部分的两部分可构成正方形的四分之一,正方形的面积=4×4=16,∴图中阴影部分的面积是16÷4=4.故选:B.【点评】解决本题的关键是得到阴影部分的组成与原正方形面积之间的关系2. (2018•嘉兴•3分)将一张正方形纸片按如图步骤①,②沿虚线对折两次,然后沿③中平行于底边的虚线剪去一个角,展开铺平后的图形是()A. (A)B. (B)C. (C)D. (D)【答案】A【分析】根据两次折叠都是沿着正方形的对角线折叠, 展开后所得图形的顶点一定在【解析】正方形的对角线上, 根据③的剪法,中间应该是一个正方形.【解答】根据题意,两次折叠都是沿着正方形的对角线折叠的,根据③的剪法,展开后所得图形的顶点一定在正方形的对角线上,而且中间应该是一个正方形.故选A.【点评】关键是要理解折叠的过程,得到关键信息,如本题得到展开后的图形的顶点在正方形的对角线上是解题的关键.3. (2018•广西南宁•3分)如图,矩形纸片A BCD,AB=4,BC=3,点P在B C 边上,将△C DP 沿D P 折叠,点C落在点E处,PE.DE 分别交A B 于点O、F,且O P=OF,则c o s∠ADF 的值为()A.1113B.1315C.1517D.1719【分析】根据折叠的性质可得出DC=DE.CP=EP,由∠EOF=∠B OP、∠B=∠E.OP=OF 可得出△OE F≌△OBP(AAS),根据全等三角形的性质可得出O E=OB.EF=BP,设E F=x,则B P=x、DF=4﹣x、BF=PC=3﹣x,进而可得出A F=1+x,在R t△DAF 中,利用勾股定理可求出x的值,再利用余弦的定义即可求出c o s∠A DF 的值.【解答】解:根据折叠,可知:△D CP≌△DE P,∴DC=DE=4,CP=EP.在△O EF 和△O BP 中,EOF BOPB EOP OF∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△O EF≌△OB P(AAS),∴OE=OB,EF=BP.设E F=x,则B P=x,DF=DE﹣EF=4﹣x,又∵B F=OB+OF=OE+OP=PE=PC,PC=BC﹣BP=3﹣x,∴AF=AB﹣BF=1+x.在R t△DAF中,AF 2+AD2=DF2,即(1+x)2+32=(4﹣x)2,解得:x=35,∴DF=4﹣x=175,∴co s∠AD F=AD DF=1517.故选:C.【点评】本题考查了全等三角形的判定与性质、勾股定理以及解直角三角形,利用勾股定理 结合 A F=1+x ,求出 A F 的长度是解题的关键.4.(2018•海南•3 分)如图 1,分别沿长方形纸片 A BCD 和正方形纸片 E FGH 的对角线 A C ,EG 剪开,拼成如图 2 所示的▱KLMN ,若中间空白部分四边形 O PQR 恰好是正方形,且▱KLMN 的面 积为 50,则正方形 E FGH 的面积为( )A .24B .25C .26D .27【分析】如图,设 P M=PL=NR=AR=a ,正方形 O RQP 的边长为 b ,构建方程即可解决问题; 【解答】解:如图,设 P M=PL=NR=AR=a ,正方形 O RQP 的边长为 b .由题意:a 2+b 2+(a+b )(a ﹣b )=50, ∴a 2=25,∴正方形 E FGH 的面积=a 2=25, 故选:B .【点评】本题考查图形的拼剪,矩形的性质,正方形的性质等知识,解题的关键是学会利用 参数构建方程解决问题,学会利用数形结合的思想解决问题,属于中考选择题中的压轴题.二.填空题1. (2018•杭州•4 分)折叠矩形纸片 ABCD 时,发现可以进行如下操作:①把△ADE 翻折,点 A 落在 D C 边上的点 F 处,折痕为 D E ,点 E 在 A B 边上;②把纸 片展开并铺平;③把△CDG 翻折,点 C 落在直线 A E 上的点 H 处,折痕为 D G ,点 G 在 B C 边上, 若 AB=AD+2,EH=1,则 A D= 。
2020年中考数学真题分类汇编第二期专题37操作探索试题含解析

操作探究一.选择题1.(2018•临安•3分.)z如图,正方形硬纸片ABCD的边长是4,点E.F分别是AB.BC的中点,若沿左图中的虚线剪开,拼成如图的一座“小别墅”,则图中阴影部分的面积是()A.2 B.4 C.8 D.10【分析】本题考查空间想象能力.【解答】解:阴影部分由一个等腰直角三角形和一个直角梯形组成,由第一个图形可知:阴影部分的两部分可构成正方形的四分之一,正方形的面积=4×4=16,∴图中阴影部分的面积是16÷4=4.故选:B.【点评】解决本题的关键是得到阴影部分的组成与原正方形面积之间的关系%@z#step~.co& 2. (2018•嘉兴•3分)将一张正方形纸片按如图步骤①,②沿虚线对折两次,然后沿③中平行于底边的虚线剪去一个角,展开铺平后的图形是()A. (A)B. (B)C. (C)D. (D)【答案】A【解析】【分析】根据两次折叠都是沿着正方形的对角线折叠, 展开后所得图形的顶点一定在正方形的对角线上, 根据③的剪法,中间应该是一个正方形.【解答】根据题意,两次折叠都是沿着正方形的对角线折叠的,根据③的剪法,展开后所得图形的顶点一定在正方形的对角线上,而且中间应该是一个正方形.故选A.【点评】关键是要理解折叠的过程,得到关键信息,如本题得到展开后的图形的顶点在正方形的对角线上是解题的关键.3. (2018•广西南宁•3分)如图,矩形纸片ABCD,AB=4,BC=3,点P在BC边上,将△CDP沿DP折叠,点C落在点E处,PE.DE分别交AB于点O、F,且OP=OF,则cos∠ADF的值为()A.B.C.D.【分析】根据折叠的性质可得出DC=DE.CP=EP,由∠EOF=∠BOP、∠B=∠E.OP=OF可得出△OEF≌△OBP(AAS),根据全等三角形的性质可得出OE=OB.EF=BP,设EF=x,则BP=x、DF=4﹣x、BF=PC=3﹣x,进而可得出AF=1+x,在Rt△DAF中,利用勾股定理可求出x的值,再利用余弦的定义即可求出cos∠ADF的值.【解答】解:根据折叠,可知:△DCP≌△DEP,∴DC=DE=4,CP=EP.在△OEF和△OBP中,,∴△OEF≌△OBP(AAS),∴OE=OB,EF=BP.设EF=x,则BP=x,DF=DE﹣EF=4﹣x,又∵BF=OB+OF=OE+OP=PE=PC,PC=BC﹣BP=3﹣x,∴AF=AB﹣BF=1+x.在Rt△DAF中,AF2+AD2=DF2,即(1+x)2+32=(4﹣x)2,解得:x=,∴DF=4﹣x=,∴cos∠ADF==.故选:C.【点评】本题考查了全等三角形的判定与性质、勾股定理以及解直角三角形,利用勾股定理结合AF=1+x,求出AF的长度是解题的关键.4.(2018•海南•3分)如图1,分别沿长方形纸片ABCD和正方形纸片EFGH的对角线AC,EG剪开,拼成如图2所示的▱KLMN,若中间空白部分四边形OPQR恰好是正方形,且▱KLMN的面积为50,则正方形EFGH的面积为()A.24 B.25 C.26 D.27【分析】如图,设PM=PL=NR=AR=a,正方形ORQP的边长为b,构建方程即可解决问题;【解答】解:如图,设PM=PL=NR=AR=a,正方形ORQP的边长为b.由题意:a2+b2+(a+b)(a﹣b)=50,∴a2=25,∴正方形EFGH的面积=a2=25,故选:B.【点评】本题考查图形的拼剪,矩形的性质,正方形的性质等知识,解题的关键是学会利用参数构建方程解决问题,学会利用数形结合的思想解决问题,属于中考选择题中的压轴题.二.填空题1. (2018•杭州•4分)折叠矩形纸片ABCD时,发现可以进行如下操作:①把△ADE翻折,点A 落在DC边上的点F处,折痕为DE,点E在AB边上;②把纸片展开并铺平;③把△CDG翻折,点C落在直线AE上的点H处,折痕为DG,点G在BC边上,若AB=AD+2,EH=1,则AD=________。
2020年中考数学专题复习教学案--动手操作题(附答案)

同步测试4
(2020最新模拟·南宁)已知 在平面直角坐标系中的位置如图16所示.画出 绕点 按顺时针方向旋转 .
【答案】旋转后的图形如图17.
动手操作题
近年来中考数学试题加强了对学生动手操作能力的考查,出现了一类新题型--动手操作题.这类试题能够有效地考查学生的实践能力、创新意识和直觉思维能力.解决这类问题需要通过观察、操作、比较、猜想、分析、综合、抽象和概括等实践活动和思维过程,灵活运用所学知识和生活经验,探索和发现结论,从而解决问题.
5.将任意三角形剪切可以拼成一个与此三角形面积相等的矩形.
方法如下(如图23—1):
请你类似上面图示的方பைடு நூலகம்,解答下列的问题:
(1)对任意三角形(如图23—2),设计一种与上例不同的方案,将它分成若干块,再拼成一个与原三角形面积相等的矩形.
(2)对任意四边形(如图23—3),设计一种方案,将它分成若干块,再拼成一个与原四边形面积相等的矩形.
【答案】1.
类型二:图形拼接型动手操作题
图形拼接问题,就是将已知的若干个图形重新拼合成符合条件的新图形.
例2(2020最新模拟·安徽)如图5,将正方形沿图中虚线(其中x<y)剪成①②③④四块图形,用这四块图形恰能拼成一个矩形(非正方形).请画出拼成的矩形的简图.
【分析与解答】我们观察图5中的4块图形各边之间的对应关系,找出能拼接在一起的边,如图6就是一种拼接方法.
中考数学试题中动手操作题可分为图形折叠型动手操作题、图形拼接型动手操作题、图形分割型动手操作题和作图型动手操作题等四种类型.
【名师整理】2020年中考数学冲刺专题卷专题09 操作型问题(解析版)

2020年中考数学冲刺专题卷09 操作型问题一、选择题(本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.如图,直线m,n相交于O,所夹的锐角是53°,点P,Q分别是直线m,n上的点,将直线m,n按照下面的程序操作,能使两直线平行的是A.将直线m以点O为中心,顺时针旋转53°B.将直线n以点Q为中心,顺时针旋转53°C.将直线m以点P为中心,顺时针旋转53°D.将直线m以点P为中心,顺时针旋转127°【答案】C【解析】将直线m以点O为中心,顺时针旋转53°,有交点不平行,故错误;将直线n以点Q为中心,顺时针旋转53°,有交点不平行,故错误;将直线m以点P为中心,顺时针旋转53°,平行,正确;将直线m以点P为中心,顺时针旋转127°,同位角不相等不平行,故错误,故选C.2.(2019·四川中考模拟)在6×6方格中,将图①中的图形N平移后位置如图②所示,则图形N的平移方法中,正确的是图①图②A.向下移动1格B.向上移动1格C.向上移动2格D.向下移动2格【答案】D【解析】由图可知,图①中的图形N 向下移动2格后得到图②。
故选D 。
3.(2019·湖北初二期末)把一张长方形纸片按如图①,图②的方式从右向左连续对折两次后得到图③,再在图③中挖去一个如图所示的三角形小孔,则重新展开后得到的图形是( )A .B .C .D .【答案】C【解析】 重新展开后得到的图形是C ,故选C .4.(2019·浙江中考真题)“三等分角”大约是在公元前五世纪由古希腊人提出来的.借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒OA ,OB 组成,两根棒在O 点相连并可绕O 转动,C 点固定,OC CD DE ==,点D ,E 可在槽中滑动,若75BDE ∠=︒,则CDE ∠的度数是( )A .60°B .65°C .75°D .80°【答案】D【解析】∵OC CD DE ==, ∴O ODC ∠=∠,DCE DEC ∠=∠,设O ODC x ∠=∠=,∴2DCE DEC x ∠=∠=,∴180CDE DCE DEC ∠=︒-∠-∠1804x =︒-,∵75BDE ∠=︒,∴180ODC CDE BDE ∠+∠+∠=︒,即180475180x x +-+=︒︒︒,解得:25x =︒,180480CDE x ︒∠=-=︒.故答案为:D.5.(2019·湖北中考真题)如图,Rt OCB ∆的斜边在y 轴上,3OC =,含30︒角的顶点与原点重合,直角顶点C 在第二象限,将Rt OCB ∆绕原点顺时针旋转120︒后得到'OC B ∆',则B 点的对应点B ′的坐标是( )A .(3,1)-B .(1,3)-C .(2,0)D .(3,0)【答案】A【解析】如图,在Rt OCB ∆中,30BOC ∠=︒Q ,3331BC ∴===, Rt OCB ∆Q 绕原点顺时针旋转120︒后得到'OC B ∆',3,1,90OC OC B C BC B C O BCO ∴====''''∠'=∠=︒,∴点B ′的坐标为3,1)-.故选:A .6.用一条直线m 将如图1的直角铁皮分成面积相等的两部分.图2、图3分别是甲、乙两同学给出的作法,对于两人的作法判断正确的是A .甲正确,乙不正确B .甲不正确,乙正确C .甲、乙都正确D .甲、乙都不正确【答案】C 【解析】如图2中,直线m 经过了大长方形和小长方形的对角线的交点,所以两旁的图形的面积都是大长方形和小长方形面积的一半,所以这条直线把这个图形分成了面积相等的两部分,即甲做法正确;图形3中,经过大正方形和图形外不添补的长方形的对角线的交点,直线两旁的面积都是大正方形面积的一半减去添补的长方形面积的一半,所以这条直线把这个图形分成了面积相等的两部分,即乙做法正确.故选C .7.(2019·广西中考真题)将一条宽度为2cm 的彩带按如图所示的方法折叠,折痕为AB ,重叠部分为ABC ∆(图中阴影部分),若45ACB ∠=︒,则重叠部分的面积为( )A .222cmB .223cmC .24cmD .242cm【答案】A【解析】解:如图,过B 作BD AC ⊥于D ,则90BDC ∠=︒,∵45ACB ∠=︒,∴45CBD ∠=︒,∴2BD CD cm ==,∴Rt BCD ∆中,()222222BC cm =+=, ∴重叠部分的面积为()1222222cm ⨯⨯=, 故选:A. 8.如图,一张三角形纸片ABC ,其中∠C =90°,AC =4,BC =3.现小林将纸片做三次折叠:第一次使点A 落在C 处;将纸片展平做第二次折叠,使点B 落在C 处;再将纸片展平做第三次折叠,使点A 落在B 处.这三次折叠的折痕长依次记为a ,b ,c ,则a ,b ,c 的大小关系是A .c >a >bB .b >a >cC .c >b >aD .b >c >a【答案】D 【解析】第一次折叠如图1,折痕为DE ,由折叠的性质得:AE =EC =12AC =2,DE ⊥AC ,∵∠ACB =90°,∴DE ∥BC ,∴a =DE =12BC =12×3=32.第二次折叠如图2,折痕为MN ,由折叠的性质得:BN =NC =12BC =12×3=32,MN ⊥BC ,∵∠ACB =90°,∴MN ∥AC ,∴b =MN =12AC =12×4=2.第三次折叠如图3,折痕为GH,由勾股定理得:AB=2234+=5,由折叠的性质得:G=BG=12AB=12×5=52,GH⊥AB,∴∠AGH=90°,∵∠A=∠A,∠AGH=∠ACB.∴△AGH∽△ACB,∴AG GHAC CB=,∴5243c=,∴158c=.∴b c a>>,故选D.二、填空题(本大题共4个小题,每小题6分,共24分)9.如图,点A、B、C、D都在方格纸的格点上,若△AOB绕点O按逆时针方向旋转到△COD的位置,则旋转角为__________.【答案】90°【解析】∵△AOB绕点O按逆时针方向旋转到△COD的位置,∴对应边OB、OD的夹角∠BOD即为旋转角,∴旋转的角度为90°.故答案为:90°.10.如图,在边长为1的小正方形组成的网格中,建立平面直角坐标系,△ABC的三个顶点均在格点(网格线的交点)上.以原点O为位似中心,画△A1B1C1,使它与△ABC的相似比为2,则点B的对应点B1的坐标是__________.【答案】(4,2)或(4-,2-)【解析】符合题意与△ABC相似,且相似比为2的三角形有2个,如图所示,△A1B1C1和△A′B′C′均与△ABC 的相似比为2,点B的对应点B1的坐标是:(4,2),点B的对应点B′的坐标是:(4-,2-),故答案为:(4,2)或(4-,2-).11.在Rt△ABC中,∠C=90°,cos B=0.6,把这个直角三角形绕顶点C旋转后得到Rt△A'B'C,其中点B'正好落在AB上,A'B'与AC相交于点D,那么B′D∶CD=__________.【答案】0.35【解析】作CH⊥AB于H,先在Rt△ABC中,根据余弦的定义得到cos B=BCAB=0.6=35,设BC=3x,则AB=4x,再根据勾股定理计算出AC=4x,在Rt△HBC中,根据余弦的定义可计算出BH=95 x,接着根据旋转的性质得CA′=CA=4x,CB′=CB,∠A′=∠A,所以根据等腰三角形的性质有B′H=BH=95x,则AB′=75x,然后证明△ADB′∽△A′DC,再利用相似比可计算出B′D与DC的比值720=0.35,故答案为:0.35.12.已知:Rt△ABC中,∠B=90°,AB=4,BC=3,点M、N分别在边AB、AC上,将△AMN沿直线MN折叠,点A落在点P处,且点P在射线CB上,当△PNC为直角三角形时,PN的长为__________.【答案】209或207【解析】在Rt△ABC中,∠ABC=90°,AB=3,BC=4,∴22345AC=+=,设AN=PN=x,则CN=5=x,①当∠NPC=90°时,如图1,∵∠NPC=∠B=90°,∠C=∠C,∴△NPC∽△ABC,∴PN CNAB AC=,∴545x x-=,209x=,即209PN=.②当∠PNC=90°时,如图2,∵∠PNC=∠ABC=90°,∠C=∠C,∴△NPC∽△ABC,∴PN NCAB AC=,∴543x x-=,207x=,即207PN .综上,PN的长为209或207,故答案为:209或207.三、解答题(本大题共3个小题,每小题12分,共36分.解答应写出文字说明、证明过程或演算步骤)13.(2019·江苏中考真题)如图,AD是ABC△的角平分线.(1)作线段AD的垂直平分线EF,分别交AB、AC于点E、F;(用直尺和圆规作图,标明字母,保留作图痕迹,不写作法.)(2)连接DE、DF,四边形AEDF是________形.(直接写出答案)【答案】(1)见解析;(2)菱形.【解析】(1)如图,直线EF即为所求作的垂直平分线.(2)根据AD是ABC△的角平分线,且EF是AD的垂直平分线,可知四边形AEDF的对角线互相垂直,因此为菱形.14.(2019·江苏中考真题)按要求作图,不要求写作法,但要保留作图痕迹.(1)如图1,A为圆E上一点,请用直尺(不带刻度)和圆规作出圆内接正方形;(2)我们知道,三角形具有性质,三边的垂直平分线相交于同一点,三条角平分线相交于一点,三条中线相交于一点,事实上,三角形还具有性质:三条高交于同一点,请运用上述性质,只用直尺(不带刻度)作图:①如图2,在□ABCD中,E为CD的中点,作BC的中点F;②图3,在由小正方形组成的网格中,的顶点都在小正方形的顶点上,作△ABC的高AH【答案】(1)见解析;(2)①见解析;②见解析.【解析】(1)如图所示,四边形ABCD即为所求;(2)①如图所示,点F即为所求;②如图所示,AH即为所求.=,点P在15.(2019·辽宁中考真题)如图,点E,F分别在正方形ABCD的边CD,BC上,且DE CF射线BC上(点P不与点F重合).将线段EP绕点E顺时针旋转90︒得到线段EG,过点E作GD的垂线QH,垂足为点H,交射线BC于点Q.(1)如图1,若点E 是CD 的中点,点P 在线段BF 上,线段BP ,QC ,EC 的数量关系为 . (2)如图2,若点E 不是CD 的中点,点P 在线段BF 上,判断(1)中的结论是否仍然成立.若成立,请写出证明过程;若不成立,请说明理由.(3)正方形ABCD 的边长为6,3AB DE =,1QC =,请直接写出线段BP 的长.【答案】(1)BP QC EC +=;理由见解析;(2)(1)中的结论仍然成立,理由见解析;(3)线段BP 的长为3或5.【解析】(1)BP QC EC +=;理由如下:Q 四边形ABCD 是正方形,BC CD ∴=,90BCD ∠=︒,由旋转的性质得:90PEG ∠=︒,EG EP =,90PEQ GEH ∴∠+∠=︒,QH GD ⊥Q ,90H ∴∠=︒,90G GEH ∠+∠=︒,PEQ G ∴∠=∠,又90EPQ PEC ∠+∠=︒Q ,90PEC GED ∠+∠=︒,EPQ GED ∴∠=∠,在PEQ ∆和EGD ∆中,EPQ GED EP EGPEQ G ∠=∠⎧⎪=⎨⎪∠=∠⎩,()PEQ EGD ASA ∴∆≅∆,PQ ED ∴=, BP QC BC PQ CD ED EC ∴+=-=-=,即BP QC EC +=;故答案为:BP QC EC +=;(2)(1)中的结论仍然成立,理由如下:由题意得:90PEG ∠=︒,EG EP =,90PEQ GEH ∴∠+∠=︒,QH GD ⊥Q ,90H ∴∠=︒,90G GEH ∠+∠=︒,PEQ G ∴∠=∠,Q 四边形ABCD 是正方形,90DCB ∴∠=︒,BC DC =,90EPQ PEC ∴∠+∠=︒,90PEC GED ∠+∠=︒Q ,GED EPQ ∴∠=∠,在PEQ ∆和EGD ∆中,EPQ GED EP EGPEQ G ∠=∠⎧⎪=⎨⎪∠=∠⎩,()PEQ EGD ASA ∴∆≅∆,PQ ED ∴=, BP QC BC PQ CD ED EC ∴+=-=-=,即BP QC EC +=; (3)分两种情况:①当点P 在线段BF 上时,点Q 在线段BC 上,由(2)可知:BP EC QC =-,36AB DE ==Q ,2DE ∴=,4EC =,413BP ∴=-=;②当点P 在射线FC 上时,点Q 在线段BC 的延长线上,如图3所示: 同(2)可得:()PEQ EGD AAS ∆≅∆,PQ ED ∴=,BC DC =Q ,DC EC DE =+,BP BC PC DC PC EC DE PC EC PQ PC EC QC ∴=+=+=++=++=+, 145BP QC EC ∴=+=+=;综上所述,线段BP 的长为3或5.。
2020年中九年级数学中考二轮——动点探究题(含详细解答)

2020年中九年级数学中考二轮——动点探究题类型一单动点1.已知,在Rt△ABC中,∠ACB=90°,BC=AC,AB=6,D是AB的中点,动点E从点D 出发,在AB边上向左或右运动,以CE为边向左侧作正方形CEFG,直线BG,FE相交于点N(点E向左运动时如图①,点E向右运动时如图②).(1)在点E的运动过程中,直线BG与CD的位置关系为________;(2)设DE=x,NB=y,求y与x之间的函数关系式,并求出y的最大值;(3)如图②,当DE的长度为3时,求∠BFE的度数.第1题图解:(1)BG∥CD;【解法提示】∵四边形EFGC是正方形,∴CG=CE,∠GCE=∠GFE=∠FEC=90°,∵∠ACB =∠GCE=90°,∴∠GCB=∠ECA,∵GC=CE,CB=CA,∴△CBG≌△CAE.∴∠CBG=∠CAE,又∵∠ACB=90°,BC=AC,D是AB的中点,∴∠CBG=∠CAE=45°,∠BCD=45°,∴∠CBG=∠BCD,∴BG∥CD.(2)∵CB=CA,CD⊥AB,∠ACB=90°,∴CD=BD=AD=3,∠CBA=∠A=45°,易得△CAE≌△CBG,∴∠CBG=∠A=45°,∴∠GBA =∠GBC +∠CBA =90°.∵∠BEN +∠BNE =90°,∠BEN +∠CED =90°, ∴∠BNE =∠CED , ∵∠EBN =∠CDE =90°, ∴△NBE ∽△EDC , ∴BN DE =BE DC, ∴y x =3-x 3, ∴y =-13(x -32)2+34,∵-13<0,∴当x =32时,y 的最大值为34;(3)如解图,过点F 作FH ⊥AB 于点H .∵CB =CA ,BD =CD ,∠BCA =90°, ∴CD ⊥AB ,CD =BD =AD =3,第1题解图∴tan ∠DCE =DE CD =33,∴∠DCE =30°,∵四边形EFGC 是正方形, ∴EF =EC ,∵∠CDE =∠EHF =90°,易证∠DCE =∠HEF , ∴△CDE ≌△EHF ,∴∠DCE =∠HEF =30°,FH =DE ,CD =EH ,∵CD=BD,∴BD=EH,∴BH=DE=FH,∴△BHF是等腰直角三角形,∴∠BFH=45°,∵∠EFH=90°-∠HEF=60°,∴∠BFE=∠BFH+∠EFH=105°.2.如图,在正方形ABCD中,动点P在边BC上移动(不与端点B、C重合),作点B关于直线AP的对称点E,连接PE,AE,DE,延长DE交直线AP于点F.(1)若∠P AB=15°,AB=4,求DE的长;(2)连接BF,动点P在移动的过程中,∠APB-∠CBF的值是否为定值?若为定值,求出其值;若非定值,请说明理由.第2题图备用图解:(1)∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°,∵点B和点E关于直线AP对称,∴AB=AE,∠P AB=∠P AE=15°,∴AE=AD,∠DAE=90°-∠BAE=90°-2×15°=60°,∴△ADE是等边三角形,∴DE=AD=AB=4;(2)值为定值,∠APB-∠CBF=45°.理由如下:如解图,设DF与BC交于点K,第2题解图∵点B和点E关于直线AP对称,∴AB=AE=AD,∠ABP=∠ADC=∠AEP=90°,∠PBF=∠PEF,∵由(1)得AE=AD,∴∠AED=∠ADE,∴∠PEF+∠AED=90°,∠ADF+∠CDF=90°,∴∠PEF=∠CDF=∠CBF,∵∠CKD=∠BKF,∴∠BFK=∠C=90°,×∠BFE=45°.∴∠APB-∠CBF=∠PFB=123.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D以每秒1个单位长度的速度由点A向点B匀速运动,到达B点即停止运动.M,N分别是AD,CD的中点,连接MN.设点D运动的时间为t.(1)MN与AC的位置关系为________;(2)求点D在由点A向点B匀速运动的过程中,线段MN所扫过区域的面积;(3)若△DMN 是等腰三角形,求t 的值.第3题图解:(1)MN ∥AC ;【解法提示】在△ADC 中,∵M 是AD 的中点,N 是DC 的中点,∴MN 是△ADC 的中位线,∴MN ∥AC .(2)如解图①,分别取△ABC 三边中点E ,F ,G ,并连接EG ,FG ,第3题解图①根据题意,可知线段MN 扫过区域的面积就是▱AFGE 的面积. ∵AC =6,BC =8, ∴AE =3,GC =4, ∵∠ACB =90°, ∴S ▱AFGE =AE ·GC =12,∴线段MN 扫过区域的面积为12;(3)依题意可知,MD =12AD ,DN =12DC ,MN =12AC =3.分三种情况讨论:(ⅰ)当MD =MN =3时,△DMN 为等腰三角形,此时AD =AC =6, ∴t =6.(ⅱ)当MD =DN 时,AD =DC .第3题解图②如解图②,过点D 作DH ⊥AC 于点H ,则AH =12AC =3,∵cos A =AH AD =ACAB ,AB =10,即3AD =610. ∴t =AD =5.(ⅲ)当DN =MN =3时,AC =DC , 如解图③,连接MC ,则CM ⊥AD . ∵cos A =AM AC =AC AB ,即 AM 6=610,∴AM =185,第3题解图③∴t =AD =2AM =365.综上所述,当t =5或6或365时,△DMN 为等腰三角形.4.如图①,在矩形ABCD 中,AB =16,BC =8,在AD 边上取一点E ,使AE =3,点F 是AB 边上的一个动点,以EF 为一边作菱形EFMN ,使点N 落在CD 上,点M 落在矩形ABCD 内或其边上,连接BM .(1)当四边形EFMN 是正方形时,求AF 的长;(2)设△BFM 的面积为S ,AF =x . ①写出S 与x 之间的函数关系式;②在图②中画出S 取得最大值和最小值时相应的图形,当S 由最大值变到最小值时,求点M 运动的路线长.第4题图解:(1)在正方形EFMN 中,∵∠FEN =90°,EF =EN , ∴∠DEN +∠AEF =90°,在矩形ABCD 中,∵∠A =∠D =90°, ∴∠AEF +∠AFE =90°, ∴∠DEN =∠AFE , 在△DEN 与△AFE 中, ⎩⎪⎨⎪⎧∠D =∠A ∠DEN =∠AFE EN =FE, ∴△DEN ≌△AFE (AAS). ∴AF =DE =8-3=5, ∴AF 的长为5;(2)①如解图①,过点M 作MH ⊥AB 于点H ,连接NF.第4题解图①在矩形ABCD 中, ∵AB ∥CD , ∴∠DNF =∠NFB . ∵四边形EFMN 是菱形, ∴NE ∥MF ,NE =MF , ∴∠ENF =∠MFN ,∴∠DNF -∠ENF =∠NFB -∠MFN , 即∠DNE =∠MFB , 在△DEN 与△HMF 中, ⎩⎪⎨⎪⎧∠D =∠MHF ∠DNE =∠MFB EN =MF, ∴△DEN ≌△HMF (AAS),∴MH =DE =5, 又∵BF =16-x ,∴S =12BF ·MH =12(16-x )×5=-52x +40;第4题解图②②如解图②,当点D 与N 重合时,S 最大, 此时DE =EF 1=5,由勾股定理得AF 1=4, 当点M 落在BC 上时,S 最小, 由①得M 2B =DE =5,∵点M 2到AB 的距离是定值5, ∴点M 运动的路径是一条线段M 1M 2, ∴M 1M 2=F 1B =16-4=12. ∴点M 运动的路线长为12.5.如图①,点O 在线段AB 上,AO =2,OB =1,OC 为射线,且∠BOC =60°,动点P 以每秒2个单位长度的速度从点O 出发,沿射线OC 做匀速运动,设运动时间为t 秒. (1)当t =12秒时,则OP =______,S △ABP =______;(2)当△ABP 是直角三角形时,求t 的值;(3)如图②,当AP =AB 时,过点A 作AQ ∥BP ,并使得 ∠QOP =∠B ,求证:AQ ·BP =3.图① 图②第5题图(1)解:1,334;【解法提示】因为动点P 以每秒2个单位长度的速度从点O 出发,故当t =12秒时,OP =12×2=1.如解图①,过点P 作△ABP 的高h ,由于∠BOC =60°,OP =1,故h =OP ·sin60°=32,即S △ABP =12AB ·h =12(OA +OB )·h =12×(2+1)×32=334.图①图②第5题解图(2)解:∵∠BAP<∠BOP=60°,∴∠A不可能为直角;如解图②,当∠B=90°时,∵∠BOC=60°,∴∠OPB=30°,∴OP=2OB=2,即2t=2,∴t=1;当∠APB=90°时,如解图③,过点P作PD⊥AB,垂足为D,则∠ADP=∠PDB=90°.第5题解图③∵OP=2t,∴OD=t,PD=3t,AD=2+t,BD=1-t,∴BP2=BD2+PD2=(1-t)2+3t2,AP2=AD2+PD2=(2+t)2+3t2,∵BP2+AP2=AB2,∴(1-t)2+3t2+(2+t)2+3t2=9,即4t 2+t -2=0,解得t 1=-1+338,t 2=-1-338(舍去).综上所述,当△ABP 是直角三角形时,t 的值为1或-1+338;(3)证明:∵AP =AB ,第5题解图④∴∠APB =∠B .如解图④,作OE ∥AP 交BP 于点E , ∴∠OEB =∠APB =∠B , ∵AQ ∥BP ,∴∠QAB +∠B =180°, 又∵∠3+∠OEB =180°, ∴∠3=∠QAB ,又∵∠AOC =∠2+∠B =∠1+∠QOP , ∠B =∠QOP , ∴∠1=∠2, ∴△QAO ∽△OEP ,∴AQ EO =AOEP ,即AQ ·EP =EO ·AO , ∵OE ∥AP , ∴△OBE ∽△ABP , ∴OE AP =BE BP =BO BA =13,∴OE =13AP =1,BP =32EP ,∴AQ ·BP =AQ ·32EP =32AO ·OE =32×2×1=3.类型二 双点问题6.如图,在正方形ABCD 中,点E ,G 分别是边AD ,BC 的中点,AF =14AB .(1)求证:EF ⊥AG ;(2)若点F ,G 分别在射线AB ,BC 上同时向右、向上运动,点G 运动速度是点F 运动速度的2倍,EF ⊥AG 是否成立(只写结果,不需说明理由); (3)正方形ABCD 的边长为4,P 是正方形ABCD 内一点, 当S △P AB =S △OAB 时,求△P AB 周长的最小值.第6题图 备用图(1)证明:∵四边形ABCD 是正方形, ∴AD =AB =BC ,∠EAF =∠ABG =90°,∵点E ,G 分别是边AD ,BC 的中点,AF =14AB ,∴AE AB =12,AF BG =12, ∴AE AB =AF BG, 又∵∠EAF =∠ABC =90°, ∴△AEF ∽△BAG , ∴∠AEF =∠BAG , 又∵∠BAG +∠EAO =90°,∴∠AEF +∠EAO =90°, ∴∠EOA =90°,即EF ⊥AG ; (2)解:EF ⊥AG 仍然成立;(3)解:如解图,过点O 作MN ∥AB 分别交AD 、BC 于点M ,N ,连接P A ,第6题解图∵P 是正方形ABCD 内一点,S △P AB =S △OAB , ∴点P 在线段MN 上(不含端点),作点A 关于MN 的对称点A ′,连接BA ′交MN 于点P , 此时P A +PB =P A ′+PB =BA ′最小,即△P AB 的周长最小. ∵正方形ABCD 的边长为4,点E 为AD 的中点, ∴AE =12AD =2,又∵AF =14AB =1,∴EF =AE 2+AF 2=5,OA =AE ·AF EF =255,∵∠AMO =∠EOA ,∠EAO =∠EAO , ∴△EOA ∽△OMA , ∴AE OA =OAAM , ∴OA 2=AM ·AE , ∴AM =OA 2AE =25,∴A ′A =2AM =45,∴BA ′=A ′A 2+AB 2=4265, ∴△P AB 周长的最小值为4+4265. 7.如图①,在Rt △ABC 中,∠C =90°,AC =8 cm ,BC =6 cm ,点P 由B 出发沿BA 方向向点A 匀速运动,同时点Q 由A 出发沿AC 方向向点C 匀速运动,它们的速度均为2 cm/s.以AQ 、PQ 为边作平行四边形AQPD ,连接DQ ,交AB 于点E .设运动的时间为t (单位:s )(0<t ≤4),解答下列问题: (1)用含有t 的代数式表示AE =________; (2)如图②,当t 为何值时,四边形AQPD 为菱形;(3)在运动过程中,t 为何值时四边形AQPD 的面积最大,求出这个最大值.图① 图②第7题图解:(1)(5-t )cm ;【解法提示】∵在Rt △ABC 中,∠C =90°,AC =8 cm ,BC =6 cm ,∴由勾股定理得:AB =10 cm ,∵点P 由B 出发沿BA 方向向点A 匀速运动,速度为2 cm/s ,∴BP =2t cm ,∴AP =AB -BP =(10-2t )cm ,∵四边形AQPD 为平行四边形,∴AE =12AP =(5-t )cm.(2)如解图①,当四边形AQPD 是菱形时,DQ ⊥AP ,则cos ∠BAC =AE AQ =ACAB ,即5-t 2t =810,解得t =2513, ∴当t =2513时,四边形AQPD 是菱形;(3)如解图②,作PM ⊥AC 于点M ,设平行四边形AQPD 的面积为S .∴△APM ∽△ABC ,∴AP AB =PM BC ,即10-2t 10=PM 6,∴PM =65(5-t )cm , ∴S =AQ ·PM =2t ·65(5-t )=-125t 2+12t =-125(t -52)2+15(0<t ≤4),∵-125<0,∴当t =52时,S 有最大值,最大值为15 cm 2.图① 图②第7题解图8.如图,在△ABC 中,AB =10 cm ,AC =8 cm ,BC =6 cm.如果点P 由B 出发沿BA 方向向点A 匀速运动,同时点Q 由A 出发沿AC 方向向点C 匀速运动,它们的速度均为2 cm/s.连接PQ ,设运动的时间为t (单位:s)(0≤t ≤4). (1)当t 为何值时,PQ ∥BC ;(2)设△AQP 的面积为S (单位:cm 2),当t 为何值时,S 取得最大值,并求出最大值; (3)是否存在某时刻t ,使线段PQ 恰好把△ABC 的面积平分?若存在,求出此时t 的值;若不存在,请说明理由.第8题图 备用图解:(1)由题意知BP =2t cm ,AP =(10-2t ) cm ,AQ =2t cm ,∴△APQ ∽△ABC , ∴AP AB =AQ AC, 即10-2t 10=2t 8,解得t =209, 即当t 为209 s 时,PQ ∥BC ;(2)∵AB =10 cm ,AC =8 cm ,BC =6 cm , AB 2=AC 2+BC 2,∴△ABC 为直角三角形,∠C =90°, 如解图,过点P 作PD ⊥AC 于点D ,第8题解图则PD ∥BC , ∴△APD ∽△ABC , ∴AP AB =PD BC, ∴10-2t 10=PD 6,∴PD =35(10-2t ) cm ,∴S =12AQ ·PD =12·2t ·35(10-2t )=-65t 2+6t =-65(t -52)2+7.5,∵-65<0,∴当t =52s 时,S 有最大值,最大值是7.5 cm 2;(3)不存在.理由如下:假设存在某时刻t ,使线段PQ 恰好把△ABC 的面积平分,则S △AQP =12S △ABC ,即-65t 2+6t =12×12×8×6,整理得t 2-5t +10=0,∵b 2-4ac =(-5)2-4×10=-15<0, ∴此方程无解,即不存在某时刻t ,使线段PQ 恰好把△ABC 的面积平分.9.如图,在Rt △ABC 中,∠ACB =90°,AC =8,BC =6,CD ⊥AB 于点D .点P 从点D 出发,沿线段DC 向点C 运动,点Q 从点C 出发,沿线段CA 向点A 运动,两点同时出发,速度都为每秒1个单位长度,当点P 运动到C 时,两点都停止.设运动时间为t 秒. (1)①求线段CD 的长; ②求证:△CBD ∽△ABC ;(2)设△CPQ 的面积为S ,求S 与t 之间的函数关系式,并求出S 的最大值; (3)在运动过程中,t 为何值时△CPQ 为等腰三角形?请直接写出t 的值.第9题图 备用图(1)①解:∵∠ACB =90°,AC =8,BC =6, ∴AB =10, ∵CD ⊥AB ,∴S △ABC =12BC ·AC =12AB ·CD ,∴CD =BC ·AC AB =6×810=245,∴线段CD 的长为245;②证明:∵∠B =∠B ,∠CDB =∠BCA =90°, ∴△CBD ∽△ABC ;(2)解:如解图②,过点P 作PH ⊥AC ,垂足为H , 由题可知DP =t ,CQ =t , 则CP =245-t ,∵∠ACB =∠CDB =90°, ∴∠HCP =90°-∠DCB =∠B , ∵PH ⊥AC , ∴∠CHP =90°, ∴∠CHP =∠ACB , ∴△CHP ∽△BCA , ∴PH AC =PC AB , 即PH 8=245-t10, ∴PH =9625-45t ,∴S =12CQ ·PH =12t (9625-45t )=-25(t -125)2+288125,∵-25<0,∴当t =125时,S 最大=288125;(3)解:当t 的值为125秒或14455秒或2411秒时,△CPQ 为等腰三角形.【解法提示】①若CQ =CP ,如解图①,则t =245-t .解得:t =125;②若PQ =PC ,如解图②.∵PH ⊥QC ,∴QH =CH =12QC =t 2.∵△CHP ∽△BCA .∴CH BC =CP BA .即t 26=245-t10,解得t =14455;③若QC =QP ,如解图③,过点Q 作QE ⊥CP ,垂足为E ,同理可得:t =2411.综上所述:当t为125秒或14455秒或2411秒时,△CPQ为等腰三角形.图①图②图③第9题解图10.已知:如图,在矩形ABCD中,AB=6 cm,BC=8 cm,对角线AC,BD交于点O.点P从点A出发,沿AD方向匀速运动,速度为1 cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1 cm/s;当一个点停止运动时,另一个点也停止运动.连接PO 并延长,交BC于点E,过点Q作QF∥AC,交BD于点F.设运动时间为t(s)(0<t<6),解答下列问题:(1)当t为何值时,AP=PO;(2)设五边形OECQF的面积为S(cm2),试确定S与t的函数关系式;(3)当运动到某一时刻t,OD恰好平分∠COP,求出此时的t值.第10题图备用图解:(1)∵在矩形ABCD中,AB=6 cm,BC=8 cm,∠ABC=90°,∴AC=10 cm,AO=12AC=5 cm,如解图①,过点P作PM⊥AO,∵AP=PO=t,∴AM=12AO =52cm,∵∠PMA =∠ADC =90°,第10题解图①∠P AM =∠CAD , ∴△APM ∽△ACD , ∴AP AC =AMAD , 即t 10=528, 解得t =258,即t =258s 时,AP =PO ;(2)如解图②,过点O 作OH ⊥BC 于点H ,则OH =12CD = 12AB =3 cm.第10题解图②由矩形的性质可知∠PDO =∠EBO ,DO =BO , 在△DOP 和△BOE 中, ⎩⎪⎨⎪⎧∠PDO =∠EBOOD =OB∠DOP =∠BOE , ∴△DOP ≌△BOE (ASA),∴BE =PD =(8-t )cm ,则S △BOE =12BE ·OH =12×(8-t )×3=12-32t . ∵FQ ∥AC , ∴△DFQ ∽△DOC ,相似比为DQ DC =t 6, ∴S △DFQS △DOC =t 236, ∵S △DOC =14S 矩形ABCD =14×6×8=12 cm 2, ∴S △DFQ =12×t 236=t 23, ∴S 五边形OECQF =S △DBC -S △BOE -S △DFQ =12×6×8-(12-32t )-t 23=-13t 2+32t +12, ∴S 与t 的函数关系式为S =-13t 2+32t +12; (3)如解图③,过点D 作DM ⊥PE 于点M ,作DN ⊥AC 于点N ,第10题解图③易证△ADN ∽△ACD ,∴DN CD =AD AC ,即DN 6=810, ∴DN =245, ∵∠POD =∠COD ,∴DM =DN =245, ∴OM =ON =OD 2-DN 2=75, ∵S △POD =12OP ·DM ,S △POD =12PD ·12DC , ∴OP ·DM =3PD ,∴OP=5-58t,∴PM=185-5 8t,∵PD2=PM2+DM2,即(8-t)2=(185-58t)2+(245)2,解得t1=16(不合题意,舍去),t2=11239,∴当t=11239s时,OD平分∠COP.。
【中小学资料】中考数学专题复习 探索性问题复习学案 (新版)新人教版

探索性问题【学习目标】1.通过观察、类比、操作、猜想、探究等活动,了解探索性数学问题中的常见四大类型,并体会解题策略.2.能够根据相应的解题策略解决探索性问题.3.使学生会关注探索性数学问题,提高学生的解题能力. 【重点难点】重点:条件探索型、结论探索型、规律探索型的问题. 难点:对各探索型问题策略的理解. 【知识回顾】1._____.2. 观察下面的一列单项式:x ,22x -,34x ,48x -,…根据你发现的规律,第7个单项式为 ;第n 个单项式为 3. 观察算式:224135-=⨯; 225237-=⨯; 226339-=⨯ 2274311-=⨯;…………则第n (n 是正整数)个等式为________. 4.如图,在△ABC 中,AB =AC ,AD ⊥BC 于D . 由以上两个条件可得________.(写出一个结论)【综合运用】例1抛物线y =ax 2+bx +c 的部分图象如图所示,根据这个函数图象,你能得到关于该函21 D CB A数的那些性质和结论?例2(1)探究新知:如图①,已知△ABC与△ABD的面积相等,试探究AB与CD的位置关系,并说明理由.(2)结论应用:①如图②,点M,N在反比例函数kyx(k>0)的图象上,过点M作ME⊥y轴,过点N作NF⊥x轴,垂足分别为E,F.试探究MN与EF的位置关系.②若①中的其他条件不变,只改变点M,N的位置如图③所示,试探究MN与EF的位置【直击中考】1. 对一张矩形纸片ABCD进行折叠,具体操作如下:第一步:先对折,使AD与BC重合,得到折痕MN,展开;第二步:再一次折叠,使点A落在MN上的点A′处,并使折痕经过点B,得到折痕BE,同时,得到线段BA′,EA′,展开,如图1;第三步:再沿EA′所在的直线折叠,点B落在AD上的点B′处,得到折痕EF,同时得到线段B′F,展开,如图2.(1)证明:∠ABE=30°;(2)证明:四边形BFB′E为菱形.2. 已知点A(-1,-1)在抛物线y=(k2-1)x2-2(k-2)x+1上,(1)求抛物线的对称轴;(2)若B点与A点关于抛物线的对称轴对称,问是否存在与抛物线只交于一点B的直线?如果存在,求符合条件的直线;如果不存在,说明理由.【总结提升】1.请你画出本节课的知识结构图.2.通过本课复习你收获了什么?【课后作业】一、必做题:1、如图,坐标平面内一点A (2,-1),O 为原点,P 是x 轴上的一个动点,如果以点P 、O 、A 为顶点的三角形是等腰三角形,那么符合条件的动点P 的个数为( )A .2B .3C .4D .5 2、已知(x 1,y 1),(x 2,y 2)为反比例函数xky图象上的点,当x 1<x 2<0时,y 1<y 2,则k 的值可为___________.(只需写出符合条件的一个..k 的值)二、选做题:3、(2010.山东临沂)如图1,已知矩形ABED ,点C 是边DE 的中点,且AB =2AD. (1)判断△ABC 的形状,并说明理由;(2)保持图1中的△ABC 固定不变,绕点C 旋转DE 所在的直线MN 到图2中的位置(当垂线段AD 、BE 在直线MN 的同侧).试探究线段AD 、BE 、DE 长度之间有什么关系?并给予证明;(3)保持图2 中的△ABC 固定不变,继续绕点C 旋转DE 所在的直线MN 到图3中的位置(当垂线段AD 、BE 在直线MN 的异侧).试探究线段AD 、BE 、DE 长度之间有什么关系?并给予证明.探索性问题复习学案答案综合运用例1.对称轴是x = -1,开口向下,与y 轴交于(0,3)点等 例2. (1)证明:分别过点C ,D ,作CG ⊥AB ,DH ⊥AB , 垂足为G ,H ,则∠CGA =∠DHB =90°. ∴ CG ∥DH .∵ △ABC 与△ABD 的面积相等, ∴ CG =DH . ∴ 四边形CGHD 为平行四边形. ∴ AB ∥CD .(2)①证明:连结MF ,NE .设点M 的坐标为(x 1,y 1),点N 的坐标为(x 2,y 2). ∵ 点M ,N 在反比例函数(k >0)的图象上,∴∵ ME ⊥y 轴,NF ⊥x 轴, ∴ OE =y 1,OF =x 2.∴ S △EFM = 111122x y k = S △EFN = 221122x y k =∴S △EFM =S △EFN .由(1)中的结论可知:MN ∥EF . ② MN ∥EF . 直击中考1. 证明:(1)∵对折AD 与BC 重合,折痕是MN , ∴点M 是AB 的中点, ∴A ′是EF 的中点, ∵∠BA′E=∠A =90°, ∴BA ′垂直平分EF , ∴BE =BF ,∴∠A′BE =∠A′BF ,由翻折的性质,∠ABE =∠A′BE , ∴∠ABE =∠A′BE =∠A′BF , ∴∠ABE =×90°=30°;(2)∵沿EA ′所在的直线折叠,点B 落在AD 上的点B′处,∴BE=B′E,BF=B′F,∵BE=BF,∴BE=B′E=B′F=BF,∴四边形BFB′E为菱形.2. (1)把点A的坐标代入抛物线方程并解得k=-3或k=1. ∵k2-1≠0 ∴k=1舍去∴y=8x2+10x+1 ∴对称轴为x=5 8 -(2)设点B坐标为(a,b)∵点B与A(-1,-1)关于x=58-对称.∴a58-=58--(-1)得a=14-,b=-1∴点B坐标为(14-,-1)假设存在直线y=mx+n与抛物线y=8x2+10x+1只交于点B(14-,-1),则14-m+n=-1…………①又由解得8x2+(10-m)x+1-n=0∵直线与抛物线只交于一点,即上述方程的两根相等,∴△=0 即(10-m)2-32(1-n)=0…………②另一方面,当直线过B(14-,-1)且与y轴平行时,直线与抛物线只有一个交点,此直线为x=1 4 -综上,符合条件的直线存在,并且有两条,分别为y=6x+12和x=14-.课后作业必做题:1.C 2.略选做题:3. (1)△ABC为等腰直角三角形. 如图1,在矩形ABED中,∵点C是边DE的中点,且AB=2AD,∴AD=DC=CE=EB,DD=DE=90°,∴Rt△ADC≌Rt△BEC,∴AC=BC,∠1=∠2=45°,∴∠ACB=90°,∴△ABC为等腰直角三角形;(2)DE=AD+BE;如图2,在Rt△ADC和Rt△CEB中,∵∠1+∠CAD=90°,∠1+∠2=90°,∴∠CAD=∠2,又∵AC=CB,∠ADC=∠CEB=90°,∴Rt△ADC≌Rt△CEB,∴DC=BE,CE=AD,∴DC+CE=BE+AD,即DE=AD+BE;(3)DE=BE-AD.如图3,Rt△ADC和Rt△CEB中,∵∠1+∠CAD=90°,∠1+∠2=90°,∴∠CAD=∠2,又∵∠ADC=∠CEB=90°,AC=CB,∴Rt△ADC≌Rt△CEB,∴DC=BE,CE=AD,∴DC-CE=BE-AD,即DE=BE-AD.。
2020届中考数学专题复习测试题(专题一:动点探究)含答案

中考总复习专题一动点探究一、单动点1.(2015•成都)如图,在半径为5的⊙O中,弦AB=8,P是弦AB所对的优弧上的动点,连接AP,过点A 作AP的垂线交射线PB于点C,当△PAB是等腰三角形时,线段BC的长为8,或.解:①当BA=BP时,易得AB=BP=BC=8,即线段BC的长为8.②当AB=AP时,如图1,延长AO交PB于点D,过点O作OE⊥AB于点E,则AD⊥PB,AE=AB=4,∴BD=DP,在Rt△AEO中,AE=4,AO=5,∴OE=3,易得△AOE∽△ABD,∴,∴,∴,即PB=,∵AB=AP=8,∴∠ABD=∠P,∵∠PAC=∠ADB=90°,∴△ABD∽△CPA,∴,∴CP=,∴BC=CP﹣BP==;③当PA=PB时如图2,连接PO并延长,交AB于点F,过点C作CG⊥AB,交AB的延长线于点G,连接OB,则PF⊥AB,∴AF=FB=4,在Rt△OFB中,OB=5,FB=4,∴OF=3,∴FP=8,易得△PFB∽△CGB,∴,设BG=t,则CG=2t,易得∠PAF=∠ACG,∵∠AFP=∠AGC=90°,∴△APF∽△CAG,∴,∴,解得t=,在Rt△BCG中,BC=t=,答案为:8,,.2.(2015•连云港)已知如图,在平面直角坐标系xOy中,直线y=x﹣2与x轴、y轴分别交于A,B两点,P是直线AB上一动点,⊙P的半径为1.(1)判断原点O与⊙P的位置关系,并说明理由;(2)当⊙P过点B时,求⊙P被y轴所截得的劣弧的长;(3)当⊙P与x轴相切时,求出切点的坐标.解:(1)原点O在⊙P外.理由:∵直线y=x﹣2与x轴、y轴分别交于A,B两点,∴点A(2,0),点B(0,﹣2),在Rt△OAB中,tan∠OBA===,∴∠OBA=30°,如图1,过点O作OH⊥AB于点H,在Rt△OBH中,OH=OB•sin∠OBA=,∵>1,∴原点O在⊙P外;(2)如图2,当⊙P过点B时,点P在y轴右侧时,∵PB=PC,∴∠PCB=∠OBA=30°,∴⊙P被y轴所截的劣弧所对的圆心角为:180°﹣30°﹣30°=120°,∴弧长为:=;同理:当⊙P过点B时,点P在y轴左侧时,弧长同样为:;∴当⊙P过点B时,⊙P被y轴所截得的劣弧的长为:;(3)如图3,当⊙P与x轴相切时,且位于x轴下方时,设切点为D,在PD⊥x轴,∴PD∥y轴,∴∠APD=∠ABO=30°,∴在Rt△DAP中,AD=DP•tan∠DPA=1×tan30°=,∴OD=OA﹣AD=2﹣,∴此时点D的坐标为:(2﹣,0);当⊙P与x轴相切时,且位于x轴上方时,根据对称性可以求得此时切点的坐标为:(2+,0);综上可得:当⊙P与x轴相切时,切点的坐标为:(2﹣,0)或(2+,0).3.(2015•潍坊)如图,在平面直角坐标系中,抛物线y=mx2﹣8mx+4m+2(m>0)与y轴的交点为A,与x 轴的交点分别为B(x1,0),C(x2,0),且x2﹣x1=4,直线AD∥x轴,在x轴上有一动点E(t,0)过点E作平行于y轴的直线l与抛物线、直线AD的交点分别为P、Q.(1)求抛物线的解析式;(2)当0<t≤8时,求△APC面积的最大值;(3)当t>2时,是否存在点P,使以A、P、Q为顶点的三角形与△AOB相似?若存在,求出此时t的值;若不存在,请说明理由.解:(1)由题意知x1、x2是方程mx2﹣8mx+4m+2=0的两根,∴x1+x2=8,由解得:∴B(2,0)、C(6,0)则4m﹣16m+4m+2=0,解得:m=,∴该抛物线解析式为:y=;(2)可求得A(0,3)设直线AC的解析式为:y=kx+b,∵∴∴直线AC的解析式为:y=﹣x+3,要构成△APC,显然t≠6,分两种情况讨论:①当0<t<6时,设直线l与AC交点为F,则:F(t,﹣),∵P(t,),∴PF=,∴S△APC=S△APF+S△CPF===,此时最大值为:,②当6<t≤8时,设直线l与AC交点为M,则:M(t,﹣),∵P(t,),∴PM=,∴S△APC=S△APM﹣S△CPM===,当t=8时,取最大值,最大值为:12,综上可知,当0<t≤8时,△APC面积的最大值为12;(3)如图,连接AB,则△AOB中,∠AOB=90°,AO=3,BO=2,Q(t,3),P(t,),①当2<t<8时,AQ=t,PQ=,若:△AOB∽△AQP,则:,即:,∴t=0(舍),或t=,若△AOB∽△PQA,则:,即:,∴t=0(舍)或t=2(舍),②当t>8时,AQ′=t,PQ′=,若:△AOB∽△AQP,则:,即:,∴t=0(舍),或t=,若△AOB∽△PQA,则:,即:,∴t=0(舍)或t=14,∴t=或t=或t=144.(2015•铁岭)如图,在平面直角坐标系中,抛物线y=ax2+bx+与x轴交于A(﹣3,0),B(1,0)两点.与y轴交于点C,点D与点C关于抛物线的对称轴对称.(1)求抛物线的解析式,并直接写出点D的坐标;(2)如图1,点P从点A出发,以每秒1个单位长度的速度沿A→B匀速运动,到达点B时停止运动.以AP为边作等边△APQ(点Q在x轴上方),设点P在运动过程中,△APQ与四边形AOCD重叠部分的面积为S,点P的运动时间为t秒,求S与t之间的函数关系式;(3)如图2,连接AC,在第二象限内存在点M,使得以M、O、A为顶点的三角形与△AOC相似.请直接写出所有符合条件的点M坐标.解:(1)∵抛物线y=ax2+bx+经过A(﹣3,0),B(1,0)两点,∴,解得,∴抛物线解析式为y=﹣x2﹣x+;则D点坐标为(﹣2,).(2)∵点D与A横坐标相差1,纵坐标之差为,则tan∠DAP=,∴∠DAP=60°,又∵△APQ为等边三角形,∴点Q始终在直线AD上运动,当点Q与D重合时,由等边三角形的性质可知:AP=AD==2.①当0≤t≤2时,P在线段AO上,此时△APQ的面积即是△APQ与四边形AOCD的重叠面积.AP=t,∵∠QAP=60°,∴点Q的纵坐标为t•sin60°=t,∴S=×t×t=t2.②当2<t≤3时,如图1:此时点Q在AD的延长线上,点P在OA上,设QP与DC交于点H,∵DC∥AP,∴∠QDH=∠QAP=∠QHD=∠QPA=60°,∴△QDH是等边三角形,∴S=S△QAP﹣S△QDH,∵QA=t,∴S△QAP=t2.∵QD=t﹣2,∴S△QDH=(t﹣2)2,∴S=t2﹣(t﹣2)2=t﹣.图1③当3<t≤4时,如图2:此时点Q在AD的延长线上,点P在线段OB上,设QP与DC交于点E,与OC交于点F,过点Q作AP的垂涎,垂足为G,∵OP=t﹣3,∠FPO=60°,∴OF=OP•tan60°=(t﹣3),∴S△FOP=×(t﹣3)(t﹣3)=(t ﹣3)2,∵S=S△QAP﹣S△QDE﹣S△FOP,S△QAP﹣S△QDE=t﹣.∴S=t﹣﹣(t﹣3)2=﹣t2+4t﹣.综上所述,S与t之间的函数关系式为S=.图2图3图4(3)∵OC=,OA=3,OA⊥OC,则△OAC是含30°的直角三角形.①当△AMO以∠AMO为直角的直角三角形时;如图3:过点M2作AO的垂线,垂足为N,∵∠M2AO=30°,AO=3,∴M2O=,又∵∠OM2N=M2AO=30°,∴ON=OM2=,M2N=ON=,∴M2的坐标为(﹣,).同理可得M1的坐标为(﹣,).②当△AMO以∠OAM为直角的直角三角形时;如图4:∵以M、O、A为顶点的三角形与△OAC相似,∴=,或=,∵OA=3,∴AM=或AM=3,∵AM⊥OA,且点M在第二象限,∴点M的坐标为(﹣3,)或(﹣3,3).综上所述,符合条件的点M的所有可能的坐标为(﹣3,),(﹣3,3),(﹣,),(﹣,).5.(2015•绵阳)如图,在边长为2的正方形ABCD中,G是AD延长线时的一点,且DG=AD,动点M从A 点出发,以每秒1个单位的速度沿着A→C→G的路线向G点匀速运动(M不与A,G重合),设运动时间为t秒,连接BM并延长AG于N.(1)是否存在点M,使△ABM为等腰三角形?若存在,分析点M的位置;若不存在,请说明理由;(2)当点N在AD边上时,若BN⊥HN,NH交∠CDG的平分线于H,求证:BN=HN;(3)过点M分别作AB,AD的垂线,垂足分别为E,F,矩形AEMF与△ACG重叠部分的面积为S,求S 的最大值.(1)解:存在;当点M为AC的中点时,AM=BM,则△ABM为等腰三角形;当点M与点C重合时,AB=BM,则△ABM为等腰三角形;当点M在AC上,且AM=2时,AM=AB,则△ABM为等腰三角形;当点M为CG的中点时,AM=BM,则△ABM 为等腰三角形;(2)证明:在AB上截取AK=AN,连接KN;如图1所示:∵四边形ABCD是正方形,∴∠ADC=90°,AB=AD,∴∠CDG=90°,∵BK=AB﹣AK,ND=AD﹣AN,∴BK=DN,∵DH平分∠CDG,∴∠CDH=45°,∴∠NDH=90°+45°=135°,∴∠BKN=180°﹣∠AKN=135°,∴∠BKN=∠NDH,在Rt△ABN中,∠ABN+∠ANB=90°,又∵BN⊥NH,即∠BNH=90°,∴∠ANB+∠DNH=180°﹣∠BNH=90°,∴∠ABN=∠DNH,在△BNK和△NHD中,,∴△BNK≌△NHD(ASA),∴BN=NH;(3)解:①当M在AC上时,即0<t≤2时,△AMF为等腰直角三角形,∵AM=t,∴AF=FM=t,∴S=AF•FM=×t×t=t2;当t=2时,S的最大值=×(2)2=2;②当M在CG上时,即2<t<4时,如图2所示:CM=t﹣AC=t﹣2,MG=4﹣t,在△ACD和△GCD中,,∴△ACD≌△GCD(SAS),∴∠ACD=∠GCD=45°,∴∠ACM=∠ACD+∠GCD=90°,∴∠G=90°﹣∠GCD=45°,∴△MFG为等腰直角三角形,∴FG=MG•cos45°=(4﹣t)•=4﹣t,∴S=S△ACG﹣S△CMJ﹣S△FMG=×4×2﹣×CM×CM﹣×FG×FG=4﹣(t﹣2)2﹣(4﹣)2=﹣+4t﹣8=﹣(t﹣)2+,∴当t=时,S的最大值为.6.(2015•抚顺)已知,△ABC在平面直角坐标系中的位置如图①所示,A点坐标为(﹣6,0),B点坐标为(4,0),点D为BC的中点,点E为线段AB上一动点,连接DE经过点A、B、C三点的抛物线的解析式为y=ax2+bx+8.(1)求抛物线的解析式;(2)如图①,将△BDE以DE为轴翻折,点B的对称点为点G,当点G恰好落在抛物线的对称轴上时,求G 点的坐标;(3)如图②,当点E在线段AB上运动时,抛物线y=ax2+bx+8的对称轴上是否存在点F,使得以C、D、E、F为顶点的四边形为平行四边形?若存在,请直接写出点F的坐标;若不存在,请说明理由.解:(1)∵抛物线y=ax2+bx+8经过点A(﹣6,0),B(4,0),∴解得∴抛物线的解析式是:y=﹣x2﹣x+8.(2)如图①,作DM⊥抛物线的对称轴于点M,,设G点的坐标为(﹣1,n),由翻折的性质,可得BD=DG,∵B(4,0),C (0,8),点D为BC的中点,∴点D的坐标是(2,4),∴点M的坐标是(﹣1,4),DM=2﹣(﹣1)=3,∵B(4,0),C(0,8),∴BC==4,∴,在Rt△GDM中,32+(4﹣n)2=20,解得n=4±,∴G点的坐标为(﹣1,4+)或(﹣1,4﹣).(3)抛物线y=ax2+bx+8的对称轴上存在点F,使得以C、D、E、F为顶点的四边形为平行四边形.①当CD∥EF,且点E在x轴的正半轴时,如图②,由(2),可得点D的坐标是(2,4),设点E的坐标是(c,0),点F的坐标是(﹣1,d),则解得∴点F的坐标是(﹣1,4),点E的坐标是(1,0).②当CD∥EF,且点E在x轴的负半轴时,如图③,由(2),可得点D的坐标是(2,4),设点E的坐标是(c,0),点F的坐标是(﹣1,d),则解得∴点F的坐标是(﹣1,﹣4),点E的坐标是(﹣3,0).③当CE∥DF时,如图④,,由(2),可得点D的坐标是(2,4),设点E的坐标是(c,0),点F的坐标是(﹣1,d),则解得∴点F的坐标是(﹣1,12),点E的坐标是(3,0).综上,可得抛物线y=ax2+bx+8的对称轴上存在点F,使得以C、D、E、F为顶点的四边形为平行四边形,点F的坐标是(﹣1,4)、(﹣1,﹣4)或(﹣1,12).二、双动点1.(2015•辽阳)如图,点A是双曲线y=﹣在第二象限分支上的一个动点,连接AO并延长交另一分支于点B,以AB为底作等腰△ABC,且∠ACB=120°,点C在第一象限,随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y=上运动,则k的值为()A.1 B.2 C.3 D.4解:连接CO,过点A作AD⊥x轴于点D,过点C作CE⊥x轴于点E,∵连接AO并延长交另一分支于点B,以AB为底作等腰△ABC,且∠ACB=120°,∴CO⊥AB,∠CAB=30°,则∠AOD+∠COE=90°,∵∠DAO+∠AOD=90°,∴∠DAO=∠COE,又∵∠ADO=∠CEO=90°,∴△AOD∽△OCE,∴===tan60°=,则=3,∵点A是双曲线y=﹣在第二象限分支上的一个动点,∴|xy|=AD•DO=×6=3,∴k=EC×EO=1,则EC×EO=2.选:B.2.(2015•衢州)如图,在△ABC中,AB=5,AC=9,S△ABC=,动点P从A点出发,沿射线AB方向以每秒5个单位的速度运动,动点Q从C点出发,以相同的速度在线段AC上由C向A运动,当Q点运动到A 点时,P、Q两点同时停止运动,以PQ为边作正方形PQEF(P、Q、E、F按逆时针排序),以CQ为边在AC上方作正方形QCGH.(1)求tanA的值;(2)设点P运动时间为t,正方形PQEF的面积为S,请探究S是否存在最小值?若存在,求出这个最小值,若不存在,请说明理由;(3)当t为何值时,正方形PQEF的某个顶点(Q点除外)落在正方形QCGH的边上,请直接写出t的值.解:(1)如图1,过点B作BM⊥AC于点M,∵AC=9,S△ABC=,∴AC•BM=,即×9•BM=,解得BM=3.由勾股定理,得AM===4,则tanA==;(2)存在.如图2,过点P作PN⊥AC于点N.依题意得AP=CQ=5t.∵tanA=,∴AN=4t,PN=3t.∴QN=AC﹣AN﹣CQ=9﹣9t.根据勾股定理得到:PN2+NQ2=PQ2,S正方形PQEF=PQ2=(3t)2+(9﹣9t)2=90t2﹣162t+81(0<t<).∵﹣==在t的取值范围之内,∴S最小值===;(3)①如图3,当点E在边HG上时,t1=;②如图4,当点F在边HG上时,t2=;③如图5,当点P边QH(或点E在QC上)时,t3=1④如图6,当点F边C上时,t4=3.(2015•大连)如图1,在△ABC中,∠C=90°,点D在AC上,且CD>DA,DA=2,点P,Q同时从点D 出发,以相同的速度分别沿射线DC、射线DA运动,过点Q作AC的垂线段QR,使QR=PQ,连接PR,当点Q到达点A时,点P,Q同时停止运动.设PQ=x,△PQR与△ABC重叠部分的面积为S,S关于x的函数图象如图2所示(其中0<x≤,<x≤m时,函数的解析式不同).(1)填空:n的值为;(2)求S关于x的函数关系式,并写出x的取值范围.解:(1)如图1,当x=时,△PQR与△ABC重叠部分的面积就是△PQR的面积,∵PQ=,QR=PQ,∴QR=,∴n=S=×()2=×=.(2)如图2,根据S关于x的函数图象,可得S关于x的函数表达式有两种情况:当0<x≤时,S=×PQ×RQ=x2,当点Q点运动到点A时,x=2AD=4,∴m=4.当<x≤4时,S=S△APF﹣S△AQE=AP•FG﹣AQ•EQ,AP=2+,AQ=2﹣,∵△AQE∽△AQ 1R1,,∴QE=,设FG=PG=a,∵△AGF∽△AQ1R1,,∴AG=2+﹣a,∴a=,∴S=S△APF﹣S△AQE=AP•FG﹣AQ•EQ=(2)(2)﹣(2﹣)•(2)=﹣x2+∴S=﹣x2+.综上,可得S=4.(2015•宿迁)已知:⊙O上两个定点A,B和两个动点C,D,AC与BD交于点E.(1)如图1,求证:EA•EC=EB•ED;(2)如图2,若=,AD是⊙O的直径,求证:AD•AC=2BD•BC;(3)如图3,若AC⊥BD,点O到AD的距离为2,求BC的长.(1)证明:∵∠EAD=∠EBC,∠BCE=∠ADE,∴△AED∽△BEC,∴,∴EA•EC=EB•ED;(2)证明:如图2,连接CD,OB交AC于点F∵B是弧AC的中点,∴∠BAC=∠ADB=∠ACB,且AF=CF=0.5AC.又∵AD为⊙O直径,∴∠ABC=90°,又∠CFB=90°.∴△CBF∽△ABD.∴,故CF•AD=BD•BC.∴AC•AD=2BD•BC;(3)解:如图3,连接AO并延长交⊙O于F,连接DF,∴AF为⊙O的直径,∴∠ADF=90°,过O作OH⊥AD于H,∴AH=DH,OH∥DF,∵AO=OF,∴DF=2OH=4,∵AC⊥BD,∴∠AEB=∠ADF=90°,∵∠ABD=∠F,∴△ABE∽△ADF,∴∠1=∠2,∴,∴BC=DF=4.5.(2015•荆门)如图,在矩形OABC中,OA=5,AB=4,点D为边AB上一点,将△BCD沿直线CD折叠,使点B恰好落在边OA上的点E处,分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系.(1)求OE的长及经过O,D,C三点抛物线的解析式;(2)一动点P从点C出发,沿CB以每秒2个单位长度的速度向点B运动,同时动点Q从E点出发,沿EC 以每秒1个单位长度的速度向点C运动,当点P到达点B时,两点同时停止运动,设运动时间为t秒,当t为何值时,DP=DQ;(3)若点N在(1)中抛物线的对称轴上,点M在抛物线上,是否存在这样的点M与点N,使M,N,C,E 为顶点的四边形是平行四边形?若存在,请求出M点坐标;若不存在,请说明理由.解:(1)∵CE=CB=5,CO=AB=4,∴在Rt△COE中,OE===3,设AD=m,则DE=BD=4﹣m,∵OE=3,∴AE=5﹣3=2,在Rt△ADE中,由勾股定理可得AD2+AE2=DE2,即m2+22=(4﹣m)2,解得m=,∴D(﹣,﹣5),∵C(﹣4,0),O(0,0),∴设过O、D、C三点的抛物线为y=ax(x+4),∴﹣5=﹣a(﹣+4),解得a=,∴抛物线解析式为y=x(x+4)=x2+x;(2)∵CP=2t,∴BP=5﹣2t,在Rt△DBP和Rt△DEQ中,,∴△DBP≌△DEQ(HL),∴BP=EQ,∴5﹣2t=t,∴t=;(3)∵抛物线的对称为直线x=﹣2,∴设N(﹣2,n),又由题意可知C(﹣4,0),E(0,﹣3),设M(m,y),①当EN为对角线,即四边形ECNM是平行四边形时,则线段EN的中点横坐标为=﹣1,线段CM中点横坐标为,∵EN,CM互相平分,∴=﹣1,解得m=2,又M点在抛物线上,∴y=×22+×2=16,∴M(2,16);②当EM为对角线,即ECMN是平行四边形时,则线段EM的中点横坐标为,线段CN中点横坐标为=﹣3,∵EN,CM互相平分,∴=﹣3,解得m=﹣6,又∵M点在抛物线上,∴y=×(﹣6)2+×(﹣6)=16,∴M(﹣6,16);③当CE为对角线,即四边形EMCN是平行四边形时,则M为抛物线的顶点,即M(﹣2,﹣).综上可知,存在满足条件的点M,其坐标为(2,16)或(﹣6,16)或(﹣2,﹣).三、面动探究1.(2015•青岛)已知,如图①,在▱ABCD中,AB=3cm,BC=5cm,AC⊥AB,△ACD沿AC的方向匀速平移得到△PNM,速度为1cm/s;同时,点Q从点C出发,沿CB方向匀速移动,速度为1cm/s,当△PNM停止平移时,点Q也停止移动,如图②,设移动时间为t(s)(0<t<4),连接PQ,MQ,MC,解答下列问题:(1)当t为何值时,PQ∥MN?(2)设△QMC的面积为y(cm2),求y与t之间的函数关系式;(3)是否存在某一时刻t,使S△QMC:S四边形ABQP=1:4?若存在,求出t的值;若不存在,请说明理由.(4)是否存在某一时刻t,使PQ⊥MQ?若存在,求出t的值;若不存在,请说明理由.解:(1)在Rt△ABC中,AC==4,由平移得MN∥AB,∵PQ∥MN,∴PQ∥AB,∴=,∴=,t=,(2)过点P作PD⊥BC于D,∵△CPD∽△CBA,∴=,∴=,∴PD=﹣t,∵PD∥BC,∴S△QMC=S△QPC,∴y=S△QMC=QC•PD=t(﹣t)=t﹣t2(0<t<4),(3)∵S△QMC:S四边形ABQP=1:4,∴S△QPC:S四边形ABQP=1:4,∴S△QPC:S△ABC=1:5,∴(t﹣t2):6=1:5,∴t=2,(4)若PQ⊥MQ,则∠PQM=∠PDQ,∵∠MPQ=∠PQD,∴△PDQ∽△MQP,∴=,∴PQ2=MP•DQ,∴PD 2+DQ2=MP•DQ,∵CD=,∴DQ=CD﹣CQ=﹣t=,∴()2+()2=5×,∴t1=0(舍去),t2=,∴t=时,PQ⊥MQ.2.(2015•徐州)如图,平面直角坐标系中,将含30°的三角尺的直角顶点C落在第二象限.其斜边两端点A、B分别落在x轴、y轴上,且AB=12cm(1)若OB=6cm.①求点C的坐标;②若点A向右滑动的距离与点B向上滑动的距离相等,求滑动的距离;(2)点C与点O的距离的最大值=12cm.解:(1)①过点C作y轴的垂线,垂足为D,如图1:在Rt△AOB中,AB=12,OB=6,则BC=6,∴∠BAO=30°,∠ABO=60°,又∵∠CBA=60°,∴∠CBD=60°,∠BCD=30°,∴BD=3,CD=3,所以点C的坐标为(﹣3,9);②设点A向右滑动的距离为x,根据题意得点B向上滑动的距离也为x,如图2:AO=12×cos∠BAO=12×cos30°=6.∴A'O=6﹣x,B'O=6+x,A'B'=AB=12在△A'O B'中,由勾股定理得,(6﹣x)2+(6+x)2=122,解得:x=6(﹣1),∴滑动的距离为6(﹣1);(2)设点C的坐标为(x,y),过C作CE⊥x轴,CD⊥y轴,垂足分别为E,D,如图3:则OE=﹣x,OD=y,∵∠ACE+∠BCE=90°,∠DCB+∠BCE=90°,∴∠ACE=∠DCB,又∵∠AEC=∠BDC=90°,∴△ACE∽△BCD,∴,即,∴y=﹣x,OC2=x2+y2=x2+(﹣x)2=4x2,∴取AB中点D,连接CD,OD,则CD与OD之和大于或等于CO,当且仅当C,D,O三点共线时取等号,此时CO=CD+OD=6+6=12,故答案为:12.第二问方法二:因角C与角O和为180度,所以角CAO与角CBO和为180度,故A,O,B,C四点共圆,且AB为圆的直径,故弦CO的最大值为12.3.(2015•深圳)如图1,水平放置一个三角板和一个量角器,三角板的边AB和量角器的直径DE在一条直线上,AB=BC=6cm,OD=3cm,开始的时候BD=1cm,现在三角板以2cm/s的速度向右移动.(1)当B与O重合的时候,求三角板运动的时间;(2)如图2,当AC与半圆相切时,求AD;(3)如图3,当AB和DE重合时,求证:CF2=CG•CE.(1)解:由题意可得:BO=4cm,t==2(s);(2)解:如图2,连接O与切点H,则OH⊥AC,又∵∠A=45°,∴AO=OH=3cm,∴AD=AO﹣DO=(3﹣3)cm;(3)证明:如图3,连接EF,∵OD=OF,∴∠ODF=∠OFD,∵DE为直径,∴∠ODF+∠DEF=90°,∠DEC=∠DEF+∠C EF=90°,∴∠CEF=∠ODF=∠OFD=∠CFG,又∵∠FCG=∠ECF,∴△CFG∽△CEF,∴=,∴CF2=CG•CE.4.(2015•温州)如图,点A和动点P在直线l上,点P关于点A的对称点为Q,以AQ为边作Rt△ABQ,使∠BAQ=90°,AQ:AB=3:4,作△ABQ的外接圆O.点C在点P右侧,PC=4,过点C作直线m⊥l,过点O作OD⊥m于点D,交AB右侧的圆弧于点E.在射线CD上取点F,使DF=CD,以DE,DF为邻边作矩形DEGF.设AQ=3x.(1)用关于x的代数式表示BQ,DF.(2)当点P在点A右侧时,若矩形DEGF的面积等于90,求AP的长.(3)在点P的整个运动过程中,①当AP为何值时,矩形DEGF是正方形?②作直线BG交⊙O于点N,若BN的弦心距为1,求AP的长(直接写出答案).解:(1)在Rt△ABQ中,∵AQ:AB=3:4,AQ=3x,∴AB=4x,∴BQ=5x,∵OD⊥m,m⊥l,∴OD∥l,∵OB=OQ,∴=2x,∴CD=2x,∴FD==3x;(2)∵AP=AQ=3x,PC=4,∴CQ=6x+4,作OM⊥AQ于点M(如图1),∴OM∥AB,∵⊙O是△ABQ的外接圆,∠BAQ=90°,∴点O是BQ的中点,∴QM=AM=x∴OD=MC=,∴OE=BQ=,∴ED=2x+4,S矩形DEGF=DF•DE=3x(2x+4)=90,解得:x1=﹣5(舍去),x2=3,∴AP=3x=9;(3)①若矩形DEGF是正方形,则ED=DF,I.点P在A点的右侧时(如图1)∴2x+4=3x,解得:x=4,∴AP=3x=12;II.点P在A点的左侧时,当点C在Q右侧,0<x<时(如图2),∵ED=4﹣7x,DF=3x,∴4﹣7x=3x,解得:x=,∴AP=;当≤x<时(如图3),∵ED=4﹣7x,DF=3x,∴4﹣7x=3x,解得:x=(舍去),当点C在Q的左侧时,即x≥(如图4),DE=7x﹣4,DF=3x,∴7x﹣4=3x,解得:x=1,∴AP=3,综上所述:当AP为12或或3时,矩形DEGF是正方形;②连接NQ,由点O到BN的弦心距为l,得NQ=2,当点N在AB的左侧时(如图5),过点B作BM⊥EG于点M,∵GM=x,BM=x,∴∠GBM=45°,∴BM∥AQ,∴AI=AB=4x,∴IQ=x,∴NQ==2,∴x=2,∴AP=6;当点N在AB的右侧时(如图6),过点B作BJ⊥GE于点J,∵GJ=x,BJ=4x,∴tan∠GBJ=,∴AI=16x,∴QI=19x,∴NQ==2,∴x=,∴AP=,综上所述:AP的长为6或。
【精品推荐】2020版中考数学总复习 第八章 专题拓展 8.3 实验操作型(试卷部分)课件

中线AD的取值范围是
;
(2)问题解决:
如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF.
求证:BE+CF>EF;
(3)问题拓展:
如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以C为顶点作一个70°角,角的
两边分别交AB,AD于E,F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.
图1
图3 问题解决 (1)请在图2中证明四边形AEFD是正方形;
图2 图4
(2)请在图4中判断NF与ND'的数量关系,并加以证明; (3)请在图4中证明△AEN是(3,4,5)型三角形; 探索发现 (4)在不添加字母的情况下,图4中还有哪些三角形是(3,4,5)型三角形?请找出并直接写出它们 的名称. 解析 (1)证明:∵四边形ABCD是矩形,∴∠D=∠DAE=90°. 由折叠知AE=AD,∠AEF=∠D=90°, (1分) ∴∠D=∠DAE=∠AEF=90°,∴四边形AEFD是矩形. (2分) ∵AE=AD,∴矩形AEFD是正方形. (3分) (2)NF=ND'. 证明:连接HN.由折叠知∠AD'H=∠D=90°,HF=HD=HD'. (4分)
以先求出BD的两个值,根据 AC = 3 ,再求出AC的两个值.
BD
3.(2017山西,22,12分)综合与实践 背景阅读 早在三千多年前,我国周朝数学家商高就提出:将一根直尺折成一个直角,如果勾等 于三,股等于四,那么弦就等于五,即“勾三,股四,弦五”.它被记载于我国古代数学著作《周髀 算经》中.为了方便,在本题中,我们把三边的比为3∶4∶5的三角形称为(3,4,5)型三角形.例如: 三边长分别为9,12,15或3 2 ,4 2 ,5 2 的三角形就是(3,4,5)型三角形.用矩形纸片按下面的操 作方法可以折出这种类型的三角形. 实践操作 如图1,在矩形纸片ABCD中,AD=8 cm,AB=12 cm. 第一步:如图2,将图1中的矩形纸片ABCD沿过点A的直线折叠,使点D落在AB上的点E处,折痕 为AF,再沿EF折叠,然后把纸片展平. 第二步:如图3,将图2中的矩形纸片再次折叠,使点D与点F重合,折痕为GH,然后展平,隐去AF. 第三步:如图4,将图3中的矩形纸片沿AH折叠,得到△AD'H,再沿AD'折叠,折痕为AM,AM与折痕 EF交于点N,然后展平.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
操作探究一.选择题1. (2019•黑龙江省绥化市•3分)如图,在正方形ABCD中,E、F是对角线AC上的两个动点,P是正方形四边上的任意一点,且AB=4,EF=2,设AE=x.当△PEF是等腰三角形时,下列关于P点个数的说法中,一定正确的是()①当x=0(即E、A两点重合)时,P点有6个②当0<x<42﹣2时,P点最多有9个③当P点有8个时,x=22﹣2④当△PEF是等边三角形时,P点有4个A.①③B.①④C.②④D.②③答案:B考点:正方形的性质,等腰三角形,等边三角形的判定。
解析:①当x=0(即E、A两点重合)时,如下图,分别以A、F为圆心,2为半径画圆,各2个P点,以AF为直径作圆,有2个P点,共6个,所以,①正确。
②当0<x<22时,P点最多有8个,故②错误。
2. (2019•河北省•3分)如图,在小正三角形组成的网格中,已有6个小正三角形涂黑,还需涂黑n个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则n的最小值为()A.10 B.6 C.3 D.2C.【解答】解:如图所示,n的最小值为3,3. (2019•河北省•2分)如图,若x为正整数,则表示﹣的值的点落在()A.段①B.段②C.段③D.段④B.解∵﹣=﹣=1﹣=又∵x为正整数,∴≤x<1故表示﹣的值的点落在②4. (2019•河北省•2分)对于题目:“如图1,平面上,正方形内有一长为12、宽为6的矩形,它可以在正方形的内部及边界通过移转(即平移或旋转)的方式,自由地从横放移转到竖放,求正方形边长的最小整数n.”甲、乙、丙作了自认为边长最小的正方形,先求出该边长x,再取最小整数n.甲:如图2,思路是当x为矩形对角线长时就可移转过去;结果取n=13.乙:如图3,思路是当x为矩形外接圆直径长时就可移转过去;结果取n=14.丙:如图4,思路是当x为矩形的长与宽之和的倍时就可移转过去;结果取n=13.下列正确的是()A.甲的思路错,他的n值对B.乙的思路和他的n值都对C.甲和丙的n值都对D.甲、乙的思路都错,而丙的思路对B.【解答】解:甲的思路正确,长方形对角线最长,只要对角线能通过就可以,但是计算错误,应为n=14;乙的思路与计算都正确;乙的思路与计算都错误,图示情况不是最长;三.解答题1.(2019•湖北省仙桃市•10分)已知△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,连接DB,D C.(1)如图①,当∠BAC=120°时,请直接写出线段AB,AC,AD之间满足的等量关系式:AB+AC =AD;(2)如图②,当∠BAC=90°时,试探究线段AB,AC,AD之间满足的等量关系,并证明你的结论;(3)如图③,若BC=5,BD=4,求的值.【分析】(1)在AD上截取AE=AB,连接BE,由条件可知△ABE和△BCD都是等边三角形,可证明△BED≌△BAC,可得DE=AC,则AB+AC=AD;(2)延长AB至点M,使BM=AC,连接DM,证明△MBD≌△ACD,可得MD=AD,证得AB+AC =;(3)延长AB至点N,使BN=AC,连接DN,证明△NBD≌△ACD,可得ND=AD,∠N=∠CAD,证△NAD∽△CBD,可得,可由AN=AB+AC,求出的值.【解答】解:(1)如图①在AD上截取AE=AB,连接BE,∵∠BAC=120°,∠BAC的平分线交⊙O于点D,∴∠DBC=∠DAC=60°,∠DCB=∠BAD=60°,∴△ABE和△BCD都是等边三角形,∴∠DBE=∠ABC,AB=BE,BC=BD,∴△BED≌△BAC(SAS),∴DE=AC,∴AD=AE+DE=AB+AC;故答案为:AB+AC=A D.(2)AB+AC=A D.理由如下:如图②,延长AB至点M,使BM=AC,连接DM,∵四边形ABDC内接于⊙O,∴∠MBD=∠ACD,∵∠BAD=∠CAD=45°,∴BD=CD,∴△MBD≌△ACD(SAS),∴MD=AD,∠M=∠CAD=45°,∴MD⊥A D.∴AM=,即AB+BM=,∴AB+AC=;(3)如图③,延长AB至点N,使BN=AC,连接DN,∵四边形ABDC内接于⊙O,∴∠NBD=∠ACD,∵∠BAD=∠CAD,∴BD=CD,∴△NBD≌△ACD(SAS),∴ND=AD,∠N=∠CAD,∴∠N=∠NAD=∠DBC=∠DCB,∴△NAD∽△CBD,∴,∴,又AN=AB+BN=AB+AC,BC=5,BD=4,∴=.【点评】本题属于圆的综合题,考查了圆周角定理,全等三角形的判定与性质,相似三角形的判定和性质,等边三角形的判定与性质等知识,解题的关键是正确作出辅助线解决问题.2.(2019•湖北省咸宁市•10分)定义:有一组邻边相等且对角互补的四边形叫做等补四边形.理解:(1)如图1,点A,B,C在⊙O上,∠ABC的平分线交⊙O于点D,连接AD,C D.求证:四边形ABCD是等补四边形;探究:(2)如图2,在等补四边形ABCD中,AB=AD,连接AC,AC是否平分∠BCD?请说明理由.运用:(3)如图3,在等补四边形ABCD中,AB=AD,其外角∠EAD的平分线交CD的延长线于点F,CD =10,AF=5,求DF的长.【分析】(1)由圆内接四边形互补可知∠A+∠C=180°,∠ABC+∠ADC=180°,再证AD=CD,即可根据等补四边形的定义得出结论;(2)过点A分别作AE⊥BC于点E,AF垂直CD的延长线于点F,证△ABE≌△ADF,得到AE=AF,根据角平分线的判定可得出结论;(3)连接AC,先证∠EAD=∠BCD,推出∠FCA=∠FAD,再证△ACF∽△DAF,利用相似三角形对应边的比相等可求出DF的长.【解答】解:(1)证明:∵四边形ABCD为圆内接四边形,∴∠A+∠C=180°,∠ABC+∠ADC=180°,∵BD平分∠ABC,∴∠ABD=∠CBD,∴,∴AD=CD,∴四边形ABCD是等补四边形;(2)AD平分∠BCD,理由如下:如图2,过点A分别作AE⊥BC于点E,AF垂直CD的延长线于点F,则∠AEB=∠AFD=90°,∵四边形ABCD是等补四边形,∴∠B+∠ADC=180°,又∠ADC+∠ADF=180°,∴∠B=∠ADF,∵AB=AD,∴△ABE≌△ADF(AAS),∴AE=AF,∴AC是∠BCF的平分线,即AC平分∠BCD;(3)如图3,连接AC,∵四边形ABCD是等补四边形,∴∠BAD+∠BCD=180°,又∠BAD+∠EAD=180°,∴∠EAD=∠BCD,∵AF平分∠EAD,∴∠FAD=∠EAD,由(2)知,AC平分∠BCD,∴∠FCA=∠BCD,∴∠FCA=∠FAD,又∠AFC=∠DFA,∴△ACF∽△DAF,∴,即,∴DF=5﹣5.【点评】本题考查了新定义等补四边形,圆的有关性质,全等三角形的判定与性质,角平分线的判定,相似三角形的判定与性质等,解题关键是要能够通过自主学习来进行探究,运用等.3.(2019•四川省广安市•12分)在△ABC中,已知D是BC边的中点,G是△ABC的重心,过G点的直线分别交AB 、AC 于点E 、F .(1)如图1.14,当EF ∥BC 时,求证:1=+AFCFAE BE ; (2)如图2.14,当EF 和BC 不平行,且点E 、F 分别在线段AB 、AC 上时,(1)中的结论是否成立?如果成立,请给出证明;如果不成立,请说明理由.(3)如图3.14,当点E 在AB 的延长线上或点F 在AC 的延长线上时,(1)中的结论是否成立?如果成立,请给出证明;如果不成立,请说明理由.解:(1)ΘG 是△ABC 重心,∴2=AG , ……………………1分 又ΘEF ∥BC ,21==∴AG DG AE BE ,21==AG DG AF CF ,……………………2分则12121=+=+AF CF AE BE . ……………………3分 (2)(1)中结论成立,理由如下: ……………………4分如图,过点A 作AN ∥BC 交EF 的延长线于点N , FE 、CB 的延长线相交于点M ,则AN BM AE BE =,ANCM AF CF =, ……………………5分 ∴AN CM BM AN CM AN BM AF CF AE BE +=+=+, ……………………6分 又ΘDM CD BM CM BM ++=+, 而D 是BC 的中点,即CD BD =,∴DM DM DM DM BD BM CM BM 2=+=++=+ ∴AN DM AF CF AE BE 2=+, 又Θ21==AG DG AN DM ,∴1212=⨯=+AF CF AE BE ,故结论成立; ……………………9分 (3)(1)中结论不成立,理由如下:……………………10分 当F 点与C 点重合时,E 为AB 中点,AE BE =,点F 在AC 的延长线上时,AE BE >,1>∴AE BE ,则1>+AFCFAE BE , ……………………11分 同理:当点E 在AB 的延长线上时,1>+AFCFAE BE , ∴结论不成立. ……………………12分备注:(2)问的证明中,直接使用梯形中位线定理并作出正确证明者,不扣分. 4. (2019•黑龙江省齐齐哈尔市•12分)综合与实践图1.14图2.14折纸是同学们喜欢的手工活动之一,通过折纸我们既可以得到许多美丽的图形,同时折纸的过程还蕴含着丰富的数学知识.折一折:把边长为4的正方形纸片ABCD对折,使边AB与CD重合,展开后得到折痕EF.如图①:点M为CF上一点,将正方形纸片ABCD沿直线DM折叠,使点C落在EF上的点N处,展开后连接DN,MN,AN,如图②(一)填一填,做一做:(1)图②中,∠CMD=.线段NF=(2)图②中,试判断△AND的形状,并给出证明.剪一剪、折一折:将图②中的△AND剪下来,将其沿直线GH折叠,使点A落在点A′处,分别得到图③、图④.(二)填一填(3)图③中阴影部分的周长为.(4)图③中,若∠A′GN=80°,则∠A′HD=°.(5)图③中的相似三角形(包括全等三角形)共有对;(6)如图④点A′落在边ND上,若=,则=(用含m,n的代数式表示).【分析】(1)由折叠的性质得,四边形CDEF是矩形,得出EF=CD,∠DEF=90°,DE=AE=AD,由折叠的性质得出DN=CD=2DE,MN=CM,得出∠EDN=60°,得出∠CDM=∠NDM=15°,EN=DN=2,因此∠CMD=75°,NF=EF﹣EN=4﹣2;(2)证明△AEN≌△DEN得出AN=DN,即可得出△AND是等边三角形;(3)由折叠的性质得出A′G=AG,A′H=AH,得出图③中阴影部分的周长=△ADN的周长=12;(4)由折叠的性质得出∠AGH=∠A′GH,∠AHG=∠A′HG,求出∠AGH=50°,得出∠AHG=∠A′HG =70°,即可得出结果;(5)证明△NGM∽△A′NM∽△DNH,即可得出结论;(6)设==a,则A'N=am,A'D=an,证明△A′GH∽△HA′D,得出==,设A'G=AG=x,A'H=AH=y,则GN=4﹣x,DH=4﹣y,得出==,解得:x=y,得出===.【解答】解:(1)由折叠的性质得,四边形CDEF是矩形,∴EF=CD,∠DEF=90°,DE=AE=AD,∵将正方形纸片ABCD沿直线DM折叠,使点C落在EF上的点N处,∴DN=CD=2DE,MN=CM,∴∠EDN=60°,∴∠CDM=∠NDM=15°,EN=DN=2,∴∠CMD=75°,NF=EF﹣EN=4﹣2;故答案为:75°,4﹣2;(2)△AND是等边三角形,理由如下:在△AEN与△DEN中,,∴△AEN≌△DEN(SAS),∴AN=DN,∵∠EDN=60°,∴△AND是等边三角形;(3)∵将图②中的△AND沿直线GH折叠,使点A落在点A′处,∴A′G=AG,A′H=AH,∴图③中阴影部分的周长=△ADN的周长=3×4=12;故答案为:12;(4)∵将图②中的△AND沿直线GH折叠,使点A落在点A′处,∴∠AGH=∠A′GH,∠AHG=∠A′HG,∵∠A′GN=80°,∴∠AGH=50°,∴∠AHG=∠A′HG=70°,∴∠A′HD=180°﹣70°﹣70°=40°;故答案为:40;(5)如图③,∵∠A=∠N=∠D=∠A′=60°,∠NMG=∠A′MN,∠A′NM=∠DNH,∴△NGM∽△A′NM∽△DNH,∵△AGH≌△A′GH∴图③中的相似三角形(包括全等三角形)共有4对,故答案为:4;(6)设==a,则A'N=am,A'D=an,∵∠N=∠D=∠A=∠A′=60°,∴∠NA′G+∠A′GN=∠NA′G+∠DA′H=120°,∴∠A′GN=∠DA′H,∴△A′GH∽△HA′D,∴==,设A'G=AG=x,A'H=AH=y,则GN=4﹣x,DH=4﹣y,∴==,解得:x=y,∴===;故答案为:.5.(2019•山东青岛•10分)问题提出:如图,图①是一张由三个边长为1的小正方形组成的“L”形纸片,图②是一张a×b的方格纸(a×b 的方格纸指边长分别为a,b的矩形,被分成a×b个边长为1的小正方形,其中a≥2,b≥2,且a,b 为正整数).把图①放置在图②中,使它恰好盖住图②中的三个小正方形,共有多少种不同的放置方法?问题探究:为探究规律,我们采用一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,最后得出一般性的结论.探究一:把图①放置在2×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图③,对于2×2的方格纸,要用图①盖住其中的三个小正方形,显然有4种不同的放置方法.探究二:把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图④,在3×2的方格纸中,共可以找到2个位置不同的2 2×方格,依据探究一的结论可知,把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有2×4=8种不同的放置方法.探究三:把图①放置在a×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图⑤,在a×2的方格纸中,共可以找到(a﹣1)个位置不同的2×2方格,依据探究一的结论可知,把图①放置在a×2的方格纸中,使它恰好盖住其中的三个小正方形,共有(4a﹣4)种不同的放置方法.探究四:把图①放置在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图⑥,在a×3的方格纸中,共可以找到(2a﹣2)个位置不同的2×2方格,依据探究一的结论可知,把图①放置在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有(8a﹣8)种不同的放置方法.……问题解决:把图①放置在a×b的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?(仿照前面的探究方法,写出解答过程,不需画图.)问题拓展:如图,图⑦是一个由4个棱长为1的小立方体构成的几何体,图⑧是一个长、宽、高分别为a,b,c (a≥2,b≥2,c≥2,且a,b,c是正整数)的长方体,被分成了a×b×c个棱长为1的小立方体.在图⑧的不同位置共可以找到8(a﹣1)(b﹣1)(c﹣1)个图⑦这样的几何体.【分析】对于图形的变化类的规律题,首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.【解答】解:探究三:根据探究二,a×2的方格纸中,共可以找到(a﹣1)个位置不同的2×2方格,根据探究一结论可知,每个2×2方格中有4种放置方法,所以在a×2的方格纸中,共可以找到(a﹣1)×4=(4a﹣4)种不同的放置方法;故答案为a﹣1,4a﹣4;探究四:与探究三相比,本题矩形的宽改变了,可以沿用上一问的思路:边长为a,有(a﹣1)条边长为2的线段,同理,边长为3,则有3﹣1=2条边长为2的线段,所以在a×3的方格中,可以找到2(a﹣1)=(2a﹣2)个位置不同的2×2方格,根据探究一,在在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有(2a﹣2)×4=(8a﹣8)种不同的放置方法.故答案为2a﹣2,8a﹣8;问题解决:在a×b的方格纸中,共可以找到(a﹣1)(b﹣1)个位置不同的2×2方格,依照探究一的结论可知,把图①放置在a×b的方格纸中,使它恰好盖住其中的三个小正方形,共有4(a﹣1)(b﹣1)种不同的放置方法;问题拓展:发现图⑦示是棱长为2的正方体中的一部分,利用前面的思路,这个长方体的长宽高分别为a、b、c,则分别可以找到(a﹣1)、(b﹣1)、(c﹣1)条边长为2的线段,所以在a×b×c的长方体共可以找到(a﹣1)(b﹣1)(c﹣1)位置不同的2×2×2的正方体,再根据探究一类比发现,每个2×2×2的正方体有8种放置方法,所以在a×b×c的长方体中共可以找到8(a﹣1)(b﹣1)(c﹣1)个图⑦这样的几何体;故答案为8(a﹣1)(b﹣1)(c﹣1).【点评】此题考查了平面图形的有规律变化,要求学生通过观察图形,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.6.(2019•山东威海•12分)(1)方法选择如图①,四边形ABCD是⊙O的内接四边形,连接AC,BD,AB=BC=A C.求证:BD=AD+C D.小颖认为可用截长法证明:在DB上截取DM=AD,连接AM…小军认为可用补短法证明:延长CD至点N,使得DN=AD…请你选择一种方法证明.(2)类比探究【探究1】如图②,四边形ABCD是⊙O的内接四边形,连接AC,BD,BC是⊙O的直径,AB=A C.试用等式表示线段AD,BD,CD之间的数量关系,井证明你的结论.【探究2】如图③,四边形ABCD是⊙O的内接四边形,连接AC,B D.若BC是⊙O的直径,∠ABC=30°,则线段AD,BD,CD之间的等量关系式是BD=CD+2AD.(3)拓展猜想如图④,四边形ABCD是⊙O的内接四边形,连接AC,B D.若BC是⊙O的直径,BC:AC:AB=a:b:c,则线段AD,BD,CD之间的等量关系式是BD=CD+AD.【分析】(1)方法选择:根据等边三角形的性质得到∠ACB=∠ABC=60°,如图①,在BD上截取DEMAD,连接AM,由圆周角定理得到∠ADB=∠ACB=60°,得到AM=AD,根据全等三角形的性质得到BM =CD,于是得到结论;(2)类比探究:如图②,由BC是⊙O的直径,得到∠BAC=90°,根据等腰直角三角形的性质得到∠ABC=∠ACB=45°,过A作AM⊥AD交BD于M,推出△ADM是等腰直角三角形,求得DM=AD 根据全等三角形的性质得到结论;【探究2】如图③,根据圆周角定理和三角形的内角和得到∠BAC=90°,∠ACB=60°,过A作AM⊥AD交BD于M,求得∠AMD=30°,根据直角三角形的性质得到MD=2AD,根据相似三角形的性质得到BM=CD,于是得到结论;(3)如图④,由BC是⊙O的直径,得到∠BAC=90°,过A作AM⊥AD交BD于M,求得∠MAD=90°,根据相似三角形的性质得到BM=CD,DM=AD,于是得到结论.【解答】解:(1)方法选择:∵AB=BC=AC,∴∠ACB=∠ABC=60°,如图①,在BD上截取DEMAD,连接AM,∵∠ADB=∠ACB=60°,∴△ADM是等边三角形,∴AM=AD,∵∠ABM=∠ACD,∵∠AMB=∠ADC=120°,∴△ABM≌△ACD(AAS),∴BM=CD,∴BD=BM+DM=CD+AD;(2)类比探究:如图②,∵BC是⊙O的直径,∴∠BAC=90°,∵AB=AC,∴∠ABC=∠ACB=45°,过A作AM⊥AD交BD于M,∵∠ADB=∠ACB=45°,∴△ADM是等腰直角三角形,∴AM=AD,∠AMD=45°,∴DM=AD,∴∠AMB=∠ADC=135°,∵∠ABM=∠ACD,∴△ABM≌△ACD(AAS),∴BM=CD,∴BD=BM+DM=CD+AD;【探究2】如图③,∵若BC是⊙O的直径,∠ABC=30°,∴∠BAC=90°,∠ACB=60°,过A作AM⊥AD交BD于M,∵∠ADB=∠ACB=60°,∴∠AMD=30°,∴MD=2AD,∵∠ABD=∠ACD,∠AMB=∠ADC=150°,∴△ABM∽△ACD,∴=,∴BM=CD,∴BD=BM+DM=CD+2AD;故答案为:BD=CD+2AD;(3)拓展猜想:BD=BM+DM=CD+AD;理由:如图④,∵若BC是⊙O的直径,∴∠BAC=90°,过A作AM⊥AD交BD于M,∴∠MAD=90°,∴∠BAM=∠DAC,∴△ABM∽△ACD,∴=,∴BM=CD,∵∠ADB=∠ACB,∠BAC=∠NAD=90°,∴△ADM∽△ACB,∴==,∴DM=AD,∴BD=BM+DM=CD+A D.故答案为:BD=CD+AD【点评】本题考查了圆周角定理,圆内接四边形的性质,相似三角形的判定和性质,等腰直角三角形的性质,等边三角形的性质,正确的作出辅助线是解题的关键.7 (2019湖北仙桃)6分)请仅用无刻度的直尺完成下列画图,不写画法,保留画图痕迹.(1)如图①,四边形ABCD中,AB=AD,∠B=∠D,画出四边形ABCD的对称轴m;(2)如图②,四边形ABCD中,AD∥BC,∠A=∠D,画出BC边的垂直平分线n.【分析】(1)连接AC,AC所在直线即为对称轴m.(2)延长BA,CD交于一点,连接AC,BC交于一点,连接两点获得垂直平分线n.【解答】解:(1)如图①,直线m即为所求(2)如图②,直线n即为所求【点评】本题考查了轴对称作图,根据全等关系可以确定点与点的对称关系,从而确定对称轴所在,即可画出直线.。