2.复数根与系数关系(有详细解答,适合周末补课复习)

合集下载

高二数学经典讲义之复数根与系数的关系-教师

高二数学经典讲义之复数根与系数的关系-教师
2.一元二次方程的系数含有虚数时,判别式失去了功能,运用韦达定理求解方法。
3.分类讨论是重要的思想方法。复数里也会有这样的题目,虚根、实根不同情况下,解的形式是不同的。
巩固练习
1.若 是方程 的一个解,那么 , 13
2. 是方程 的虚数根,且 ,则 _____
3.在复数集内分解因式:(1) _________
求:实数k的值。
解:
无解
, ,
, , (舍)
自我测试
1.在复数范围内解方程 ,解集是_______
2.已知 ,若方程 的一个根为 ,则 ______
3.已知一元二次方程 有实数根,则 _____
4.满足方程 的复数 有________个
5.方程 的两个根为 ,且 ,求实数 的值
6、已知:虚数(x-2)+yi(x、y )的模为 ,
3.已知复数 满足 且 ,则 ________ ,
4.方程 的解集是________
5.方程 的两根为__________
6.已知 是实系数方程 的根,则 ______
精解名题
例1.关于 的方程 的两根的模的和为 ,求实数 的值。
解:
(1)当 ,即 时,
,且
与 同号
由 得
(2)当 ,即 时, 与 为一对共轭复数,得

(1) ,即 ,
(2) ,
因每个方程的两根之和均为 ,故所求的和为
例4.关于 的方程 有实根,求 的取值范围。
解:设实根为 ,则 ,即
,得 ,
例5.对任意非零复数 ,定义集合 ,设 是方程
的一个根,试用例举法表示集合
解: 是 的根,则 或
当 时,
当 时,有
例6.设复数 是实系数方程 的根,又 为实数,求点 的轨迹。

衔接教材06 根与系数的关系(韦达定理)(解析版)

衔接教材06 根与系数的关系(韦达定理)(解析版)

2021-2022新高一 初高中衔接辅导课程 (解析版) 衔接教材06 根与系数的关系(韦达定理)知识点讲解1.一元二次方程的根我们知道,对于一元二次方程ax 2+bx +c =0(a ≠0),用配方法可以将其变形为2224()24b b acx a a -+= ①因为a ≠0,所以,4a 2>0.于是(1)当b 2-4ac >0时,方程①的右端是一个正数,因此,原方程有两个不相等的实数根x 1,2=2b a-±;(2)当b 2-4ac =0时,方程①的右端为零,因此,原方程有两个等的实数根x 1=x 2=-2b a; (3)当b 2-4ac <0时,方程①的右端是一个负数,而方程①的左边2()2b x a+一定大于或等于零,因此,原方程没有实数根.由此可知,一元二次方程ax 2+bx +c =0(a ≠0)的根的情况可以由b 2-4ac 来判定,我们把b 2-4ac 叫做一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式,通常用符号“Δ”来表示. 综上所述,对于一元二次方程ax 2+bx +c =0(a ≠0),有(1)当Δ>0时,方程有两个不相等的实数根x 1,2(2)当Δ=0时,方程有两个相等的实数根x 1=x 2=-2ba;(3)当Δ<0时,方程没有实数根.2.一元二次方程的根与系数的关系若一元二次方程ax 2+bx +c =0(a ≠0)有两个实数根1x =,2x =,则有1222b b b bx x a a-+--+=+==-;221222(4)444b b ac ac c x x a a a--====. 所以,一元二次方程的根与系数之间存在下列关系:如果ax 2+bx +c =0(a ≠0)的两根分别是x 1,x 2,那么x 1+x 2=b a -,x 1·x 2=ca.这一关系也被称为韦达定理.特别地,对于二次项系数为1的一元二次方程x 2+px +q =0,若x 1,x 2是其两根,由韦达定理可知x 1+x 2=-p ,x 1·x 2=q ,即p =-(x 1+x 2),q =x 1·x 2,所以,方程x 2+px +q =0可化为 x 2-(x 1+x 2)x +x 1·x 2=0,由于x 1,x 2是一元二次方程x 2+px +q =0的两根,所以,x 1,x 2也是一元二次方程x 2-(x 1+x 2)x +x 1·x 2=0.因此有以两个数x 1,x 2为根的一元二次方程(二次项系数为1)是x 2-(x 1+x 2)x +x 1·x 2=0.3. 一元二次方程的两根之差的绝对值是一个重要的量,今后我们经常会遇到求这一个量的问题,为了解题简便,我们可以探讨出其一般规律:设x 1和x 2分别是一元二次方程ax 2+bx +c =0(a ≠0),则1x =,2x =,∴| x 1-x 2|=||||a a ==. 于是有下面的结论:若x 1和x 2分别是一元二次方程ax 2+bx +c =0(a ≠0),则| x 1-x 2|=||a (其中Δ=b 2-4ac ). 今后,在求一元二次方程的两根之差的绝对值时,可以直接利用上面的结论.经典例题解析例1 判定下列关于x 的方程的根的情况(其中a 为常数),如果方程有实数根,写出方程的实数根.(1)x 2-3x +3=0; (2)x 2-ax -1=0; (3) x 2-ax +(a -1)=0; (4)x 2-2x +a =0. 解:(1)∵Δ=32-4×1×3=-3<0,∴方程没有实数根. (2)该方程的根的判别式Δ=a 2-4×1×(-1)=a 2+4>0,所以方程一定有两个不等的实数根1x =, 2x = (3)由于该方程的根的判别式为Δ=a 2-4×1×(a -1)=a 2-4a +4=(a -2)2,所以,①当a =2时,Δ=0,所以方程有两个相等的实数根 x 1=x 2=1;②当a ≠2时,Δ>0, 所以方程有两个不相等的实数根 x 1=1,x 2=a -1.(3)由于该方程的根的判别式为Δ=22-4×1×a =4-4a =4(1-a ),所以①当Δ>0,即4(1-a ) >0,即a <1时,方程有两个不相等的实数根11x = 21x = ②当Δ=0,即a =1时,方程有两个相等的实数根 x 1=x 2=1; ③当Δ<0,即a >1时,方程没有实数根.说明:在第3,4小题中,方程的根的判别式的符号随着a 的取值的变化而变化,于是,在解题过程中,需要对a 的取值情况进行讨论,这一方法叫做分类讨论.分类讨论这一思想方法是高中数学中一个非常重要的方法,在今后的解题中会经常地运用这一方法来解决问题.例2 已知方程2560x kx +-=的一个根是2,求它的另一个根及k 的值.分析:由于已知了方程的一个根,可以直接将这一根代入,求出k 的值,再由方程解出另一个根.但由于我们学习了韦达定理,又可以利用韦达定理来解题,即由于已知了方程的一个根及方程的二次项系数和常数项,于是可以利用两根之积求出方程的另一个根,再由两根之和求出k 的值. 解法一:∵2是方程的一个根,∴5×22+k ×2-6=0,∴k =-7.所以,方程就为5x 2-7x -6=0,解得x 1=2,x 2=-35. 所以,方程的另一个根为-35,k 的值为-7. 解法二:设方程的另一个根为x 1,则 2x 1=-65,∴x 1=-35.由 (-35)+2=-5k ,得 k =-7.所以,方程的另一个根为-35,k 的值为-7. 例3 已知关于x 的方程x 2+2(m -2)x +m 2+4=0有两个实数根,并且这两个实数根的平方和比两个根的积大21,求m 的值.分析: 本题可以利用韦达定理,由实数根的平方和比两个根的积大21得到关于m 的方程,从而解得m 的值.但在解题中需要特别注意的是,由于所给的方程有两个实数根,因此,其根的判别式应大于零. 解:设x 1,x 2是方程的两根,由韦达定理,得 x 1+x 2=-2(m -2),x 1·x 2=m 2+4.∵x 12+x 22-x 1·x 2=21, ∴(x 1+x 2)2-3 x 1·x 2=21,即 [-2(m -2)]2-3(m 2+4)=21,化简,得 m 2-16m -17=0, 解得 m =-1,或m =17.当m =-1时,方程为x 2+6x +5=0,Δ>0,满足题意; 当m =17时,方程为x 2+30x +293=0,Δ=302-4×1×293<0,不合题意,舍去.综上,m =17. 说明:(1)在本题的解题过程中,也可以先研究满足方程有两个实数根所对应的m 的范围,然后再由“两个实数根的平方和比两个根的积大21”求出m 的值,取满足条件的m 的值即可。

初中根与系数的关系复习题 附答案

初中根与系数的关系复习题  附答案

10.已知关于 x 的方程(m-2)x2-(m-1)x+m=0. (1)请你选取一个合适的整数 m,使方程有两个有理数根,并求出这两个根; (2)当 m>0,且 m2-2m<0 时,讨论方程的实数根的情况.
11.(2013•平谷区一模)已知关于 m 的一元二次方程 2x2+mx-1=0. (1)判定方程根的情况; (2)设 m 为整数,方程的两个根都大于 -1 且小于
b a a b
3 ,那么它的另一个根是为
3
是关于 x 的方程 x2-4x+c=0 的一个根,则 c 的值是
7.已知关于 x 的方程 2x2-mx-6=0 的一个根 2,则 m=
,另一个根为
8.若 x1,x2 是方程 3x2-|x|-4=0 的两根,则
x1 x 2 1 的值 x1 x 2
9.方程 x2-3x+1=0 中的两根分别为 a 、b,则代数式 a 2-4 a -b 的值为
2
2
18.已知 x1,x2 是方程 x2-2x-2=0 的两实数根,不解方程求下列各式的值: (1)
2 2 x1 x 2

(2)
1 1 x1 x 2
19. 已知关于 x 的方程 x
2
x2 的积是两根和的两倍, ①求 m 的值; (2m 3) x m 2 6 0 的两根 ,求 a b 的值.
23.要在一个长 10m,宽 8m 的院子中沿三边辟出宽度相等的花圃,使花圃的面积等于院子面积的 30%, 试求这花圃的宽度.
24.某电热器经过两次降价后,利润由 20 元降到 5 元,已知降价前该产品的利润率是 25%,解答下列问 题: (1)求这种电热器的进价; (2)求经过两次降价后的售价; (3)求每次降价的平均降价率?(精确到 1%)

复数-解析版(一轮复习讲义)

复数-解析版(一轮复习讲义)

复数复数的概念和基本运算【知识精讲】 1 复数的定义1) 概念:设i 为方程21x =-的根,i 称为虚数单位,由i 与实数进行加、减、乘、除运算,便产生形如bi a +(,a b R ∈)的数叫做复数,全体复数所成的集合C 叫做复数集。

复数通常用字母z 表示,即bi a z +=(,a b R ∈),其中a 称作实部记作()Re z ,b 称为虚部记作()Im z ,bi a z +=(,a b R ∈)称为代数形式,它是由实部、虚部和虚数单位三部分组成. 2)虚数单位的性质i 叫做虚数单位,并规定:① i 可与实数进行四则运算;② 12-=i ;这样方程12-=x 就有解了,解为i x =或i x -=3)复数的定义要注意以下几点:○1bi a z +=(,a b R ∈)被称为复数的代数形式,其中bi 表示b 与虚数单位i 相乘○2数的实部和虚部都是实数,否则不是代数形式 4)复数相等复数a bi +与c di +(),,,a b c d R ∈相等,当且仅当a cb d=⎧⎨=⎩,记作a bi c di +=+.2 复数的分类对于复数a bi +(,a b R ∈),当且仅当0b =时,它是实数;当且仅当0a b ==时,它是实数0;当0b ≠时,它叫做虚数,当0a =且0b ≠时,它叫做纯虚数. 显然,实数集R ,是复数集C 的真子集,即C R ≠⊂.3 复数的几何意义复数bi a z +=与复平面内的点),(b a Z 及平面向量(,)OZ a b =),(R b a ∈是一一对应关系(复数的实质是有序实数对,有序实数对既可以表示一个点,也可以表示一个平面向量) 相等的向量表示同一个复数 4 复数的模向量→OZ 的模叫做复数bi a z +=的模,记作z 或bi a +,表示点),(b a 到原点的距离,即=z 22b a bi a +=+,z z =若bi a z +=1,di c z +=2,则21z z -表示),(b a 到),(d c 的距离,即2221)()(d b c a z z -+-=-5.复数的其他形式(1)复数的三角形式:设z 对应复平面内的点Z ,连接OZ ,设xOZ θ∠=,OZ r =,则cos ,sin a r b r θθ==,所以()cos sin z r i θθ=+,这种形式称为三角形式.则θ称为的辐角.若02θπ≤<,则θ称为z 的辐角主值,记作()arg z θ=,r 称为z 的模,也记作z ,由勾股定理可知z =(2)复数的指数形式:,0,i z e r R θθ=≥∈(3)复数的向量形式:()(),,z a b a b R =∈,复数的向量形式可以很好体现复数的几何意义. 6.共轭复数:若bi a z +=(,a b R ∈),则z a bi =-称为z 的共轭复数. 性质:(1)1212z z z z ±=± (2) 1212z z z z ⋅=⋅ (3)22z z z z ⋅==(4)1122z z z z ⎛⎫= ⎪⎝⎭(5)1212z z z z ⋅=⋅(6)1122z z z z = (7)121212z z z z z z -≤±≤+ (8)222212121222z z z z z z ++-=+(9)若1,z =则1z z=.7.复数的运算(1)加法运算:两个复数,a bi c di ++的和定义为()()()()a bi c di a c b d i +++=+++两个复数相加,实部和实部相加的结果为实部,虚部和虚部相加的结果为虚部. (2)乘法运算:两个复数,a bi c di ++的和定义为()()()()a bi c di ac bd ad bc i ++=-++两个复数相加乘,可以参照多项式乘法相乘,最后合并同类项.(3)减法运算:给定两个复数12,z z ,满足条件12z z z +=的复数z 叫做复数2z 减去1z 的差,记作21z z z =-.(4)除法运算:给定两个复数12,z z ,且10z ≠,满足条件12z z z =的复数z 叫做复数2z 除以去1z 的商,记作21z z z =. 设()12,,,,,z a bi z c di a b c d R =+=+∈,则()()()()()1222a bi c di ac bd bc ad iz a bi z z c di c di c di c d+-++-+====++-+ (5)开方运算:给定复数1z ,满足条件1nz z =的复数z 叫做复数1z 的n 次方根. 注解:一个不为0的复数z ,有n 个不同的n 次方根.任意一元n 次方程有n 个复数根.(6)按向量形式,加减法满足平行四边形和三角形法则.(7)按照三角形式,若()()11112222cos sin ,cos sin z r z r θθθθ=+=+,则()()12121212cos sin z z rr i θθθθ⋅=+++⎡⎤⎣⎦如20z ≠,则()()11121222cos sin z r i z r θθθθ=-+-⎡⎤⎣⎦ 8. 隶莫弗定理:()()cos sin cos sin nnr i rn i n θθθθ+=+⎡⎤⎣⎦9.开方:若()cos sin nz r i θθ=+,则22cos sin k k z i n n θπθπ++⎫=+⎪⎭,其中()0,1,2,,1k n =⋅⋅⋅-.10.实系数方程虚根成对定理:实系数一元n 次方程的虚根成对出现,即若z a bi =+是方程的一个根,则z a bi =-也是一个根.11.几个常用结论在复平面上的点1234,,,Z Z Z Z 对应的复数分别为1234,,,z z z z ,则 (1)()()1233212cos sin Z Z Z z z z z r i θθθ∠=⇔-=-⋅± (2)()43123421//z z Z Z Z Z k k R z z -⇔=∈-(3)()43123421z z Z Z Z Z ki k R z z -⊥⇔=∈-(4) 123,,Z Z Z 三点共线3121z z R z z -⇔∈- (5)123Z Z Z 的重心对应的复数为1233z z z ++ 12.复数表示的轨迹方程在复平面上的点12,Z Z 对应的复数分别为12,z z ,则 (1)1221Z Z z z =-表示复平面上12,Z Z 两点之间的距离; (2) 1z z r -=表示以1Z 为圆心,r 为半径的圆的方程; (3) ()1212+22z z z z a z z a --=-<表示椭圆; (4) ()1212+22z z z z a z z a --=-=表示线段; (5) ()121222z z z z a z z a ---=->表示双曲线; (6) ()121222z z z z a z z a ---=-=表示两条射线; (4) 12=z z z z --表示垂直平分线方程;13. 在复平面上的点123,,Z Z Z 对应的复数分别为123,,z z z ,则123Z Z Z 的面积为()1231223311Im 2Z Z Z Sz z z z z z =++ 【典型例题】 例1.已知复数i1iz =+,则它的共轭复数z =( ) A .1i2+ B .1i2- C .1i + D .1i -【答案】B【分析】利用复数的除法运算化简复数z ,再由共轭复数的定义即可求解.【解】因为i i(1i)1i =1i (1i)(1i)2z -+==++-,所以1i 2z -=,故选:B. 例2.已知复数z 满足()()2i 2i 1i z +=+-,则复数z 在复平面内对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】D【分析】本题首先可根据复数的乘法运算得出33i z =-,然后根据复数z 在复平面内对应的点为()3,3-即可得出结果.【解】()()2i 2i 1i z +=+-,即()()22i 1i 2i 22i i i 2i 33i z =+-=-+-=---,则复数z 在复平面内对应的点为()3,3-,在第四象限,故选:D.例3.欧拉恒等式:π10i e +=被数学家们惊叹为“上帝创造的等式”.该等式将数学中几个重要的数:自然对数的底数e 、圆周率π、虚数单位i 、自然数1和0完美地结合在一起,它是在欧拉公式:()cos sin i e i R θθθθ=+∈中,令πθ=得到的.根据欧拉公式,4i e 复平面内对应的点在( ). A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】C【分析】直接利用欧拉公式化简求解,结合三角函数值的符号,即可判定复数对应的点所在的象限,得到答案.【解】由题意,欧拉公式()cos sin i e i R θθθθ=+∈,可得4cos 4sin 4i e i =+,因为cos 40,sin 40<<,所以4i e 复平面内对应的点(cos 4,sin 4)在第三象限.故选:C.【变式3-1】(不定项选择题)欧拉公式i cos isin x e x x =+其中i 为虚数单位,)x R ∈是由瑞士著名数学家欧拉创立的,该公式将指数函数的定义域扩大到复数,建立了三角函数与指数函数的关联,在复变函数论里面占有非常重要的地位.依据欧拉公式,下列选项正确的是( )A .i422e π=- B .i2e π为纯虚数C .复数i x e 的模长等于1D .i3e π的共轭复数为12-i【答案】BCD【分析】由i cos isin x e x x =+,将所求复数化为()i ,z a b a R b R =+∈∈的形式,进而逐项判断可得其正误.【解】对A ,因为icos isin x e x x =+(其中i 为虚数单位,x ∈R ),所以i4e π=,故A 错;对B ,i 2i e π=为纯虚数,故B 正确;对C ,复数i x e 1=,故C 正确;对D ,i312e π=+其共轭复数为12-,故D 正确. 故选:BCD .【变式3-2】欧拉公式i cos isin x x x e =+(其中i 为虚数单位)是由著名数学家欧拉发现的,即当π3x =时,πi 3πcos isin 3π3e ⋅=+,根据欧拉公式,若将2021πi e ⋅所表示的复数记为z ,则将复数1iz+表示成三角形式为________.3π3πcos sin 44i ⎫+⎪⎝⎭【分析】根据欧拉公式i cos isin x x x e =+,先求出2021πi e ⋅,再进行复数的除法运算,最后再表示为三角形式.【解】因为2021πi e cos 2021πsin 2021π1i =+=-,所以13π3πcos sin 1+1244z i i i -⎫==+⎪+⎝⎭.故答案为:3π3πcos sin 244i ⎫+⎪⎝⎭【变式3-3】已知i cos isin x x x e =+,则2022i e 对应的点位于复平面的第________象限. 【答案】四【分析】根据题意得2022i cos 2022isin 2022e =+,结合2022是第四象限角,判断出cos 20220,sin 20220><,即可求出结果.【解】由题意得2022i cos 2022isin 2022e =+,因为2022是第四象限角,所以cos 20220,sin 20220><,而2022i cos 2022isin 2022e =+对应的点是()cos2022,sin 2022在第四象限,故答案为:四.例4.如图,在复平面内,复数12,z z 对应的向量分别是,OA OB ,则复数12z z -对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】C【分析】先根据图形求出,OA OB ,进而得到122i,i z z =--=,结合复数的减法运算即可求出12z z -,从而求得所对应的点所在的象限.【解】由图可知()()2,1,0,1OA OB =--=,所以122i,i z z =--=,因此122i i=22i z z -=-----,所以12z z -在复平面内所对应的点为()2,2--,在第三象限,故选:C.例5.已知z 是关于x 的方程20x x a ++=的根,且z =则实数a =( )A .B .5-C .5D 【答案】C【分析】根据共轭复数的性质得出25z z z ⋅==,结合根与系数的关系得出实数a 的值. 【解】实系数一元二次方程的虚根共轭成对出现,25z z z ⋅==,∴5a =.故选:C【变式5-1】若1i +是关于x 的实系数方程20x bx c ++=的一个复数根,则c =______. 【答案】2【分析】根据实系数方程的虚数根成对出现的性质得出另一根,然后由韦达定理得结论. 【解】因为1i +是关于x 的实系数方程20x bx c ++=的一个复数根,所以1i -也是方程的根,所以(1i)(1i)2c =+-=.故答案为:2.例6.若复数z 满足1i 3z -+=,则复数z 对应的点的轨迹围成图形的面积等于( ) A .3 B .9C .6πD .9π【答案】D【分析】利用复数的几何意义,即可判断轨迹图形,再求面积.【解】复数z 满足()13z i --=,表示复数z 对应的点的轨迹是以点()1,1-为圆心,半径为3的圆,所以围成图形的面积等于239S ππ=⨯=.故选:D【变式6-1】已知复数z 1,z 2满足|z 1|=1,|z 2|=5,则|z 1-z 2|的最小值是________. 【答案】4【分析】由题意画出图形,数形结合得答案. 【解】由1||1z =,2||5z =,可得1z ,2z 所对应点的轨迹分别为以原点为圆心,以1和5为半径的圆,12||z z -的几何意义为两圆上点的距离,由图可知,最小值为514-=.故答案为:4.【变式6-2】复数012i z =-,3z =,则0z z -的最大值是_____.【答案】【分析】设()i ,z a b a b R =+∈根据已知条件可得复数z 对应的点的轨迹,再利用复数模的几何意义即可求解.【解】设()i ,z a b a b R =+∈,则229a b +=,所以复数z 对应的点(),Z a b 的轨迹为以()0,0为圆心,3r =为半径的圆,即圆229x y +=,()()012i z z a b -=-++,0z z -=表示点(),a b 到点()1,2M -的距离,所以0z z -的最大值是33r OM +=+=+.故答案为:【变式6-3】18世纪末,挪威测量学家维塞尔首次利用坐标平面上的点来表示复数,使复数及其运算具有了几何意义,例如||||z OZ =,也即复数z 的模的几何意义为z 对应的点Z 到原点的距离.已知复数z 满足||1z =,i 为虚数单位,则|34i |z --的最小值为________. 【答案】4【分析】令i z x y =+且,x y R ∈,根据复数模的几何意义可知|34i |z --表示(3,4)与圆221x y +=上的点的距离,即可求其最小值.【解】若i z x y =+且,x y R ∈,由题意知:221x y +=即为圆心为(0,0)半径为1的圆, ∵|34i |z --的几何意义:圆221x y +=上的点到点(3,4)的距离, ∴|34i |z --的最小值为圆心(0,0)与(3,4)的距离减去半径1,∴min |34i |14z --==. 故答案为:4【变式6-4】若z C ∈且11z -=,则z 最大值是_______________. 【答案】3【分析】先分析出z 的轨迹可看成圆()(212:11O x y -+=,根据几何法可以得到z 表示圆上的点到原点的距离,即可求出z 最大值.【解】11z -=的几何意义为复平面动点到定点(距离为1的点的轨迹,可看成圆()(212:11O x y -+=,z 表示圆上的点到原点的距离,所以z 最大值为圆O 1到原点距离加上半径1,即 max 1=3z .故答案为:3.【变式6-5】若复数z 满足11z i +-≤,则z 的最大值是___________.1【分析】设z a bi =+,可求得其轨迹为以()1,1-为圆心,1为半径的圆及其内部,根据z 的几何意义可确定所求最大值为圆心到原点距离与半径之和.【解】设z a bi =+,则()1111z i a b i +-=++-=,()()22111a b ∴++-≤,z ∴对应点的轨迹为以()1,1-为圆心,1为半径的圆及其内部,z表示z 对应的点到原点的距离,max 11z ∴==.1.例7.已知i 是虚数单位,复数12iiz -=,则z =__________.【分析】本题首先可根据复数的除法运算得出2i z =--,然后根据共轭复数以及复数的模的相关性质即可得出结果.【解】()212i i 12i 2i2i i i 1z -⨯-+====---,则2i z =-+,z ==例8.已知复数()2236i z m m m m =-+-为纯虚数,则实数m =______. 【答案】3【分析】根据纯虚数满足的条件,得223060m m m m ⎧-=⎨-≠⎩,解方程即可求出结果.【解】因为复数()2236i z m m m m =-+-为纯虚数,所以223060m m m m ⎧-=⎨-≠⎩,解得3m =,故答案为:3例9.已知i 为虚数单位,复数z 满足()20212i i z -=,则复数z 的虚部为______.【答案】25【分析】根据复数的运算性质得到()2i i z -=,再结合复数的除法运算和复数的概念,即可求解.【解】由题意,复数z 满足()2021505412i ii i z ⨯+=-==,可得()()()i 2i i 12=i 2i 2i 2i 55z ⋅+==-+--+, 所以复数z 的虚部为25. 故答案为:25. 例10. 若复数1z 2cos isin33ππ⎛⎫=+ ⎪⎝⎭,21cos isin 244z ππ⎛⎫=+ ⎪⎝⎭,则12z z 的辐角的主值为______. 【答案】712π. 【分析】首先求出12z z ,然后根据复数三角形式下的几何意义即可求出辐角主值. 【解】1212cosisincos isin 33244z z ππππ⎛⎫⎛⎫+⨯+ ⎪ ⎪⎝⎭⎝⎭= cos isin cos isin 3344ππππ⎛⎫⎛⎫+⨯+ ⎪ ⎪⎝⎭⎝⎭=2coscosicossinisincosi sinsin34343434ππππππππ=+++cos cos sin sin cos sin sin cos i 34343434ππππππππ⎛⎫⎛⎫-++ ⎪ ⎭⎝=⎪⎝⎭1277cossin i 12ππ+=, 所以12z z 的辐角的主值为712π. 故答案为:712π. 例11.如果向量OZ 对应复数2i,OZ -绕原点O 按顺时针方向旋转4π后再把模变为原来的32倍得到向量1OZ ,则1OZ 对应的复数是___________.【答案】22-- 【分析】先求出复数2i -的三角形式,然后利用三角形式变换求解1OZ 对应的复数【解】因为332i 2cos isin 22ππ⎛⎫-=+ ⎪⎝⎭,所以由题意可得1OZ 对应的复数为3332cos isincos isin 22244ππππ⎡⎤⎛⎫⎛⎫⎛⎫+⋅-+- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦333cos isin 2424ππππ⎡⎤⎛⎫⎛⎫=-+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦553cos isin44ππ⎛⎫=+ ⎪⎝⎭322⎛⎫=⨯-- ⎪ ⎪⎝⎭22=--,故答案为:i 22--例12. 设1z 、2z C ∈,若121z z ==,则2212z z -的最大值为______. 【答案】2【分析】根据已知条件,结合不等式,即可求解.【解】12||||1z z ==,∴22221211||||||112z z z z -+=+=.故答案为:2.例13.已知复数1z ,2z 满足121z z ==,12z z +=,则12z z -=______.【分析】令1cos isin z A A =+,2cos isin z B B =+,由12||z z +=22(cos cos )(sin sin )2A B A B +++=,从而2cos cos 2sin sin 0A B A B +=,由此能求出12||z z -.【解】复数1z ,2z 满足12||||1z z ==,∴令1cos isin z A A =+,2cos isin z B B =+12||z z +=,22(cos cos )(sin sin )2A B A B ∴+++=,整理得2cos cos 2sin sin 0A B A B +=, 又22212||(cos cos )(sin sin )22cos cos 2sin sin 2z z A B A B A B A B -=-+-=--=,12||z z ∴-=例14.i 是虚数单位,则202111i 1i kk =-⎛⎫=⎪+⎝⎭∑______.【答案】i -【分析】利用复数的运算法则、复数的周期性、数列求和公式即可得出. 【解】21i (1i)2ii 1i (1i)(1i)2---===-++-,4(i)1-=,20214505(i)[(i)](i)i -=-⨯-=-, ∴()202120212021111i i [1(i)]i[1(i)]i i 1i 1(i)1(i)kk k k ==--⋅-----⎛⎫=-===- ⎪+----⎝⎭∑∑,故答案为:i -. 例15.已知复数()()2281543i,z m m m m m R =-++-+∈. (1)若z 是实数,求实数m 的值; (2)若z 是纯虚数,求实数m 的值:(3)若z 在复平面上对应的点位于直线y x =上,求实数m 的值. 【答案】(1)1m =或3;(2)5m =;(3)3m =.【分析】(1)结合z 是实数,得到2430m m -+=,解之即可求出结果;(2)结合z 是纯虚数,得到228150430m m m m ⎧-+=⎨-+≠⎩,解之即可求出结果;(3)先求出复数z 所对应的点为()22815,43m m m m -+-+,根据z 在复平面上对应的点位于直线y x =上,得到2281543m m m m -+=-+,解之即可求出结果. 【解】(1)因为z 是实数,所以2430m m -+=,解得1m =或3;(2)因为z 是纯虚数,所以228150430m m m m ⎧-+=⎨-+≠⎩,解得5m =;(3)复数z 所对应的点为()22815,43m m m m -+-+,又因为z 在复平面上对应的点位于直线y x =上,所以2281543m m m m -+=-+,解得3m =. 例16.已知复数32i23iz +=-. (1)求12i z --;(2)计算:234z z z z ++++……2021z +.【答案】(1(2)i .【分析】(1)根据复数除法法则化简z ,再由模的定义计算; (2)由i 的幂的性质分组计算得出结论.【解】化简 232i (32i)(23i)69i 4i 5i i 23i (23i)(23i)13z ++++++====--+(1)12i 1i z --=--,∴12i 1i z --=--=(2)计算22345i.i 1,i,1,i,z z z z z ===-=-==有44142431,,1,k k k k z z i z z i +++===-=-()k ∈Z ,且显然44142430k k k k z z z z ++++++=∴234z z z z ++++……20215050z z i +=⨯+=.43.已知复数22cossincos isin 9999z i ππππ⎛⎫⎛⎫=++ ⎪⎪⎝⎭⎝⎭. (1)求z 的共轭复数; (2)若复数0z =,求0z 在复平面内对应的点的坐标.【答案】(1)12-;(2)17⎛- ⎝⎭. 【分析】(1)利用复数的乘法运算法则及两角和正余弦公式得到结果; (2)利用复数的除法运算法则及几何意义得到结果. 【详解】(1)因为2222coscossin sin i sin cos cos sin 99999999z ππππππππ⎛⎫⎛⎫=-++ ⎪⎪⎝⎭⎝⎭.所以221cos isin i 999922z ππππ⎛⎫⎛⎫=+++=+⎪ ⎪⎝⎭⎝⎭,故z 的共轭复数为12;(2)因为017z ====-+,所以0z 在复平面内对应的点的坐标为17⎛- ⎝⎭.。

根与系数的关系(韦达定理)打卡猿辅导数学专属

根与系数的关系(韦达定理)打卡猿辅导数学专属

根与系数的关系(韦达定理)一、发展简史有一次,荷兰派到法国的一位使者告诉法国国王,比利时的数学家罗门提出了一个 45 次的方程向各国数学家挑战。

国王于是把这个问题交给韦达,韦达当即得出一正数解,回去后很快又得出了另外的 22 个正数解(他舍弃了另外的 22 个负数解)。

消息传开,数学界为之震惊。

同时,韦达也回敬了罗门一个问题,罗门一时不得其解,冥思苦想了好多天才把它解出来。

韦达于 1615 年在著作《论方程的识别与订正》中改进了三、四次方程的解法,还对 n=2、3 的情形,建立了方程根与系数之间的关系,现代称之为韦达定理。

二、定律定义根与系数的关系简单相关系数:又叫相关系数或线性相关系数。

它一般用字母 r 表示。

它是用来度量定量变量间的线性相关关系。

三、实验验证当Δ=b^2-4ac≥0 时,方程ax^2+bx+c=0(a≠0)有两个实根,设为 x1,x2.由求根公式 x=(-b±√Δ)/2a,不妨取x1=(-b-√Δ)/2a,x2=(-b+√Δ)/2a,则:x1+x2=(-b-√Δ)/2a+(-b+√Δ)/2a=-2b/2a=-b/a,x1*x2=[(-b-√Δ)/2a][(-b+√Δ)/2a]=[(-b)^2-Δ]/4a^2=4ac/4a^2=c/a.综上,x1+x2=-b/a,x1*x2=c/a.四、应用领域韦达定理及其逆定理作为一元二次方程的重要理论在中学数学教学和中考中有着广泛的应用。

可以将其应用归纳为:1、求对称代数式的值;2、构造一元二次方程;3、求方程中待定系数的值;4、在平面几何中的应用;5、在二次函数中的应用。

在数学上,根与系数的关系如下所述:对于一元二次方程 ax2+bx+c=0(a≠0)经常用到的是如果有实数根,设两实数根为x1,x2,则:x1+x2=-b/ax1*x2=c/a五、定律影响韦达定理最重要的贡献是对代数学的推进,它最早系统地引入代数符号,推进了方程论的发展,用字母代替未知数,指出了根与系数之间的关系。

根与系数的关系知识点总结

根与系数的关系知识点总结

根与系数的关系知识点总结
嘿,宝子们!今天咱就来唠唠根与系数的关系这个超重要的知识点!
咱先说一元二次方程,就好比ax²+bx+c=0 这样的式子。

那根与系数
有啥关系呢?哎呀呀,就像是一个神秘的纽带!比如说方程x²-5x+6=0,
它的两根是 2 和 3,你看呀,这两根之和 2+3 就等于一次项系数 -5 的相反数 5,两根之积2×3 就等于常数项 6 呢!神奇不?
再举个例子,方程2x²+3x-2=0,它的根是 -2 和 1/2,那 -2+1/2 就等于-3/2,这不正是一次项系数 3 的相反数除以二次项系数 2 嘛!然后 -
2×(1/2) 不就是 -1,正好是常数项 -2 除以二次项系数 2 呀!
咱就说,这根与系数的关系,是不是像个隐藏的宝藏,等你去发现呀!小李之前就老弄不明白这个,还觉得很难,我就跟他讲,“你看呀,这多简单呀,就像找宝藏一样,找到了就开心啦!”他一听,恍然大悟!
其实呀,理解了这个知识点,好多数学问题都能迎刃而解呢!想想看,如果题目里给了方程的系数,那我们不就能很快算出根的一些特征啦!这多厉害呀!
根与系数的关系就是这么酷,它就像一把万能钥匙,能打开好多数学难题的大门!宝子们,一定要好好掌握哦!。

专题根与系数的关系含答案

专题根与系数的关系含答案

专题:一元二次方程根的判别式和根与系数的关系例1.已知关于x的方程mx2-2m-1x+m-2=0.1当m取何值时,方程有两个不相等的实数根;2若x1、x2为方程的两个不等实数根,且满足x12+x22-x1x2=2,求m的值.例2.已知关于x的方程x2-4mx+4m2-9=0.1求证:此方程有两个不相等的实数根;2设此方程的两个根分别为x1,x2,其中x1<x2.若2x1=x2+1,求m的值.例3.已知关于x的方程mx2+4-3mx+2m-8=0m>0.1求证:方程有两个不相等的实数根;m,且点B m,n在x轴上,求m 2设方程的两个根分别为x1、x2x1<x2,若n=x2-x1-12的值..例4.已知关于x的一元二次方程:x2-2m+1x+m2+5=0有两个不相等的实数根.1求m的取值范围;2若原方程的两个实数根为x1、x2,且满足x12+x22=|x1|+|x2|+2x1x2,求m的值.例5.已知关于x的方程x2-2k+1x+4k-1=0.21求证:无论k取什么实数值,这个方程总有实数根;2能否找到一个实数k,使方程的两实数根互为相反数若能找到,求出k的值;若不能,请说明理由.3当等腰三角形ABC的边长a=4,另两边的长b、c恰好是这个方程的两根时,求△ABC的周长.训练1.已知关于x的方程mx2-m+2x+2=0m≠0.1求证:方程总有两个实数根;2已知方程有两个不相等的实数根α,β,满足1α+1α=1,求m的值.2.已知一元二次方程x2-2x+m=01若方程有两个实数根,求m的范围;2若方程的两个实数根为x1和x2,且x1+3x2=3,求m的值.3若方程的两个实数根为x1和x2,且x12-x22=0,求m的值.3.已知关于x的方程x2+m-3x-m2m-3=01证明:无论m为何值方程都有两个实数根;2是否存在正数m,使方程的两个实数根的平方和等于26若存在,求出满足条件的正数m的值;若不存在,请说明理由.4.已知关于x的一元二次方程x2-6x-k2=0k为常数.1求证:方程有两个不相等的实数根;2设x1、x2为方程的两个实数根,且2x1+x2=14,试求出方程的两个实数根和k 的值.5.已知关于x的方程x2-2k-3x+k2+1=0有两个不相等的实数根x1、x2.1求k的取值范围;2若x1、x2满足|x1|+|x2|=2|x1x2|-3,求k的值.m-3=06.已知关于x的一元二次方程x2-m-2x+121求证:无论m取什么实数时,这个方程总有两个不相等的实数根;2如果方程的两个实数根为x1,x2,且2x1+x2=m+1,求m的值.7.已知关于x的一元二次方程a-1x2-5x+4a-2=0的一个根为x=3.1求a的值及方程的另一个根;2如果一个等腰三角形底和腰不相等的三边长都是这个方程的根,求这个三角形的周长.8.设x 1,x 2是关于x 的一元二次方程x 2+2ax +a 2+4a -2=0的两实根,当a 为何值时,x 12+x 22有最小值最小值是多少专题:一元二次方程根的判别式和根与系数的关系例1. 解:1∵方程有两个不相等的实数根, 例2. ∴△=b 2-4ac =-2m -12-4mm -2=4m +1>0, 例3. 解得:m >-14,∵二次项系数≠0,∴m ≠0, 例4. ∴当m >-14且m ≠0时,方程有两个不相等的实数根; 例5. 2∵x 1、x 2为方程的两个不等实数根,例6. ∴x 1+x 2=2α−1α,x 1x 2=α−2α, 例7. ∴x 12+x 22-x 1x 2=x 1+x 22-3x 1x 2=2α−1α2-3(α−2)α=2, 例8.解得:m 1=√2+1,m 2=-√2+1舍去;∴m =√2+1.例9. 解:1∵△=-4m 2-44m 2-9=36>0,例10. ∴此方程有两个不相等的实数根; 例11. 2∵x =4α±√362=2m ±3,例12. ∴x 1=2m -3,x 2=2m +3,例13. ∵2x 1=x 2+1,∴22m -3=2m +3+1,例14.∴m =5.例15. 解:1∵△=4-3m 2-4m 2m -8, 例16. =m 2+8m +16=m +42例17. 又∵m >0∴m +42>0即△>0 例18. ∴方程有两个不相等的实数根; 例19. 2∵方程的两个根分别为x 1、x 2x 1<x 2,例20. ∴x 1+x 2=-4−3αα,x 1x 2=2α−8α, 例21. n =x 2-x 1-12m ,且点B m ,n 在x 轴上, 例22. ∴x 2-x 1-12m =√(α1+α2)2−4α2α1-12m =√(4−3αα)2−4×2α−8α-12m =0, 例23. 解得:m =-2,m =4,例24.∵m >0,∴m =4.例25. .解:1∵方程x 2-2m +1x +m 2+5=0有两个不相等的实数根, 例26. ∴△=-2m +12-4m 2+5=8m -16>0,解得:m >2. 例27. 2∵原方程的两个实数根为x 1、x 2, 例28. ∴x 1+x 2=2m +1,x 1x 2=m 2+5. 例29. ∵m >2,例30. ∴x 1+x 2=2m +1>0,x 1x 2=m 2+5>0, 例31. ∴x 1>0、x 2>0.例32. ∵x 12+x 22=(α1+α2)2-2x 1x 2=|x 1|+|x 2|+2x 1x 2, 例33. ∴4m +12-2m 2+5=2m +1+2m 2+5,即6m -18=0,例34.解得:m =3.例35. 证明:1∵△=2k +12-16k -12=2k -32≥0, 例36. ∴方程总有实根;例37. 解:2∵两实数根互为相反数, 例38. ∴x 1+x 2=2k +1=0,解得k =; 例39. 3①当b =c 时,则△=0, 例40. 即2k -32=0,∴k =32, 例41. 方程可化为x 2-4x +4=0,∴x 1=x 2=2,而b =c =2,∴b +c =4=a 不适合题意舍去;例42. ②当b =a =4,则42-42k +1+4k -12=0, 例43. ∴k =52, 例44. 方程化为x 2-6x +8=0,解得x 1=4,x 2=2, 例45. ∴c =2, C △ABC =10,例46. 当c =a =4时,同理得b =2,∴C △ABC =10,例47.综上所述,△ABC 的周长为10.训练1.1证明:∵方程mx 2-m +2x +2=0m ≠0是一元二次方程, ∴△=m +22-8m =m 2+4m +4-8m =m 2-4m +4=m -22≥0, ∴方程总有两个实数根;2解:∵方程有两个不相等的实数根α,β,∴由根与系数的关系可得α+β=α+2α,αβ=2α, ∵1α+1α=1,∴α+2α2α=α+22=1,解得m =0,∵m ≠0,∴m 无解.2.解:1∵方程x 2-2x +m =0有两个实数根,∴△=-22-4m ≥0,解得m ≤1;2由两根关系可知,x 1+x 2=2,x 1x 2=m ,解方程组{α1+α2=2α1+3α2=3, 解得{α1=32α2=12,∴m =x 1x 2=32×12=34; 3∵x 12-x 22=0,∴x 1+x 2x 1-x 2=0,∵x 1+x 2=2≠0,∴x 1-x 2=0,∴方程x 2-2x +m =0有两个相等的实数根,∴△=-22-4m =0,解得m =1.3. 1证明:∵关于x 的方程x 2+m -3x -m 2m -3=0的判别式△=m -32+4m 2m -3=9m -12≥0,∴无论m 为何值方程都有两个实数根;2解:设方程的两个实数根为x 1、x 2,则x 1+x 2=-m -3,x 1×x 2=-m 2m -3,令x 12+x 22=26,得:x 1+x 22-2x 1x 2=m -32+2m 2m -3=26,整理,得5m 2-12m -17=0,解这个方程得,m =175或m =-1, 所以存在正数m =175,使得方程的两个实数根的平方和等于26.4. 1证明:在方程x 2-6x -k 2=0中,△=-62-4×1×-k 2=4k 2+36≥36, ∴方程有两个不相等的实数根.2解:∵x 1、x 2为方程的两个实数根,∴x 1+x 2=6①,x 1x 2=-k 2,∵2x 1+x 2=14②,联立①②成方程组{α1+α2=62α1+α2=14, 解之得:{α1=8α2=−2, ∴x 1x 2=-k 2=-16,∴k =±4.5. 解:1∵原方程有两个不相等的实数根,∴△=-2k -32-4k 2+1=4k 2-12k +9-4k 2-4=-12k +5>0,解得:k <512;2∵k <512,∴x 1+x 2=2k -3<0,又∵x 1x 2=k 2+1>0,∴x 1<0,x 2<0,∴|x 1|+|x 2|=-x 1-x 2=-x 1+x 2=-2k +3,∵|x 1|+|x 2|=2|x 1x 2|-3,∴-2k +3=2k 2+2-3,即k 2+k -2=0,∴k 1=1,k 2=-2,又∵k <512, ∴k =-2.6. 解:1∵△=m -22-4×12m -3=m -32+3>0, ∴无论m 取什么实数值,这个方程总有两个不相等的实数根;2解:x1+x2=m-2,2x1+x2=x1+x1+x2=m+1,∴x1=m+1+2-m=3,把x1代入方程有:9-3m-2+12m-3=0解得m=245.7. 解:1将x=3代入方程中,得:9a-1-15+4a-2=0, 解得:a=2,∴原方程为x2-5x+6=x-2x-3=0,解得:x1=2,x2=3.∴a的值为2,方程的另一个根为x=2.2结合1可知等腰三角形的腰可以为2或3,∴C=2+2+3=7或C=3+3+2=8.∴三角形的周长为8或7.8. .解:∵△=2a2-4a2+4a-2≥0,∴α≤12又∵x1+x2=-2a,x1x2=a2+4a-2.∴x12+x22=x1+x22-2x1x2=2a-22-4.设y=2a-22-4,根据二次函数的性质.∵α≤12∴当α=12时,x12+x22的值最小.此时α12+α22=2(12−2)2−4=12,即最小值为12.。

根与系数的关系

根与系数的关系

根与系数的关系系数与方程根之间存在着紧密的联系,在解方程、求根等数学问题中起着重要的作用。

本文将探讨根和系数之间的关系,并探讨其在代数计算和现实生活中的应用。

一、根和系数的定义及关系根是指方程中使方程成立的未知数的值,可以是实数或复数。

而系数是方程中未知数的前面的数字或字母,用来表示未知数的倍数。

根和系数之间的关系可以用代数方程的一般形式来表达,即 a_nx^n +a_{n-1}x^{n-1} + ... + a_1x + a_0 = 0,其中 a_n, a_{n-1}, ..., a_1, a_0 是系数,x 是未知数。

二、根与系数之间的基本关系1. 根的个数与系数的关系:根的个数和方程的次数有关。

一个次数为 n 的方程最多有 n 个不同的复数根,其中包括重根。

具体而言,如果方程的系数全都是实数,则他的复数根都是成对出现的,即复数根共轭存在。

而如果方程的系数是复数,则有可能出现零个、一个或多个根。

2. 根与系数的关系及运算法则:(1)根与系数之间的关系可以由 Vieta's formulas 给出。

Vieta's formulas 断言,在一个 n 次方程的 n 个根 x_1,x_2,...,x_n 中,这些根的和等于方程的倒数第二个系数的相反数,即x_1 + x_2 + ... + x_n = -a_{n-1} / a_n。

而这些根的乘积等于最后一个系数与首项系数的比值的相反数,即x_1 * x_2 * ... * x_n = (-1)^n * a_0 / a_n。

(2)在解方程时,根与系数之间的关系也可以通过韦达定理进行推导。

韦达定理指出,对于一个 n次方程a_nx^n + a_{n-1}x^{n-1} + ... + a_1x + a_0 = 0,如果 x_1, x_2, ..., x_n 是方程的 n 个根,则它们满足以下关系:x_1 + x_2 + ... + x_n = -a_{n-1} / a_n,x_1 * x_2 * ... * x_n = (-1)^n * a_0 / a_n,x_1 * x_2 * ... * x_{n-1} = (-1)^{n-1} * a_1 / a_n,以此类推。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a 0 ,所以 p 0
轨迹 x 2 y 方法提炼
1.判别根的虚实,运用判别式,求根公式,这些方法要熟练工人 2.一元二次方程的系数含有虚数时, 判别式失去了功能,运用韦达定理求解方法。 3.分类讨论是重要的思想方法。复数里也会有这样的题目,虚根、实根不同情况下,解的 形式是不同的。
巩固练习 1.若 2 3i 是方程 x2 mx n 0 (m, n R) 的一个解,那么 m __ 4 , n ____ 13 2. 是方程 x2 x k 0 的虚数根,且 3,则 k _____ 5
2x 1 0 的根,则1
2 2
(1 i)
或 2

2 (1 i) 2
当1
2 2
(1

i)
时, 12
i,12n1
(12 )n 1
1 in 1
M 1
i 1 i 1

1
,
1
,
1
, 1



2 (1 i), 2
2i 自我测试 1.在复数范围内解方程 4x2 x 5 0 ,解集是_______ 1 79i
8
5
2.已知 a、b R ,若方程 2x2 3ax b 0 的一个根为 3 i ,则 ab ______ 80
3.已知一元二次方程 x2 (1 i)x a 2i 0 有实数根,则 a _____ 6
教学内容

(2)1 的立方根:1, 1 3 i,2 1 3 i, ( 3 1,1 2 0 )
22
22
9.实系数一元二次方程 ax2 bx c 0 a,b,c R 且 a 0 在复数集中恒有
解.当判别式 b2 4ac 0 时,方程有实数解 x1,2 b
2 (1 i), 2
2 (1 i), 2
2 2
(1
i)

当2
2 2
(1 i) 时,有 M 2

M 2
3.设复数 z a bi (a 0,b 0) 是实系数方程 x 2 px q 0 的根,又 z 3 为实数,求点
( p, q) 的轨迹。
解: z a bi 实系数方程的根, z a bi 也是此方程的根。
6


3
,求
z1 、z2
的最大值与最小值
6
4.满足方程 z z i2009 的复数 z 有________个 0
5.方程 x2 2 2x m 0 的两个根为, ,且 3 ,求实数 m 的值 1 或17 44
6.若复数 z1、z2 是关于 x 的一元二次方程 tan x2 sin x cot 0 的两个根,且
b2 4ac ;当判
2a
别式 b2 4ac 0 时,方程有一对共轭虚根 x b 4ac b2 i .
2a
2a
热身练习
1. 、 是一元二次方程 x2 6x 10 0 的根,则 ( )2 ______ 4
2.在复数范围内分解因式 4x2 x 5 ________ 4(x 1 1 79i)(x 1 1 79i)
源于名校,成就所托
高中数学备课组 日期 09-9-12 学生情况: 张三--------
教师 陶 丰 上课时间
班级高二 MiniA 班
学生张三(电话)、李四 (电话)、王五(电话)
李四--------
王五--------
主课题:复数
1
知识精要
8.复数的平方根与立方根: (1)利用复数相等求复数的平方根
(1)当 0 ,即 m2 3m 1 0 时, x1、x2 R
m R ,且
x1 x2

1 (m2 3
1)

0
x1 与 x2 同号
2

x1
x2
0
2

m2 2(m
3m 1 0 1) 2
m 0
(2)当 0 ,即 m2 3m 1 0 时, x1 与 x2 为一对共轭复数,得 x1 x2

3.设非零复数 z1、z2 满足100 z12

z
2 2

kz1 z2
k R ,并且 z2 是虚数。 z1
(1)求证: z2 10 z1
(2)若 k N * ,当 k 在其允许范围内变化时,求所有满足条件的虚数 z2 的和 z1
解:令 z2 x ,则原方程可化为 x2 kx 100 0 , z1
2 3.在复数集内分解因式:(1) x4 x2 6 _________ (x 2)( x 2)( x 3i)( x 3i)
(2) x2 2x cos 1 _____ (x cos i sin )(x cos i sin)
4. 已知复数 z 1 i ,求实数 a、b 使 az 2bz (a 2z)2 。
备选例题 1.关于 x 的方程 x2 (2i 1)x 3m i 0 (m R) 有实根,求 m 的取值范围。
解:设实根为 t ,则 t 2 (2i 1)t 3m i 0 ,即 t 2 t 3m (2t 1)i 0
t
2
t 3m 2t 1 0
88
88
3.已知复数、 满足 2 且 1,则 23 23 ________ 2i , 2i
4.方程 z z 3 z 4 0 的解集是________1
5.方程 x2 ix i 1 0 的两根为__________1、1 i
4
z z p zz q 2a p a2 b2 q z 3 (a bi)3 a3 3ab2 (3a 2b b3 )i 为实数( b 0)
3a2b b3 0 ,即 3a 2 b2
得 q 4a2 , p2 q ,
6.已知 a i(1 i)5 是实系数方程 x 2 px q 0 的根,则 pq ______ 1
(1 3i)3
2
精解名题 例 1.关于 x 的方程 3x 2 6(m 1)x m2 1 0 的两根的模的和为 2 ,求实数 m 的值。
解: [6(m 1)]2 4 3(m2 1) 24(m2 3m 1)
为根的实系数一元二次方程。
解:(1 2i) 4 3i
4 3i 2 i 1 2i
z 5 i 3i 2i
若实系数一元二次方程有虚根 z 3 i ,则必有共轭虚根 z 3 i
z z 6 , z z 10
x2 6x 10 0
0
,得
m


1 3
(t 2

t)


1 3
(1 4

1) 2

1 12

m

1 12

2.对任意非零复数 z ,定义集合 M z | z 2n1, n N * ,设 是方程
x2 2x 1 0 的一个根,试用例举法表示集合 M a
解: 是 x 2
又 x1 x2 2, x1 x2 1, x1x2 x1 x2 1, x1x2 1
m132(m32m
1 0 1) 1
m 2
综上所述,得 m 0 或 m 2
例 2.已知复数 满足 4 (3 2)i ( i 为虚数单位), z 5 2 ,求一个以 z
a 2,b 1或a 4,b 2
5.关于 x 的方程 x2 6x m 0 有一个虚根的模为 13 ,求实数 m 并解这个方程。
m 13, x 3 2i 6.求证:在复数范围内,方程 z 2 (1 i)z (1 i)z 5 5i ( i 为虚数单位)无解
3
k 2 400 0 , x k 400 k 2 i 2
(1) x 1 k 2 (400 k 2 ) 10 ,即 z2 10 ,
2
z1
z2 10 z1
(2) k N * , k 1,2,3,,19 因每个方程的两根之和均为 k ,故所求的和为1 2 3 19 190
相关文档
最新文档