根与系数的关系
根与系数的关系公式8个

根与系数的关系公式8个1、一次方程的根:如果ax+b=0,则一次方程的根为x=-b/a;2、二次方程的根:如果ax²+bx+c=0,则二次方程的根为x=(-b±√(b²-4ac))/2a;3、三次方程的根:如果ax³+bx²+cx+d=0,则三次方程的根为x=[-b±√(b²-3ac)±√(2b³-9abc+27a²d)]/6a;4、四次方程的根:如果ax⁴+bx³+cx²+dx+e=0,则四次方程的根为x=[-b±√(b²-4ac)±√(b²-3ac)±√(2b³-9abc+27a²d-72abed)]/12a;5、五次方程的根:如果ax⁵+bx⁴+cx³+dx²+ex+f=0,则五次方程的根为x=[-b±√(b²-4ac)±√(b²-3ac)±√(2b³-9abc+27a²d-72abed)+½a(3b²-8ac)fa³]/20a;6、六次方程的根:如果ax⁶+bx⁵+cx⁴+dx³+ex²+fx+g=0,则六次方程的根为x=[-b±√(b²-4ac)±√(b²-3ac)±√(2b³-9abc+27a²d-72abed)+²a(3b²-8ac)faja²]/30a;7、七次方程的根:如果ax⁷+bx⁶+cx⁵+dx⁴+ex³+fx²+gx+h=0,则七次方程的根为x=[-b±√(b²-4ac)±√(b²-3ac)±√(2b³-9abc+27a²d-72abed)+²a(3b²-8ac)faja²+³a(b³-2b²c+bac²-4a²d)h]/42a;8、八次方程的根:如果ax⁸+bx⁷+cx⁶+dx⁵+ex⁴+fx³+gx²+hx+i=0,则八次方程的根为x=[-b±√(b²-4ac)±√(b²-3ac)±√(2b³-9abc+27a²d-72abed)+²a(3b²-8ac)faja²+³a(b³-2b²c+bac²-4a²d)h+⁴a(b⁴-3bc²a²+6b²d-8acd)i]/56a。
韦达定理根与系数的关系

韦达定理根与系数的关系韦达定理(Vieta's theorem)是数学中的一个重要定理,它描述了多项式根与系数之间的关系。
这个定理以法国数学家弗朗索瓦·韦达(François Viète)的名字命名,他在16世纪首次提出了这个定理。
韦达定理的表述非常简洁,它指出:对于一个n次多项式,其根的乘积等于(-1)^n乘以常数项与最高次项系数的商。
换句话说,如果一个多项式可以表示为:P(x) = a_nx^n + a_{n-1}x^{n-1} + ... + a_1x + a_0其中a_i为多项式的系数,那么它的根r_1、r_2、...、r_n满足以下关系:r_1 * r_2 * ... * r_n = (-1)^n * a_0 / a_n这个定理的证明可以通过多项式展开和对称多项式的性质来完成,但在这篇文章中,我们将重点讨论韦达定理的应用。
我们可以利用韦达定理来求解多项式的根。
对于一个已知的多项式,我们可以通过观察常数项和最高次项系数的关系,来推测根的乘积。
然后,我们可以根据多项式的次数和已知的根之间的关系,来求解其他缺失的根。
通过这种方法,我们可以快速而准确地求解多项式的根。
韦达定理还可以用于多项式的因式分解。
根据韦达定理,如果我们已知一个多项式的根r_1、r_2、...、r_n,那么我们可以将这个多项式表示为以下形式的乘积:P(x) = (x - r_1)(x - r_2)...(x - r_n)这个形式的多项式就是多项式的因式分解形式。
通过将多项式因式分解,我们可以更好地理解多项式的性质,并且更方便地进行计算和求解。
韦达定理还可以用于多项式系数的求解。
对于一个已知的多项式,如果我们已知其中n-1个根,以及一个系数,那么根据韦达定理,我们可以求解出剩下的一个系数。
这种方法在实际问题中非常有用,可以帮助我们建立和求解多项式方程。
除了以上应用之外,韦达定理还有很多其他的应用。
关于根与系数关系的题及答案

一、基本知识原理设一元二次方程ax2+bx+c=0(a≠0)的两个根分别为x1 ,x2 ,则有根与系数的关系:x1 +x2 = -(b/a);x1 x2 =c/a ;根与方程的关系:ax12+bx1+c=0 ,ax22+bx2+c=0 。
二、解题方法与策略对于中考数学中这种常见填空题型,出题方式一般是,条件中直接告诉方程有两个根,但通常不会告诉这两个根的具体值,就算你用求根公式可以解出根的具体值,看起来非常繁琐,也不利于求解。
所以,对于这种题目我们的解题方法与策略是:(1)运用根与系数的关系,先求出方程两个根的和与积;(2)对方程进行适当变形,使二次项转化为一次项或常数;或对所求代数表达式进行适当的变形,使其变为含有两根的和或积的形式;(3)代入两个根的和与积,或者代入根与方程的关系,进行计算,问题便迎刃而解。
三、例题详解例1、已知a,b是一元二次方程x2﹣2x﹣2020=0的两个根,则a2+2b﹣3的值等于解:由题意可知:a2﹣2a=2020,(对方程进行适当的变形,使高次项转化为一次项或常数)由根与系数的关系可知:a+b=2,(根据方程求出两个根的和)∴原式=a2﹣2a+2a+2b﹣3 (对所求代数表达式进行适当的变形,使表达式中含有两根之和的形式;)=2020+2(a+b)﹣3=2020+2×2﹣3=2021例2、一个直角三角形的两条直角边的长度恰好是方程2x2-8x+7=0的两个根,则这个直角三角形的斜边长是.例4、已知关于x的方程x2-4x+k-1=0的两根之差等于6,那么k .解:设方程的两根为a、b,∴a+b=4 , ab = k-1(a﹣b)2=(a+b)2﹣4ab = 42 -4(k-1)=36解得:k=-4例5、设m、n是一元二次方程x2-2018x+1=0的两个实数根,则代数式2017m2+2018n2-2018n-2017×20182 的值为()解:由已知得m+n = 2018 , mn=1(先求出方程两个根的和与积)m2+n2 =(m+n)2 -2mn = 20182 -2 (利用和与积化简高次项为常数)∴2017m2+2018n2-2018n-2017×20182 (对所求代数表达式进行适当的变形)= 2017(m2+n2) + n2 -2018n-2017×20182= 2017( 20182 -2)-1-2017×20182= -4035。
一元二次方程根与系数的关系公式

一元二次方程根与系数的关系公式
一元二次方程根与系数的关系公式:ax²+bx+c=(a≠0),当判别式=b²-4ac>=0时。
设两根为x₁,x₂,则根与系数的关系(韦达定理):x₁+x₂=-b/a;x₁x₂=c/a。
一元二次方程必须同时满足三个条件:
①是整式方程,即等号两边都是整式,方程中如果有分母;且未知数在分母上,那么这个方程就是分式方程,不是一元二次方程,方程中如果有根号,且未知数在根号内,那么这个方程也不是一元二次方程(是无理方程)。
②只含有一个未知数。
③未知数项的最高次数是2。
用因式分解法解一元二次方程的步骤:
(1)将方程右边化为0。
(2)将方程左边分解为两个一次式的积。
(3)令这两个一次式分别为0,得到两个一元一次方程。
(4)解这两个一元一次方程,它们的解就是原方程的解。
一元二次方程的根与系数关系

知识创造未来一元二次方程的根与系数关系一元二次方程是数学中经常接触的基础知识,它的形式为ax²+bx+c=0,a、b、c代表三个系数,x代表未知数。
其中a不为0,因为当a为0时,方程就变成了一元一次方程。
对于一元二次方程,我们可以通过求解它的根来得出x的值。
那么,一元二次方程的根与系数关系是什么呢?首先,我们可以利用求根公式得出一元二次方程的两个根:x1=(-b+√(b²-4ac))/2a和x2=(-b-√(b²-4ac))/2a。
在这个公式中,我们可以看到a、b、c三个系数的重要性。
其次,我们来探讨一下一元二次方程的根与系数的关系。
当a>0时,若b²-4ac>0,方程有两个不相等的实根;若b²-4ac=0,方程有两个相等的实根;若b²-4ac<0,方程无实根,有两个共轭虚根。
而当a<0时,若b²-4ac>0,方程有两个不相等的实根;若b²-4ac=0,方程有两个相等的实根;若b²-4ac<0,方程无实根,有两个共轭虚根。
最后,我们来总结一下一元二次方程的根与系数的关系。
在一元二次方程中,若a>0,则与b²-4ac的大小有关,若b²-4ac>0,则方程有两个不相等的实根;若b²-4ac=0,则方程有两个相等的实根;若b²-4ac<0,则方程无实根,有两个共轭虚根。
而当a<0时,情况与a>0时类似,只是有些细节上的差异。
掌握这些规律,可以更好地求解一元二次方程,提高数学学习的效率。
1 / 1。
一元二次方程的根与系数的关系

一元二次方程的根与系数的关系一元二次方程是高中数学中的重要内容,它的解也是数学中的基础知识之一。
在本文中,我们将探讨一元二次方程的根与系数之间的关系。
一元二次方程的一般形式为: ax^2 + bx + c = 0 (其中,a、b、c为实数且a ≠ 0)这个方程中的根可以通过求解方程来得到。
一元二次方程的解可以分为三种情况,具体取决于判别式的值(Δ=b^2 - 4ac)。
1. 当Δ > 0时,方程有两个不相等的实根。
这是最常见的情况,我们可以通过求解公式 x = (-b ± √Δ) / (2a) 来找到这两个根。
2. 当Δ = 0时,方程有两个相等的实根。
这被称为方程的重根,解可以通过公式 x = -b / (2a) 求得。
3. 当Δ < 0时,方程没有实根。
在这种情况下,方程的解为复数根,我们可以用公式 x = (-b ± i√|Δ|) / (2a) 求得复数根,其中i是虚数单位。
根据以上三种情况,我们可以看出方程的根与系数之间的关系:1. 根与系数的和:根与系数的和是一个常数,可以通过视方程的一元一次项来确定。
对于一元二次方程ax^2 + bx + c = 0,它的两个实根的和可以表示为 -b / a。
这是因为根的和可以通过展开方程 (x-α)(x-β) =0 和整理可得的公式(α + β) = -b / a 来求得。
2. 根与系数的积:根与系数的积也是一个常数,可以通过方程的常数项来确定。
对于一元二次方程ax^2 + bx + c = 0,它的两个实根的积可以表示为 c / a。
这是因为根的积可以通过展开方程 (x-α)(x-β) = 0 和整理可得的公式(αβ) = c / a 来求得。
3. 系数的平方与根的乘积:系数的平方与根的乘积也是一个常数,它等于方程的常数项除以方程的二次项系数的平方。
即(α + β)(αβ) = c / a^2。
通过以上的分析,我们可以得出一元二次方程的根与系数之间的关系,并利用这些关系来推断方程的性质和求解方程。
根与系数的关系知识点总结

根与系数的关系知识点总结
嘿,宝子们!今天咱就来唠唠根与系数的关系这个超重要的知识点!
咱先说一元二次方程,就好比ax²+bx+c=0 这样的式子。
那根与系数
有啥关系呢?哎呀呀,就像是一个神秘的纽带!比如说方程x²-5x+6=0,
它的两根是 2 和 3,你看呀,这两根之和 2+3 就等于一次项系数 -5 的相反数 5,两根之积2×3 就等于常数项 6 呢!神奇不?
再举个例子,方程2x²+3x-2=0,它的根是 -2 和 1/2,那 -2+1/2 就等于-3/2,这不正是一次项系数 3 的相反数除以二次项系数 2 嘛!然后 -
2×(1/2) 不就是 -1,正好是常数项 -2 除以二次项系数 2 呀!
咱就说,这根与系数的关系,是不是像个隐藏的宝藏,等你去发现呀!小李之前就老弄不明白这个,还觉得很难,我就跟他讲,“你看呀,这多简单呀,就像找宝藏一样,找到了就开心啦!”他一听,恍然大悟!
其实呀,理解了这个知识点,好多数学问题都能迎刃而解呢!想想看,如果题目里给了方程的系数,那我们不就能很快算出根的一些特征啦!这多厉害呀!
根与系数的关系就是这么酷,它就像一把万能钥匙,能打开好多数学难题的大门!宝子们,一定要好好掌握哦!。
多项式的根与系数之间的关系

多项式的根与系数之间的关系多项式在数学领域中有着广泛的应用,从简单的代数运算到微积分、差分方程等复杂的数学问题都需要用到多项式。
其中,多项式的根与系数之间的关系是一个重要而又复杂的问题。
一、多项式根的定义一个n次多项式f(x)的根是指满足f(x)=0的x值。
例如,二次多项式f(x)=3x^2-2x+1的根可以通过求解方程3x^2-2x+1=0得到,其解为x=1/3和x=1。
二、多项式根与系数之间的关系在一定的条件下,多项式的根与系数之间有确定的关系。
这个关系被称为Vieta定理。
设f(x)=a_nx^n+a_{n-1}x^{n-1}+...+a_1x+a_0是一个n次多项式,其根为x_1,x_2,...,x_n,则有以下公式成立:1. 一个多项式的常数项a_0等于其根的乘积的相反数,即a_0=(-1)^n a_n x_1 x_2 ... x_n。
2. 一个多项式的一次项系数a_1等于其根的和的相反数,即a_1=(-1)^{n-1} a_n (x_1+x_2+...+x_n)。
3. 对于一个偶次多项式(即n为偶数),其二次项系数a_2等于其根的两两乘积的和的相反数,即a_2=(-1)^n-2 a_n(x_1x_2+x_1x_3+...+x_{n-1}x_n)。
4. 对于一个奇次多项式(即n为奇数),它的二次项系数为0。
例如,对于一个三次多项式f(x)=x^3-3x^2+2x+4,根可以通过解方程x^3-3x^2+2x+4=0得到。
通过Vieta定理,可以得出a_0=4、a_1=2和a_2=-3。
Vieta定理为研究多项式根的性质和多项式系数的关系提供了一个有力的工具。
三、多项式根的性质多项式根的性质在代数学中有着重要的地位。
以下是一些常见的多项式根的性质:1. 多项式的根具有互异性。
也就是说,一个多项式的根必须是不同的。
如果存在重复的根,则这些根都必须是代数上不同的。
2. 多项式的根必须在复数域上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程的根与系数的关系
教学目的
1.使学生掌握一元二次方程根与系数的关系(即韦达定理),并学会初步运用.
2.培养学生分析、观察以及利用求根公式进行推理论证的能力.
教学重点、难点
重点:韦达定理的推导和初步运用.
难点:定理的应用.
教学过程
一、复习提问
1.一元二次方程ax2+bx+c=0的求根公式应如何表述?
2.上述方程两根之和等于什么?两根之积呢?
二、新课讲解
一元二次方程ax2+bx+c=0(a≠0)的两根为
由此得出,一元二次方程的根与系数之间存在如下关系:(又称“韦达定理”)
如果ax2+bx+c=0(a≠0)的两个根是x 1,x2,那么
例1已知方程5x2+k x-6=0的一个根是2,求它的另一根及k的值.
讲解例1
例2利用根与系数的关系,求一元二次方程2x2+3x-1=0两根的(1)平方和;(2)倒数和.
三、学生练习
1.下列各方程两根之和与两根之积各是什么?
(1)x2-3x-18=0;(2)x2+5x+4=5;
(3)3x2+7x+2=0;(4)2x2+3x=0.
2.方程5x2+kx-6=0两根互为相反数,k为何值?
3.方程2x2+7x+k=0的两根中有一个根为0,k 为何值?
4、已知两个数的和等于8,积等于9,求这两个数.
提示:这是一道“根与系数的关系定理”的应用题,要注意此类题的解题步骤:(1)运用定理构造方程; (2)解方程求两根; (3)得出所欲求的两个数.
四、课堂小结
1.本节课主要学习了一元二次方程根与系数关系定理,应在应用过程中熟记定理.
2.要掌握定理的四个应用:一是不解方程直接求方程的两根之和与两根之积;二是已知方程一根求另一根及系数中字母的值.三是已知方程求两根的各种代数式的值;四是已知两根的代数式的值,构造新方程;
五、布置作业:
1、本节不留书面作业。
2、探究性作业:课本55页探索。