高三第三次模拟考试数学试卷

合集下载

2025届江西省南昌三校高三第三次模拟考试数学试卷含解析

2025届江西省南昌三校高三第三次模拟考试数学试卷含解析

2025届江西省南昌三校高三第三次模拟考试数学试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.抛掷一枚质地均匀的硬币,每次正反面出现的概率相同,连续抛掷5次,至少连续出现3次正面朝上的概率是( ) A .14B .13C .532D .3162.函数的图象可能是下面的图象( )A .B .C .D .3.阅读名著,品味人生,是中华民族的优良传统.学生李华计划在高一年级每周星期一至星期五的每天阅读半个小时中国四大名著:《红楼梦》、《三国演义》、《水浒传》及《西游记》,其中每天阅读一种,每种至少阅读一次,则每周不同的阅读计划共有( ) A .120种B .240种C .480种D .600种4.如图所示的程序框图,当其运行结果为31时,则图中判断框①处应填入的是( )A .3?i ≤B .4?i ≤C .5?i ≤D .6?i ≤5.已知集合{}10A x x =+≤,{|}B x x a =≥,若A B R =,则实数a 的值可以为( )A .2B .1C .0D .2-6.若复数z 满足()1i z i +=(i 是虚数单位),则z 的虚部为( ) A .12B .12-C .12i D .12i -7.函数2|sin |2()61x f x x=+ )A .B .C .D .8.如图是计算11111++++246810值的一个程序框图,其中判断框内应填入的条件是( )A .5k ≥B .5k <C .5k >D .6k ≤9.已知函数()5sin 12f x x π⎛⎫=+ ⎪⎝⎭,要得到函数()cos g x x =的图象,只需将()y f x =的图象( )A .向左平移12π个单位长度 B .向右平移12π个单位长度C .向左平移512π个单位长度 D .向右平移512π个单位长度 10.已知实数x ,y 满足2212x y +≤,则2222267x y x y x +-++-+的最小值等于( )A .625B .627C 63-D .962-11.总体由编号为01,02,...,39,40的40个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表(如表)第1行的第4列和第5列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )A .23B .21C .35D .3212.()6321x x x ⎫-⎪⎭的展开式中的常数项为( ) A .-60B .240C .-80D .180二、填空题:本题共4小题,每小题5分,共20分。

辽宁省沈阳市东北育才学校2025届高三上学期第三次模拟考试数学试卷

辽宁省沈阳市东北育才学校2025届高三上学期第三次模拟考试数学试卷

辽宁省沈阳市东北育才学校2025届高三上学期第三次模拟考试数学试卷一、单选题1.已知全集{}0,1,2,3,4,5,6,7,8U =,集合{}1,2,4A =,集合{}0,3,5,6B =,则()U A B ð等于()A .{}4B .{}7,8C .{}3,5,6D .{}3,5,6,02.若复数z 满足1ii z-=(i 为虚数单位),则z 的虚部是()A .iB .1C .i-D .1-3πsin 4αα⎛⎫=- ⎪⎝⎭,则2cos 2cos αα+=()A .34B .12C .14-D .12-4.以边长为2的正三角形的一边所在直线为旋转轴,将该正三角形旋转一周所得几何体的表面积为()AB .2πC .D .5.已知向量()*12,,,n a a a n ∈N 满足()1111,2,,1,1,2,i i a a d i n a d a +-==-== 与d 的夹角为π3,设1n n b a a =⋅ ,数列{}n b 的前n 项和为n S ,则20S =()A .120B .180C .210D .4206.在ABC V 中,角A ,B ,C 的边分别为a ,b ,c ,3cos 3cos b C c B a -=,则()tan B C -的最大值为()AB .2C D .247.已知矩形ABCD ,3AB =,AD =,M 为边DC 上一点且1DM =,AM 与BD 交于点Q ,将ADM △沿着AM 折起,使得点D 折到点P 的位置,则sin PBQ ∠的最大值是()A .13B .3C .23D .10108.函数()2e 12e 21x x xh x -=++,不等式()()2222h ax h ax -+≤对x ∀∈R 恒成立,则实数a 的取值范围是()A .()2,-+∞B .(),2-∞C .()0,2D .[]2,0-二、多选题9.已知函数π()sin 33f x x ⎛⎫=+ ⎪⎝⎭,下列说法正确的是()A .()f x 的最小正周期为2π3B .点π,06⎛⎫⎪⎝⎭为()f x 图象的一个对称中心C .若()(R)f x a a =∈在ππ,189x ⎡⎤∈-⎢⎥⎣⎦上有两个实数根,则312a ≤<D .若()f x 的导函数为()f x ',则函数()()y f x f x =+'10.如图,已知ABC V 中,23B π=,2AB BC ==,M 是AC 的中点,动点P 在以AC 为直径的半圆弧上.则()A .2BM BA BC=+ B .BP BC ⋅最小值为-2C .BM 在BC 上的投影向量为13BC D .若,BP xBA yBC x y =++的最大值为111.如图所示,在五面体ABCDEF 中,四边形ABCD 是矩形,ABF △和DCE △均是等边三角形,且AB =(0)EF x x =>,则()A .//EF 平面ABCDB .二面角A EF B --随着x 的减小而减小C .当2BC =时,五面体ABCDEF 的体积(x)V 最大值为272D .当32BC =时,存在xABCDEF 三、填空题12.已知函数()()322x xx a f x -=⋅-是偶函数,则a =.13.如图,平面四边形ADBC中,,AB BC AB BC ABD ⊥== 为等边三角形,现将ABD △沿AB 翻折,使点D 移动至点P ,且PB BC ⊥,则三棱锥P ABC -的外接球的表面积为.14.已知不等式ln ln x x m x x n -≥+对0x ∀>恒成立,则当nm取最大值时,m =.四、解答题15.已知,,a b c 分别为ΔA 三个内角,,A B C的对边,且满足sin cos 0a B A =,4a =.(1)求A ∠;(2)若D 是BC 中点,3AD =,求ΔA 面积.16.已知数列{}n a 满足111,31n n a a a +==+.(1)证明12n a ⎧⎫+⎨⎩⎭是等比数列,并求{}n a 的通项公式;(2)证明:121113 (2)n a a a +++<.17.已知函数()21e xax x f x +-=,R a ∈.(1)当0a =时,求曲线()y f x =在点()()0,0f 处的切线方程;(2)求()f x 的单调区间;(3)当0a >时,若对于任意[]1,3x ∈,不等式()21112ef x ≤≤+成立,求a 的取值范围.18.如图,在四棱锥P ABCD -中,底面ABCD 是正方形,PD ⊥面,4,ABCD PD AB E ==为棱PA 上的动点.(1)若E 为棱PA 中点,证明:PC ∥面EBD ;(2)在棱PA 上是否存在点E ,使得二面角B DE A --的余弦值为2?3若存在,求出PEPA 的值;若不存在,请说明理由;(3),,E F Q 分别在棱,,PA PC PD 上,1EQ FQ ==,求三棱锥F EDP -的体积的最大值.19.已知定义在R 上的函数()e kx bf x +=(e 是自然对数的底数)满足()()f x f x '=,且()11f -=,删除无穷数列()1f 、()2f 、()3f 、L 、()f n 、L 中的第3项、第6项、L 、第3n 项、L 、()N,1n n ∈≥,余下的项按原来顺序组成一个新数列{}n t ,记数列{}n t 前n 项和为n T .(1)求函数()f x 的解析式;(2)已知数列{}n t 的通项公式是()()n t f g n =,N ∈n ,1n ≥,求函数()g n 的解析式;(3)设集合X 是实数集R 的非空子集,如果正实数a 满足:对任意1x 、2x X ∈,都有12x x a -≤,设称a 为集合X 的一个“阈度”;记集合(),N,1131324n nT H w w n n n f ⎧⎫⎪⎪⎪⎪⎪⎪==∈≥⎨⎬⎛⎫+⋅-⎪⎪ ⎪-⎪⎪ ⎪⎝⎭⎪⎪⎩⎭,试问集合H 存在“阈度”吗?若存在,求出集合H “阈度”的取值范围;若不存在,请说明理由;。

2024届高三数学模拟检测(广东专用,2024新题型)(考试版)

2024届高三数学模拟检测(广东专用,2024新题型)(考试版)

2024年高考第三次模拟考试
高三数学(广东专用)
(考试时间:120分钟试卷满分:150分)
注意事项:
1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.
3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.
4.测试范围:高考全部内容
5.考试结束后,将本试卷和答题卡一并交回.
一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题
目要求的)
2168πcm
C.3
部选对的得6分,部分选对的得部分分,有选错的得0分)

对称


单调递减
与平面ABP夹角的余弦值.
2 21
y
b
+=的焦距为2,1F 的周长为8.。

湖南省永州市2024届高三第三次模拟考试数学试题

湖南省永州市2024届高三第三次模拟考试数学试题

湖南省永州市2024届高三第三次模拟考试数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知集合(){}ln 3A x y x ==-,{}2N 4120B x x x =∈--<,则A B =I ( )A .{}4,5B .[)3,6C .{}3,4,5,6D .()3,62.样本数据16,24,14,10,20,15,12,14的上四分位数为( ) A .14B .15C .16D .183.已知非零数列{}n a 满足21220n n n n a a ++-=,则20242021a a =( ) A .8B .16C .32D .644.61tan x x θ⎛⎫- ⎪⎝⎭的展开式中第四项的系数为540,则cos2θ的值为( )A .3537-B .3537 C .45-D .455.为迎接2024年在永州举行的中国龙舟公开赛,一位热情好客的永州市民准备将9份一样的永州特产分给甲、乙、丙三名幸运观众,若每人至少分得一份,且甲、乙两人分得的份数不相同,则不同的分法总数为( ) A .26B .25C .24D .236.在ABC V 中,120ACB ∠=o,3AC u u u r =,4BC =u u u r ,0DC DB ⋅=u u u r u u u r,则AB AD +u u u r u u u r 的最小值为( ) A.2B.4C.1D27.已知函数()e e sin 2x xf x x x -=-+-+,其中e 是自然对数的底数.若()12log 34f t f ⎛⎫+> ⎪⎝⎭,则实数t 的取值范围是( ) A .10,8⎛⎫ ⎪⎝⎭B .1,8⎛⎫+∞ ⎪⎝⎭C .()0,8D .()8,+∞8.已知1F ,2F 分别是双曲线()2222100x y a b a b-=>>,的左、右焦点,点O 为坐标原点,过1F 的直线分别交双曲线左、右两支于A ,B 两点,点C 在x 轴上,23CB F A =u u u r u u u u r,2BF 平分1F BC ∠,其中一条渐近线与线段AB 交于点P ,则2sin POF ∠=( ) A.7B.7CD9.下列说法正确的是( )A .已知随机变量2(2)X N σ~,,若(02)0.4P X <<=,则(4)0.1P X >=B .设0a >,0b >,则“log 3log 3b a >”成立的充要条件是“1a b >>”C .已知()12P B A =,()38P AB =,则()316P A = D .若()16P AB =,()13P A =,()14P B =,则事件A 与B 相互独立二、多选题10.已知抛物线2:2C x y =的焦点为F ,过点F 且倾斜角为锐角的直线l 与抛物线C 相交于A ,B 两点(点A 在第一象限),过点A 作抛物线C 的准线的垂线,垂足为M ,直线l 与抛物线C的准线相交于点N ,则( )A .AF BF +的最小值为2B .当直线l8AB =C .设直线BM ,MF 的斜率分别为1k ,2k ,则1212k k = D .过点B 作直线AM 的垂线,垂足为Q ,BQ 交直线MF 于点P ,则BP PQ = 11.在平面四边形ABCD中,AB AD ==AB AD ⊥,BCD △为等边三角形,将ABD △沿BD 折起,得到三棱锥1A BCD -,设二面角1A BD C --的大小为α.则下列说法正确的是( )A .当150α=o 时,M ,N 分别为线段BD ,1AC 上的动点,则MNB .当120α=o 时,三棱锥1A BCD -C .当90α=o 时,以1AC 为直径的球面与底面BCDD .当60α=o 时,AD 绕D 点旋转至1A D三、填空题12.已知复数()22156i z m m m =--+,()22103i z m m =--,若21z z <(z 为z 的共轭复数),则实数m 的取值范围为 .13.已知在ABC V 中,角A ,B ,C 所对的边分别为a ,b ,c ,且c o s c o s 2c o s a B b A C +=-,π7sin 268A ⎛⎫+= ⎪⎝⎭,则()cos A B -= .14.已知函数()f x 的定义域为R ,()()11f x f x +-=,()27x f x f ⎛⎫= ⎪⎝⎭,且对于1201x x ≤≤≤,恒有()()12f x f x ≤,则12024f ⎛⎫= ⎪⎝⎭.四、解答题15.绿化祖国要扩绿、兴绿、护绿并举.某校植树节分别在甲,乙两块不同的土地上栽种某品种树苗各500株.甲地土质含有M 元素,乙地土质不含有M 元素,其它土质情况均相同,一段时间后,为了弄清楚该品种树苗的成活情况与M 元素含量是否有关联,分别在甲,乙两块土地上随机抽取树苗各50株作为样本进行统计分析.经统计,甲地成活45株,乙地成活40株.(1)根据所给数据,完成下面的22⨯列联表(单位:株),并判断依据小概率值0.10α=的独立性检验,能否认为该品种树苗成活与M 元素含量有关联?22⨯列联表(2)若将频率视为概率,从样本中不成活的树苗中随机抽取3株,其中取自甲地的株数为X ,求X 的分布列及方差 参考公式:()()()()()22n ad bc a b c d a c b d χ-=++++,n a b c d =+++参考数据:16.如图,在多面体ABCDEF 中,底面ABCD 为直角梯形,//AB CD ,AB BC ⊥,EC ⊥平面ABCD ,244CD BC AB ===.(1)证明:BD AE ⊥;(2)若2EC BF =,//BF EC ,且多面体ABCDEF 的体积为113,求直线AC 与平面AEF 所成角的正弦值.17.已知函数()3133ln f x x b x =---.(1)当1b =时,求()f x 在1,3∞⎛⎫+ ⎪⎝⎭的单调区间及极值.(2)若()0f x ≥恒成立,求b 的取值范围.18.已知数列{}n a 为等比数列,{}n b 为等差数列,且112a b ==,858a a =,48a b =. (1)求{}n a ,{}n b 的通项公式;(2)数列()1122241n n b ππ⎤⎛⎫-+ ⎪⎥⎝⎭⎦⎧⎫-⋅⎨⎬⎩⎭的前n 项和为n S ,集合*422N n n n S b A n t n n a ++⎧⎫⋅⎪⎪=≥∈⎨⎬⋅⎪⎪⎩⎭,共有5个元素,求实数t 的取值范围; (3)若数列{}n c 中,11c =,()22log 2114nn n ac n b =≥-,求证:1121231232n c c c c c c c c c c +⋅+⋅⋅++⋅⋅<L L L .19.已知O 为坐标原点,动点M 在椭圆22:12x C y +=上,动点N 满足ON =u u u r u u u r ,记点N的轨迹为E(1)求轨迹E 的方程;(2)在轨迹E 上是否存在点T ,使得过点T 作椭圆C 的两条切线互相垂直?若存在,求点T 的坐标:若不存在,请说明理由:(3)过点M 的直线()0y kx m m =+≠交轨迹E 于A ,B 两点,射线OM 交轨迹E 于点P ,射线MO 交椭圆C 于点Q ,求四边形APBQ 面积的最大值.。

2024届浙江省温州市普通高中高三第三次适应性考试(温州三模)数学试卷(含答案详解)

2024届浙江省温州市普通高中高三第三次适应性考试(温州三模)数学试卷(含答案详解)

温州市2024届普通高中高三第三次适应性考试高三数学试题卷一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.在ABC 中,三个内角,,A B C 成等差数列,则()sin A C +=()A .12B.2CD .12.平面向量()(),2,2,4a m b ==-,若()a ab - ∥,则m =()A .1-B .1C .2-D .23.设,A B 为同一试验中的两个随机事件,则“()()1P A P B +=”是“事件,A B 互为对立事件”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.已知*m ∈N ,()21mx +和()211m x ++的展开式中二项式系数的最大值分别为a 和b ,则()A .a b <B .a b=C .a b>D .,a b 的大小关系与m 有关5.已知5πsin 4⎛⎫β+=-⎪⎝⎭()()sin 2cos cos 2sin αβαβαα---=()A .2425-B .2425C .35-D .356.已知函数()223,02,0xx x x f x x ⎧-+>=⎨≤⎩,则关于x 方程()2f x ax =+的根个数不可能是()A .0个B .1个C .2个D .3个7.已知12,F F 是椭圆2222:1(0)x y C a b a b +=>>的左右焦点,C 上两点,A B 满足:222AF F B = ,14cos 5AF B ∠=,则椭圆C 的离心率是()A .34BC .23D8.数列{}n a 的前n 项和为()*1,n n n n S S a n a +=∈N ,则5622111i i i i a a -==-∑∑可以是()A .18B .12C .9D .6二、选择题:本题共3小题,每小题6分,共18分。

在每小题给出的选项中,有多项符合题目要求。

2024年高考第三次模拟考试高三数学(考试版)

2024年高考第三次模拟考试高三数学(考试版)

2024年高考第三次模拟考试高三数学(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.已知集合{}4A x x =∈<N ,{}21,B x x n n A ==-∈,P A B = ,则集合P 的子集共有()A .2个B .3个C .4个D .8个2.古希腊数学家毕达哥拉斯通过研究正五边形和正十边形的作图,发现了黄金分隔率,黄金分割率的值也可以用2sin18°表示,即12sin182-=,设12m =,则2tan 811tan 81=+()A.4mB.2m C.m3.若5(4)(2)x m x --的展开式中的3x 的系数为600-,则实数m =()A.8.B.7C.9D.104.甲、乙、丙、丁、戊5位同学报名参加学校举办的三项不同活动,每人只能报其中一项活动,每项活动至少有一个人参加,则甲、乙、丙三位同学所报活动各不相同的概率为()A .518B .625C .925D .895.设n S 为正项等差数列{}n a 的前n 项和.若20232023S =,则4202014a a +的最小值为()A.52B.5C.9D.926.已知函数()()()sin f x x x ωω=+,若沿x 轴方向平移()f x 的图象,总能保证平移后的曲线与直线1y =在区间[]0,π上至少有2个交点,至多有3个交点,则正实数ω的取值范围为()A.82,3⎡⎫⎪⎢⎣⎭B.102,3⎡⎫⎪⎢⎣⎭C.10,43⎡⎫⎪⎢⎣⎭D.[)2,47.已知()6116,ln ,log 71ln 510115a b c =+==-,则()A.a b c >> B.b c a>> C.a c b >> D.c a b>>8.已知正方体1121ABCD A B C D -的棱长为2,P 为线段11C D 上的动点,则三棱锥P BCD -外接球半径的取值范围为()A.,24⎤⎥⎣⎦B.4⎣C.1⎣D.4⎣二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知复数123,,z z z ,下列说法正确的有()A.若1122z z z z =,则12||||z z =B.若22120z z +=,则120z z ==C.若1213z z z z =,则10z =或23z z =D.若1212||||z z z z -=+,则120z z =10.已知抛物线2:4C x =y 的焦点为F ,准线为l ,过F 的直线与抛物线C 交于A,B 两点,M 为线段AB 中点,,,A B M '''分别为A,B,M 在ι上的射影,且||3||AF BF =,则下列结论中正确的是A.F 的坐标为(1,0)B.||2||A B M F '''=C.,,,A A M F ''四点共圆D.直线AB 的方程为313y x =±+11.对于[]()0,1,x f x ∈满足()()()11,23x f x f x f x f ⎛⎫+-== ⎪⎝⎭,且对于1201x x ≤≤≤.恒有()()12f x f x ≤.则()A .10011011002i i f =⎛⎫=⎪⎝⎭∑B .112624f f⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭C .118080f ⎛⎫= ⎪⎝⎭D .1113216016f ⎛⎫≤≤⎪⎝⎭第Ⅱ卷三、填空题:本题共3小题,每小题5分,共15分.12.某工厂生产的产品的质量指标服从正态分布2(100,)N σ.质量指标介于99至101之间的产品为良品,为使这种产品的良品率达到95.45%,则需调整生产工艺,使得σ至多为.(若2~(,)X N μσ,则{||2}0.9545)P X μσ-<=13.ABC △中,,,a b c ,分别为角,,A B C的对边,若3A π=,a b c +=+,则ABC △的面积S 的最小值为.14.函数sin cos ()e e x x f x =-在(0,2π)范围内极值点的个数为.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)己知函数()ln f x x ax =-,其中a R ∈.(I)若曲线()y f x =在1x =处的切线在两坐标轴上的截距相等,求a 的值;(II)是否存在实数a ,使得()f x 在(0,]x e ∈上的最大值是-3?若存在,求出a 的值;若不存在,说明理由.16.(本小题满分15分)某景区的索道共有三种购票类型,分别为单程上山票、单程下山票、双程上下山票.为提高服务水平,现对当日购票的120人征集意见,当日购买单程上山票、单程下山票和双程票的人数分别为36、60和24.(1)若按购票类型采用分层随机抽样的方法从这120人中随机抽取10人,再从这10人中随机抽取4人,求随机抽取的4人中恰有2人购买单程上山票的概率.(2)记单程下山票和双程票为回程票,若在征集意见时要求把购买单程上山票的2人和购买回程票的m (2m >且*m ∈N )人组成一组,负责人从某组中任选2人进行询问,若选出的2人的购票类型相同,则该组标为A ,否则该组标为B ,记询问的某组被标为B 的概率为p .(i )试用含m 的代数式表示p ;(ii )若一共询问了5组,用()g p 表示恰有3组被标为B 的概率,试求()g p 的最大值及此时m 的值.17.(本小题满分15分)如图,在平行六面体1111ABCD A B C D -中,AC BD O = ,2AB AD ==,13AA =,11π3BAA BAD DAA ∠=∠=∠=,点P 满足1221333DP DA DC DD =++ .(1)证明:O ,P ,1B 三点共线;(2)求直线1AC 与平面PAB 所成角的正弦值.18.(本小题满分17分)已知椭圆22:11612x y E +=的左右焦点分别为12,F F ,点A 在椭圆E 上,且在第一象限内,满足1|| 5.AF =(1)求12F AF ∠的平分线所在的直线l 的方程;(2)在椭圆E 上是否存在关于直线l 对称的相异的两点,若存在,请找出这两点;若不存在请说明理由;(3)已知双曲线M 与椭圆E 有共同的焦点,且双曲线M 与椭圆E 相交于1234,,,P P P P ,若四边形1234P P P P 的面积最大时,求双曲线M 的标准方程.19.(本小题满分17分)已知数列{}n a ,记集合()(){}*1,,...,1,,N i i j T S i j S i j a a a i j i j +==+++≤<∈.(1)若数列{}n a 为1,2,3,写出集合T ;(2)若2n a n =,是否存在*,N i j ∈,使得(),512S i j =?若存在,求出一组符合条件的,i j ;若不存在,说明理由;(3)若n a n =,把集合T 中的元素从小到大排列,得到的新数列为12,,...,,...m b b b ,若2024m b ≤,求m 的最大值.。

2024年枣庄市高三数学第三次调研模拟考试卷附答案解析

2024年枣庄市高三数学第三次调研模拟考试卷附答案解析

2024年枣庄市高三数学第三次调研模拟考试卷试卷满分150分,考试用时120分钟2024.05一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}20A x x =+>∣,{}220B x x x =--<∣,则A B = ()A .{21}xx -<<∣B .{22}x x -<<∣C .{11}x x -<<∣D .{12}xx -<<∣2.已知双曲线22:14y x C m-=的一条渐近线方程为2y x =,则m =()A .1B .2C .8D .163.已知角α的顶点与原点重合,始边与x 轴的非负半轴重合,终边经过点ππcos ,sin 33P ⎛⎫ ⎪⎝⎭,则πcos 6α⎛⎫-=⎪⎝⎭()A .0B .12C D .24.对数螺线广泛应用于科技领域.某种对数螺线可以用πe ϕρα=表达,其中α为正实数,ϕ是极角,ρ是极径.若ϕ每增加π2个单位,则ρ变为原来的()A .13e 倍B .12e 倍C .π2e 倍D .πe 倍5.己知平面向量(1,1),(2,0)a b =-=,则a 在b 上的投影向量为()A .(1,0)-B .(1,0)C .(D .6.已知圆柱的底面半径为1,母线长为2,它的两个底面的圆周在同一个球的球面上,则该球的表面积为()A .4πB .6πC .8πD .10π7.已知复数1212,,z z z z ≠,若12,z z 同时满足||1z =和|1||i |z z -=-,则12z z -为()A .1BC .2D .8.在ABC 中,1202ACB BC AC ∠=︒=,,D 为ABC 内一点,AD CD ⊥,120BDC ∠=︒,则tan ACD ∠=()A .B C D二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知两个变量y 与x 对应关系如下表:x 12345y5m8910.5若y 与x 满足一元线性回归模型,且经验回归方程为ˆ125 4.25yx =+.,则()A .y 与x 正相关B .7m =C .样本数据y 的第60百分位数为8D .各组数据的残差和为010.若函数()()()2ln 1ln 1f x x x x=+--+,则()A .()f x 的图象关于()0,0对称B .()f x 在22⎛ ⎝⎭上单调递增C .()f x 的极小值点为22D .()f x 有两个零点11.已知正方体1111ABCD A B C D -的棱长为2,点M ,N 分别为棱1,DD DC 的中点,点P 为四边形1111D C B A (含边界)内一动点,且2MP =,则()A .1AB ∥平面AMNB .点P 的轨迹长度为π2C .存在点P ,使得MP ⊥平面AMND .点P 到平面AMN 三、填空题:本题共3个小题,每小题5分,共15分.12.写出函数()sin cos 1f x x x =+图象的一条对称轴方程.13.某人上楼梯,每步上1阶的概率为34,每步上2阶的概率为14,设该人从第1阶台阶出发,到达第3阶台阶的概率为.14.设()()1122,,,A x y B x y 为平面上两点,定义1212(,)d A B x x y y =-+-、已知点P 为抛物线2:2(0)C x py p =>上一动点,点(3,0),(,)Q d P Q 的最小值为2,则p =;若斜率为32的直线l 过点Q ,点M 是直线l 上一动点,则(,)d P M 的最小值为.四、解答题:本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.15.如图,四棱台1111ABCD A B C D -的底面为菱形,14,3,60AB DD BAD ==∠=︒,点E 为BC 中点,11,D E BC D E ⊥=(1)证明:1DD ⊥平面ABCD ;(2)若112AD =,求平面11A C E 与平面ABCD 夹角的余弦值.16.已知椭圆2222:1(0)x y E a b a b+=>>的左,右焦点分别为12,F F ,椭圆E 的离心率为12,椭圆E 上的点到右焦点的最小距离为1.(1)求椭圆E 的方程;(2)若过右焦点2F 的直线l 与椭圆E 交于B ,C 两点,E 的右顶点记为A ,1//AB CF ,求直线l 的方程.17.在一个袋子中有若干红球和白球(除颜色外均相同),袋中红球数占总球数的比例为p .(1)若有放回摸球,摸到红球时停止.在第2次没有摸到红球的条件下,求第3次也没有摸到红球的概率;(2)某同学不知道比例p ,为估计p 的值,设计了如下两种方案:方案一:从袋中进行有放回摸球,摸出红球或摸球5次停止.方案二:从袋中进行有放回摸球5次.分别求两个方案红球出现频率的数学期望,并以数学期望为依据,分析哪个方案估计p 的值更合理.18.已知函数2()e x f x ax x =--,()f x '为()f x 的导数(1)讨论()f x '的单调性;(2)若0x =是()f x 的极大值点,求a 的取值范围;(3)若π0,2θ⎛⎫∈ ⎪⎝⎭,证明:sin 1cos 1e e ln(sin cos )1θθθθ--++<.19.若数列{}n a 的各项均为正数,对任意*N n ∈,有212n n n a a a ++≥,则称数列{}n a 为“对数凹性”数列.(1)已知数列1,3,2,4和数列1,2,4,3,2,判断它们是否为“对数凹性”数列,并说明理由;(2)若函数231234()f x b b x b x b x =+++有三个零点,其中0(1,2,3,4)i b i >=.证明:数列1234,,,b b b b 为“对数凹性”数列;(3)若数列{}n c 的各项均为正数,21c c >,记{}n c 的前n 项和为n S ,1n n W S n=,对任意三个不相等正整数p ,q ,r ,存在常数t ,使得()()()r p q p q W q r W r p W t -+-+-=.证明:数列{}n S 为“对数凹性”数列.1.D【分析】首先解一元二次不等式求出集合B ,再根据交集的定义计算可得.【详解】由220x x --<,即()()120x x +-<,解得12x -<<,所以{}{}21220|B xx x x x <-=-=<-<∣,又{}{}202A xx x x =+>=>-∣∣,所以{}12A B x x =-<< ∣.故选:D 2.A【分析】利用双曲线方程先含参表示渐近线方程,待定系数计算即可.【详解】依题意,得0m >,令2204y x y x m -=⇒=,即C 的渐近线方程为y x =,21m=⇒=.故选:A 3.D【分析】根据三角函数的定义求出sin α,cos α,再由两角差的余弦公式计算可得.【详解】因为ππcos ,sin 33P ⎛⎫ ⎪⎝⎭,即122P ⎛⎫ ⎪ ⎪⎝⎭,即角α的终边经过点1322P ⎛⎫ ⎪ ⎪⎝⎭,所以sin α=,1cos 2α=,所以πππ11cos cos cos sin sin 66622ααα⎛⎫-=+== ⎪⎝⎭.故选:D 4.B【分析】设0ϕ所对应的极径为0ρ,10π2ϕϕ=+所对应的极径为1ρ,根据所给表达式及指数幂的运算法则计算可得.【详解】设0ϕ所对应的极径为0ρ,则0π0e ϕρα=,则10π2ϕϕ=+所对应的极径为0π2π1eϕρα+=,所以0000ππ222π1πππ1e e e e ϕϕϕϕραρα++-===,故ϕ每增加π2个单位,则ρ变为原来的12e 倍.故选:B 5.A【分析】根据已知条件分别求出a b ⋅ 和b ,然后按照平面向量的投影向量公式计算即可得解.【详解】(1,1),(2,0)a b =-=,2a b ⋅=-,2b =,a 在b 上的投影向量为()()22,01,04a b b bb⋅-⋅==-.故选:A.6.C【分析】利用圆柱及球的特征计算即可.【详解】由题意可知该球为圆柱的外切球,所以球心为圆柱的中心,设球半径为r ,则r =,故该球的表面积为24π8πr =.故选:C 7.C【分析】设()i ,R z x y x y =+∈,根据||1z =和|1||i |z z -=-求出交点坐标,即可求出12,z z ,再计算其模即可.【详解】设()i ,R z x y x y =+∈,则()11i z x y -=-+,()i 1i z x y -=+-,由||1z =和|1||i |z z -=-,所以221x y +=且()()222211x y y x -+=-+,即221x y +=且x y =,解得22x y ⎧=⎪⎪⎨⎪=⎪⎩或22x y ⎧=-⎪⎪⎨⎪=-⎪⎩,所以122z =+、2i 22z =-(或122i 22z =--、222i 22z =+),则21i i 2222z z ⎛⎫-=--- ⎪ ⎪⎝⎭(或21z z -=),所以122z z -=.故选:C 8.B【分析】在Rt ADC 中,设ACD θ∠=,AC x =,即可表示出CB,CD ,再在BCD △中利用正弦定理得cos sin(60)x θθ-︒,再由两角差的正弦公式及同角三角函数的基本关系将弦化切,即可得解.【详解】在Rt ADC 中,设ACD θ∠=π02θ⎛⎫<<⎪⎝⎭,令AC x =()0x >,则2CB x =,cos CD x θ=,在BCD △中,可得120BCD θ∠=︒-,60CBD θ∠=-︒,由正弦定理sin sin BC CDCDB CBD=∠∠,cos sin(60)x θθ==-︒=,可得tan θ=tan ACD ∠=故选:B .【点睛】关键点点睛:本题解答关键是找到角之间的关系,从而通过设元、转化到BCD △中利用正弦定理得到关系式.9.AD【分析】利用相关性的定义及线性回归直线可判定A ,根据样本中心点在回归方程上可判定B ,利用百分位数的计算可判定C ,利用回归方程计算预测值可得残差即可判定D.【详解】由回归直线方程知:1.250>,所以y 与x 正相关,即A 正确;由表格数据及回归方程易知32.53, 1.253 4.257.55mx y m +==⨯+=⇒=,即B 错误;易知560%3⨯=,所以样本数据y 的第60百分位数为898.52+=,即C 错误;由回归直线方程知1,2,3,4,5x =时对应的预测值分别为 5.5,6.75,8,9.25,.5ˆ10y=,对应残差分别为0.5,0.75,0,0.25,0--,显然残差之和为0,即D 正确.故选:AD 10.AC【分析】首先求出函数的定义域,即可判断奇偶性,从而判断A ,利用导数说明函数的单调性,即可判断B 、C ,求出极小值即可判断D.【详解】对于函数()()()2ln 1ln 1f x x x x =+--+,令10100x x x +>⎧⎪->⎨⎪≠⎩,解得10x -<<或01x <<,所以函数的定义域为()()1,00,1-U ,又()()()()()()22ln 1ln 1ln 1ln 1f x x x x x f x x x ⎡⎤-=--+-=-+--+=-⎢⎥⎣⎦,所以()f x 为奇函数,函数图象关于()0,0对称,故A 正确;又()22221121122211111f x x x x x x x x x---'=--=+-=-+-+--222222222(1)24(1)(1)x x x x x x x ----==--,当x ⎛∈ ⎝⎭时,()0f x '<,即()f x在⎛ ⎝⎭上单调递减,故B 错误;当2x ⎛⎫∈ ⎪ ⎪⎝⎭时,()0f x ¢>,即()f x在,12⎛⎫ ⎪ ⎪⎝⎭上单调递增,根据奇函数的对称性可知()f x 在21,2⎛⎫- ⎪ ⎪⎝⎭上单调递增,在22⎛⎫- ⎪ ⎪⎝⎭上单调递减,所以()f x 的极小值点为22,极大值点为22-,故C 正确;又(()ln 320f x f ==++⎝⎭极小值,且当x 趋近于1时,()f x 趋近于无穷大,当x 趋近于0时,()f x 趋近于无穷大,所以()f x 在()0,1上无零点,根据对称性可知()f x 在()1,0-上无零点,故()f x 无零点,故D 错误.故选:AC .11.ABD【分析】利用线线平行的性质可判定A ,利用空间轨迹结合弧长公式可判定B ,建立空间直角坐标系,利用空间向量研究线面关系及点面距离可判定C 、D.【详解】对于A ,在正方体中易知1111//,////MN CD CD A B NM A B ⇒,又1⊄A B 平面AMN ,MN ⊂平面AMN ,所以1A B ∥平面AMN ,即A 正确;对于B ,因为点P 为四边形1111D C B A (含边界)内一动点,且2MP =,11MD =,则1DP =P 点轨迹为以1D所以点P的轨迹长度为132ππ42⨯,故B 正确;对于C ,建立如图所示空间直角坐标系,则()()())π2,0,0,0,0,1,0,1,0,,,20,2A M N Pθθθ⎛⎫⎡⎤∈ ⎪⎢⎥⎣⎦⎝⎭,所以()())2,0,1,2,1,0,,1AM AN MP θθ=-=-=,若存在点P ,使得MP ⊥面AMN,则100AM MP AN MP θθθ⎧⋅=-=⎪⎨⋅=-=⎪⎩,解之得sin ,cos θθ=即不存在点P ,使得MP ⊥面AMN ,故C 错误;对于D ,设平面AMN 的一个法向量为(),,n x y z = ,则2020AM n x z AN n x y ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩,取12x y z =⇒==,即()1,2,2n =,则点P 到平面AMN的距离()221πtan ,0,3322n MP d n θϕθθϕϕ⋅++⎛⎫++⎛⎫====∈ ⎪⎪⎝⎭⎝⎭ ,显然π2θϕ+=时取得最大值max d =D 正确.故选:ABD【点睛】思路点睛:对于B ,利用定点定距离结合空间轨迹即可解决,对于C 、D 因为动点不方便利用几何法处理,可以利用空间直角坐标系,由空间向量研究空间位置关系及点面距离计算即可.12.π4x =(答案不唯一)【分析】利用二倍角公式及三角函数的图象与性质计算即可.【详解】易知1()sin 212f x x =+,所以()()πππ2πZ Z 242k x k k x k =+∈⇒=+∈,不妨取0k =,则π4x =.故答案为:π4x =(答案不唯一)13.1316【分析】先分①②两种方法,再由独立事件的乘法公式计算即可.【详解】到达第3台阶的方法有两种:第一种:每步上一个台阶,上两步,则概率为3394416⨯=;第二种:只上一步且上两个台阶,则概率为14,所以到达第3阶台阶的概率为911316416+=,故答案为:1316.14.232【分析】利用定义结合二次函数求最值计算即可得第一空,过P 作//PN x 并构造直角三角形,根据(,)d P M 的定义化折为直,结合直线与抛物线的位置关系计算即可.【详解】设2,2m P m p ⎛⎫ ⎪⎝⎭,则()()2221,30332222m m p d P Q m m m p p p p =-+-≥-+=-+-,322p⇒-=,即2p =,p m =时取得最小值;易知39:22l y x =-,2:4C x y =,联立有26180x x -+=,显然无解,即直线与抛物线无交点,如下图所示,过P 作//PN x 交l 于N ,过M 作ME PN ⊥,则(,)d P M PE EM PE EN PN =+≥+=(,M N 重合时取得等号),设2,4n P n ⎛⎫ ⎪⎝⎭,则223,64n n N ⎛⎫+ ⎪⎝⎭,所以()22133336622n PN n n =-+=-+≥,故答案为:2,32【点睛】思路点睛:对于曼哈顿距离的新定义问题可以利用化折为直的思想,数形结合再根据二次函数的性质计算最值即可.15.(1)证明见解析【分析】(1)连接DE 、DB ,即可证明BC ⊥平面1D DE ,从而得到1BC DD ⊥,再由勾股定理逆定理得到1DD DE ⊥,即可证明1DD ⊥平面ABCD ;(2)建立空间直角坐标系,利用空间向量法计算可得.【详解】(1)连接DE 、DB ,因为四边形ABCD 为菱形,60BAD ∠= 所以BDC 是边长为4的正三角形,因为E 为BC 中点,所以DE BC ⊥,DE =又因为11,D E BC D E DE E ⊥⋂=,1,D E DE ⊂平面1D DE ,所以BC ⊥平面1D DE ,又1DD ⊂平面1D DE ,所以1BC DD ⊥,又1D E =13DD =,DE =所以22211DD DE D E +=,所以1DD DE ⊥,又因为,,DE BC E DE BC =⊂ 平面ABCD ,所以1DD ⊥平面ABCD.(2)因为直线1,,DA DE DD 两两垂直,以D 为原点,1,,DA DE DD 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,则()()()()()10,0,0,4,0,0,0,,2,2,2,0,3D A E C A -,所以()()1111,2,2A C AC EA ==-=- 设平面11A C E 的一个法向量为(),,n x y z = ,则11130230n A C x n EA x z ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩,即43y x z ⎧=⎪⎨=⎪⎩,令3x =,得4y z ==,所以()4n = ,由题意知,()0,0,1m = 是平面ABCD 的一个法向量,设平面11A C E 与平面ABCD 的夹角为θ,则cos 13m n m n θ⋅===⋅ ,所以平面11A C E与平面ABCD 16.(1)22143x y +=(2)10x y +-=或10x y -=【分析】(1)利用椭圆焦半径公式及性质计算即可;(2)设直线l 方程,B 、C 坐标,根据平行关系得出两点纵坐标关系,联立椭圆方程结合韦达定理解方程即可.【详解】(1)设焦距为2c ,由椭圆对称性不妨设椭圆上一点()()000,0P x y a x ≥≥,易知()2,0F c ,则2PF =00c c x a a x a a =-=-,显然0x a =时2min PF a c =-,由题意得222121ca a c abc ⎧=⎪⎪⎨-=⎪⎪=+⎩解得2,1,a c b ===所以椭圆C 的方程为22143x y +=;(2)设()()1122,,,C x y B x y ,因为AB //1CF ,所以1122::2:1CF AB F F F A ==所以122y y =-①设直线l 的方程为1x my =+,联立得221431x y x my ⎧+=⎪⎨⎪=+⎩,整理得()2234690m y my ++-=,由韦达定理得()122122634934my y m y y m ⎧+=-⎪+⎪⎨=-⎪+⎪⎩,把①式代入上式得222226349234my m y m ⎧-=-⎪⎪+⎨⎪-=-⎪-+⎩,得()()22222236923434m y m m ==++,解得255m =±,所以直线l 的方程为:10x y -=或10x y -=.17.(1)1p-(2)答案见解析【分析】(1)设事件A =“第2次没有摸到红球”,事件B =“第3次也没有摸到红球”,根据条件概率公式计算可得;(2)记“方案一”中红球出现的频率用随机变量X 表示,X 的可能取值为11110,,,,,15432,求出所对应的概率,即可得到分布列与数学期望,“方案二”中红球出现的频率用随机变量Y 表示,则()55,Y B p ~,由二项分布的概率公式得到分布列,即可求出期望,再判断即可.【详解】(1)设事件A =“第2次没有摸到红球”,事件B =“第3次也没有摸到红球”,则()()21P A p =-,()()31P B p =-,所以()()()()()32(1)|1(1)P AB P B p P B A p P A P A p -====--;(2)“方案一”中红球出现的频率用随机变量X 表示,则X 的可能取值为:11110,,,,,15432,且()()501P X p ==-,()4115P X p p ⎛⎫==- ⎪⎝⎭,()3114P X p p ⎛⎫==- ⎪⎝⎭,()2113P X p p ⎛⎫==- ⎪⎝⎭,()112P X p p ⎛⎫==- ⎪⎝⎭,()1P X p ==,所以X 的分布列为:X 0151413121P 5(1)p -4(1)p p -3(1)p p -2(1)p p -()1p p-p 则()()()354211110(1)(1)1(1)115432E X p p p p p p p p p p =⨯-+⨯-+⨯-+⨯-+⨯-+⨯()4321(1)(1)(1)5432p p p p p p p p p ----=++++,“方案二”中红球出现的频率用随机变量Y 表示,因为()55,Y B p ~,所以5Y 的分布列为:()555C (1),0,1,2,3,4,5k k k P Y k p p k -==-=,即Y 的分布列为:Y 0152535451P 5(1)p -45(1)p p -3210(1)p p -3210(1)p p -()451p p -5p 所以()55E Y p =,则()E Y p =,因为()E X p >,()E Y p =,所以“方案二”估计p 的值更合理.18.(1)答案见解析(2)12a >(3)证明见解析【分析】(1)令()()g x f x '=,求出导函数,再分0a ≤和0a >两种情况讨论,分别求出函数的单调区间;(2)结合(1)分0a ≤、102a <<、12a =、12a >四种情况讨论,判断()f x 的单调性,即可确定极值点,从而得解;(3)利用分析法可得只需证sin 12e ln sin sin θθθ-+<,cos 12e ln cos cos θθθ-+<,只需证对任意10x -<<,有()2e ln 1(1)x x x ++<+,结合(2)只需证明()ln 1(10)x x x +<-<<,构造函数,利用导数证明即可.【详解】(1)由题知()e 21x f x ax =--',令()()21x g x f x ax =-'=-e ,则()e 2x g x a '=-,当0a ≤时,()()0,g x f x ''>在区间(),-∞+∞单调递增,当0a >时,令()0g x '=,解得ln2=x a ,当(),ln2x a ∞∈-时,()0g x '<,当()ln2,x a ∈+∞时,()0g x '>,所以()f x '在区间(),ln2a -∞上单调递减,在区间()ln2,a +∞上单调递增,综上所述,当0a ≤时,()f x '在区间(),-∞+∞上单调递增;当0a >时,()f x '在区间(),ln2a -∞上单调递减,在区间()ln2,a +∞上单调递增.(2)当0a ≤时,()00f '=,由(1)知,当(),0x ∈-∞时,()()0,f x f x '<在(),0∞-上单调递减;当()0,x ∈+∞时,()()0,f x f x '>在()0,∞+上单调递增;所以0x =是函数()f x 的极小值点,不符合题意;当102a <<时,ln20a <,且()00f '=,由(1)知,当()ln2,0x a ∈时,()()0,f x f x '<在()ln2,0a 上单调递减;当()0,x ∈+∞时,()()0,f x f x '>在()0,∞+上单调递增;所以0x =是函数()f x 的极小值点,不符合题意;当12a =时,ln20a =,则当(),x ∈-∞+∞时,()()0,f x f x '≥在(),-∞+∞上单调递增,所以()f x 无极值点,不合题意;当12a >时,ln20a >,且()00f '=;当(),0x ∈-∞时,()()0,f x f x '>在(),0∞-上单调递增;当()0,ln2∈x a 时,()()0,f x f x '<在()0,ln2a 上单调递减;所以0x =是函数()f x 的极大值点,符合题意;综上所述,a 的取值范围是12a >.(3)要证()sin 1cos 1e e ln sin cos 1θθθθ--++<,只要证()()sin 1cos 122e e ln sin ln cos sin cos θθθθθθ--+++<+,只要证sin 12e ln sin sin θθθ-+<,cos 12e ln cos cos θθθ-+<,因为π0,2θ⎛⎫∈ ⎪⎝⎭,则()()sin 0,1,cos 0,1θθ∈∈,所以只要证对任意01x <<,有12e ln x x x -+<,只要证对任意10x -<<,有()2e ln 1(1)x x x ++<+(※),因为由(2)知:当1a =时,若0x <,则()()01f x f <=,所以2e 1x x x --<,即2e 1x x x <++①,令函数()()ln 1(10)h x x x x =+--<<,则()1111x h x x x-'=-=++,所以当10x -<<时()0h x '>,所以()h x 在()1,0-单调递增;则()()00h x h <=,即()ln 1(10)x x x +<-<<,由①+②得()22e ln 121(1)x x x x x ++<++=+,所以(※)成立,所以()sin 1cos 1e e ln sin cos 1θθθθ--++<成立.【点睛】方法点睛:利用导数证明或判定不等式问题:1.通常要构造新函数,利用导数研究函数的单调性与极值(最值),从而得出不等关系;2.利用可分离变量,构造新函数,直接把问题转化为函数的最值问题,从而判定不等关系;3.适当放缩构造法:根据已知条件适当放缩或利用常见放缩结论,从而判定不等关系;4.构造“形似”函数,变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.19.(1)只有1,2,4,3,2是“对数凹性”数列,理由见解析(2)证明见解析(3)证明见解析【分析】(1)利用“对数凹性”数列的定义计算即可;(2)利用导数研究三次函数的性质结合()1,f f x x ⎛⎫ ⎪⎝⎭零点个数相同及“对数凹性”数列的定义计算即可;(3)将,p q 互换计算可得0=t ,令1,2p q ==,可证明{}n W 是等差数列,结合等差数列得通项公式可知()11n W c n d =+-,利用1n n W S n=及,n n S c 的关系可得()121n c c d n =+-,并判定{}n c 为单调递增的等差数列,根据等差数列求和公式计算()2124n n n S S S ++-结合基本不等式放缩证明其大于0即可.【详解】(1)根据“对数凹性”数列的定义可知数列1,3,2,4中2234≥⨯不成立,所以数列1,3,2,4不是“对数凹性”数列;而数列1,2,4,3,2中222214423342⎧≥⨯⎪≥⨯⎨⎪≥⨯⎩均成立,所以数列1,2,4,3,2是“对数凹性”数列;(2)根据题意及三次函数的性质易知2234()23f x b b x b x =++'有两个不等实数根,所以221324324Δ44303b b b b b b =-⨯>⇒>,又0(1,2,3,4)i b i >=,所以2324243b b b b b >>,显然()1000x f b =⇒=>,即0x =不是()f x 的零点,又2312341111f b b b b x x x x ⎛⎫⎛⎫⎛⎫⎛⎫=+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,令1t x =,则()231234f t b b t b t b t =+++也有三个零点,即32123431b x b x b x b f x x +++⎛⎫= ⎪⎝⎭有三个零点,则()321234g x b x b x b x b =+++有三个零点,所以()212332g x b x b x b =++'有两个零点,所以同上有22221321313Δ44303b b b b b b b b =-⨯>⇒>>,故数列1234,,,b b b b 为“对数凹性”数列(3)将,p q 互换得:()()()r q p t q p W p vr W r q W t =-+-+-=-,所以0=t ,令1,2p q ==,得()()(2210r W r W r W -+-+-=,所以()()()()12121211r W r W r W W r W W =-+-=+--,故数列{}n W 是等差数列,记221211022S c c d W W c -=-=-=>,所以()()2111112n c c W c n c n d -⎛⎫=+-=+- ⎪⎝⎭,所以()21n n S nW dn c d n ==+-,又因为11,1,2n n n c n c S S n -=⎧=⎨-≥⎩,所以()121n c c d n=+-,所以120n n c c d +-=>,所以{}n c 为单调递增的等差数列,所以()11210,2,2n n n n n n n n cc c c c c c S ++++>>+==.所以()()()()()22212111124(1)2n n n n n n S S S n c c n n c c c c ++++-=++-+++()()()()22112211(1)22n n n c c c c n c c n n ++⎡⎤+++>++-+⎢⎥⎣⎦()()222112112(1)22n n c c c n c c n n ++++⎛⎫=++-+ ⎪⎝⎭()()()2221111(1)2n n n c c n n c c ++=++-++()()2211(1)2n n n n c c +⎡⎤=+-++⎣⎦()2110n c c +=+>所以212n n n S S S ++≥,数列{}n S 是“对数凹性”数列【点睛】思路点睛:第二问根据定义及三次函数的性质、判别式先判定2324243b b b b b >>,再判定()1,f f x x ⎛⎫ ⎪⎝⎭零点个数相同,再次利用导函数零点个数及判别式判定2213133b b b b b >>即可;第三问根据条件将,p q 互换得0=t ,利用赋值法证明{}n W 是等差数列,再根据1n n W S n=及,n n S c 的关系可得n c 从而判定其为单调递增数列,根据等差数列求和公式计算()2124n n n S S S ++-结合基本不等式放缩证明其大于0即可.。

广西柳州市2024届高三第三次模拟考试数学试题含答案

广西柳州市2024届高三第三次模拟考试数学试题含答案

柳州市2024届高三第三次模拟考试数学(考试时间120分钟满分150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.某中学的学生积极参加体育锻炼,其中有90%的学生喜欢足球或游泳,60%的学生喜欢足球,80%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是()A .70%B .60%C .50%D .40%2.已知i 是虚数单位,若()()1i i a ++为实数,则实数a 的值为()A .1B .2-C .0D .1-3.已知()()12,3,3,,1AB AC t BC ===,则AB BC ⋅= ()A .3-B .2-C .2D .34.在天文学中,天体的明暗程度可以用星等或亮度来描述。

两颗星的星等与亮度满足12125lg 2E m m E -=,其中星等为k m 的星的亮度为()1,2k E k =,已知太阳的星等是26.7-,天狼星的星等是 1.45-,则太阳与天狼星的亮度的比值为()A .10.110B .10.1C .lg10.1D .10.110-5.从5名志愿者中选派4人在星期六和星期日参加公益活动,每人一天,每天两人,则不同的选派方法共有()A .60种B .48种C .30种D .10种6.已知,,,P A B C 是半径为2的球面上四点,ABC △为等边三角形且其面积为4,则三棱锥P ABC -体积的最大值为()A .334B .934C.D .153410.椭圆22221(0)x y a b a b+=>>的离心率为e ,右焦点为(),0F c ,方程20ax bx c +-=的两个实根分别为1x 和2x ,则点()12,P x x ()A .必在圆222x y +=内B .必在圆222x y +=上C .必在圆222x y +=外D .与圆222x y +=的关系与e 有关8.设函数()f x 是定义在R 上的奇函数,且对于任意的,x y R ∈,都有()()f x f y x y -<-,若函数()()g x f x x -=,则不等式()()2220g x x g x -+-<的解集是()A .()1,2-B .()1,2C .()(),12,-∞-+∞ D .()(),12,-∞+∞ 二、选择题:本题共3小题,每小题6分,共18分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三第三次模拟考试数学试卷(word版)(2013.5.2)
一、填空题:本大题共14小题,每小题5分,共70分.
1.已知集合,,则▲.
2.设复数满足(是虚数单位),则复数的
模为▲.
3.右图是一个算法流程图,则输出的的值是▲.
4.“”是“”成立的▲条件.
(从“充要”,“充分不必要”,“必要不充分”中选择一个正确的填写)
5.根据某固定测速点测得的某时段内过往的100辆
机动车的行驶速度(单位:km/h)绘制的频率分布
直方图如右图所示.该路段限速标志牌提示机动
车辆正常行驶速度为60 km/h~120 km/h,则该时
段内非正常行驶的机动车辆数为▲.
6.在平面直角坐标系中,抛物线上纵坐标为1的一点到焦点的距离为3,则焦点到准线的距离为▲.
7.从集合中任取两个不同的数,则其中一个数恰是另一个数的3倍的概率为▲.8.在平面直角坐标系中,设点为圆:上的任意一点,点(2 ,)
( ),则线段长度的最小值为▲.
9.函数,,在上
的部分图象如图所示,则的值为▲.
10.各项均为正数的等比数列中,.当取最小值时,数列的通项公式an= ▲.
11.已知函数是偶函数,直线与函数的图象自左向右依次交于四个不同点,,,.若,则实数的值为▲.
12.过点作曲线:的切线,切点为,设在轴上的投影是点,过点再作曲线的切线,切点为,设在轴上的投影是点,…,依次下去,得到第个切点.则点的坐标为▲.
13.在平面四边形ABCD中,点E,F分别是边AD,BC的中点,且AB ,,CD .
若,则的值为▲.
14.已知实数a1,a2,a3,a4满足a1 a2 a3 ,a1a42 a2a4 a2 ,且a1 a2 a3,则a4的取值范围是▲.
二、解答题
15.如图,在四棱锥中,底面是矩形,四条侧棱长均相等.
(1)求证:平面;
(2)求证:平面平面.
16.在△ABC中,角,,所对的边分别为,,c.已知.
(1)求角的大小;
(2)设,求T的取值范围.
17.某单位设计的两种密封玻璃窗如图所示:图1是单层玻璃,厚度为8 mm;图2是双层中空玻璃,厚度均为4 mm,中间留有厚度为的空气隔层.根据热传导知识,对于厚度为的均匀介质,两侧的温度差为,单位时间内,在单位面积上通过的热量,其中为热传导系数.
假定单位时间内,在单位面积上通过每一层玻璃及空气隔层的热量相等.(注:玻璃的热传导系数为,空气的热传导系数为.)
(1)设室内,室外温度均分别为,,内层玻璃外侧温度为,外层玻璃内侧温度为,且.试分别求出单层玻璃和双层中空玻璃单位时间内,在单位面积上通过的热量(结果用,及表示);
(2)为使双层中空玻璃单位时间内,在单位面积上通过的热量只有单层玻璃的4%,应如何设计的大小?
18.如图,在平面直角坐标系中,椭圆的右焦点为,离心率为.分别过,的两条弦,相交于点(异于,两点),且.
(1)求椭圆的方程;
(2)求证:直线,的斜率之和为定值.
19.已知数列是首项为1,公差为的等差数列,数列是首项为1,公比为的等比数列.(1)若,,求数列的前项和;
(2)若存在正整数,使得.试比较与的大小,并说明理由.
20.设是定义在的可导函数,且不恒为0,记.若对定义域内的每一个,总有,则称为“阶负函数”;若对定义域内的每一个,总有,则称为“阶不减函数”(为函数的导函数).
(1)若既是“1阶负函数”,又是“1阶不减函数”,求实数的取值范围;
(2)对任给的“2阶不减函数”,如果存在常数,使得恒成立,试判断是否为“2阶负函数”?并说明理由.
数学附加题
21.【选做题】
A.选修4—1:几何证明选讲
如图,⊙的半径为3,两条弦,交于点,且,,.
求证:△≌△.
B.选修4—2:矩阵与变换
已知矩阵不存在逆矩阵,求实数的值及矩阵的特征值.
C.选修4—4:坐标系与参数方程
在平面直角坐标系中,已知,,,,其中.设直线与的交点为,求动点的轨迹的参数方程(以为参数)及普通方程.
D.选修4—5:不等式选讲
已知,,.求证:.
22.【必做题】
设且,证明:

23.【必做题】
下图是某游戏中使用的材质均匀的圆形转盘,其中Ⅰ,Ⅱ,Ⅲ,Ⅳ部分的面积各占转盘面积的,,,.游戏规则如下:
①当指针指到Ⅰ,Ⅱ,Ⅲ,Ⅳ部分时,分别获得积分100分,40分,10分,0分;
②(ⅰ)若参加该游戏转一次转盘获得的积分不是40分,则按①获得相应的积分,游戏结束;
(ⅱ)若参加该游戏转一次获得的积分是40分,则用抛一枚质地均匀的硬币的方法来决定是否继续游戏.正面向上时,游戏结束;反面向上时,再转一次转盘,若再转一次的积分不高于40分,则最终积分为0分,否则最终积分为100分,游戏结束.
设某人参加该游戏一次所获积分为.
(1)求的概率;
(2)求的概率分布及数学期望.。

相关文档
最新文档