高中数学-随机变量及其概率分布练习
【必刷题】2024高二数学下册概率分布应用专项专题训练(含答案)

【必刷题】2024高二数学下册概率分布应用专项专题训练(含答案)试题部分一、选择题:1. 已知随机变量X服从二项分布,若P(X=1)=0.2,P(X=0)=0.8,则X的数学期望E(X)等于()A. 0.2B. 0.8C. 1D. 22. 在一次试验中,事件A的概率为0.3,事件B的概率为0.4,且A、B相互独立,则P(A∩B)等于()A. 0.12B. 0.24C. 0.3D. 0.43. 投掷一枚均匀的骰子,设X为出现的点数,Y为出现的点数平方,则D(X)与D(Y)的关系是()A. D(X) = D(Y)B. D(X) > D(Y)C. D(X) < D(Y)D. 无法确定4. 已知随机变量ξ服从正态分布N(μ, σ^2),且μ=60,σ=10,则P(50<ξ<70)等于()A. 0.6826B. 0.3174C. 0.4772D. 0.34135. 某班有50名学生,其中有30名喜欢打篮球,20名喜欢打乒乓球,10名既喜欢打篮球又喜欢打乒乓球,则至少喜欢一项运动的学生人数为()A. 40B. 45C. 50D. 556. 一个袋子里有5个红球,3个蓝球,2个绿球,随机取出一个球,取到红球或绿球的概率是()A. 0.5B. 0.6C. 0.7D. 0.87. 设随机变量X的分布列为:X=1的概率为0.3,X=2的概率为0.5,X=3的概率为0.2,则E(X^2)等于()A. 1.9B. 2.1C. 2.3D. 2.58. 在一次抽奖活动中,设中奖的概率为0.1,不中奖的概率为0.9,某人连续抽奖3次,恰好中奖2次的概率是()A. 0.027B. 0.0729C. 0.243D. 0.29169. 已知随机变量X的分布函数为F(x),则P(X=2)等于()A. F(2) F(1)B. F(2) F(2)C. F(2+) F(2)D. F(2+) F(1)10. 一批产品中有10%的次品,随机抽取10件产品,恰好有2件次品的概率是()A. 0.1937B. 0.3874C. 0.341D. 0.0678二、判断题:1. 随机变量X的数学期望E(X)和方差D(X)都是其分布的特征数。
高中数学第二章随机变量及其分布2.2.1条件概率练习含解析新人教A版选修23110513

高中数学第二章随机变量及其分布2.2.1条件概率练习含解析新人教A版选修23110513[A 基础达标]1.已知P(B|A)=13,P(A)=25,则P(AB)等于( )A.56B.910C.215D.115解析:选C.P(AB)=P(B|A)·P(A)=13×25=215,故选C.2.4张奖券中只有1张能中奖,现分别由4名同学无放回地抽取.若已知第一名同学没有抽到中奖券,则最后一名同学抽到中奖券的概率是( )A.14B.13C.12D.1解析:选B.记“第一位同学没有抽到中奖券”为事件A,P(A)=34,“最后一位同学抽到中奖券”为事件B,P(AB)=34×13=14,P(B|A)=P(AB)P(A)=1434=14×43=13.3.甲、乙、丙三人到三个景点旅游,每人只去一个景点,设事件A为“三个人去的景点不相同”,B为“甲独自去一个景点”,则概率P(A|B)等于( )A.49B.29C.12D.13解析:选C.由题意可知.n(B)=C1322=12,n(AB)=A33=6.所以P(A|B)=n(AB)n(B)=612=12.4.在区间(0,1)内随机投掷一个点M(其坐标为x),若A={x|0<x<12},B={x|14<x<34},则P (B |A )等于( )A .12B .14C .13D .34解析:选A .P (A )=121=12.因为A ∩B ={x |14<x <12},所以P (AB )=141=14,所以P (B |A )=P (AB )P (A )=1412=12.5.甲、乙两人从1,2,…,15这15个数中,依次任取一个数(不放回),则在已知甲取到的数是5的倍数的情况下,甲所取的数大于乙所取的数的概率是( )A .12B .715C .815D .914 解析:选D .设事件A =“甲取到的数是5的倍数”,B =“甲所取的数大于乙所取的数”,又因为本题为古典概型概率问题,所以根据条件概率可知,P (B |A )=n (A ∩B )n (A )=4+9+143×14=914.故选D . 6.如图,EFGH 是以O 为圆心,1为半径的圆的内接正方形,将一颗豆子随机地掷到圆内,用A 表示事件“豆子落在正方形EFGH 内”,B 表示事件“豆子落在扇形HOE (阴影部分)内”,则P (A )=________,P (B |A )=________.解析:因为圆的半径为1,所以圆的面积S =πr 2=π,正方形EFGH 的面积为⎝ ⎛⎭⎪⎫2r 22=2,所以P (A )=2π.P (B |A )表示事件“已知豆子落在正方形EFGH 中,则豆子落在扇形HOE (阴影部分)”的概率,所以P (B |A )=14.答案:2π 147.从一副不含大、小王的52张扑克牌中不放回地抽取2次,每次抽1张.已知第1次抽到A ,则第2次也抽到A 的概率是________.解析:设“第1次抽到A ”为事件A ,“第2次也抽到A ”为事件B ,则AB 表示两次都抽到A ,P (A )=452=113,P (AB )=4×352×51=113×17,所以P (B |A )=P (AB )P (A )=117.答案:1178.(2019·长春高二检测)分别用集合M ={2,4,5,6,7,8,11,12}中的任意两个元素作分子与分母构成真分数,已知取出的一个元素是12,则取出的另外一个元素与之构成可约分数的概率是________.解析:设“取出的两个元素中有一个是12”为事件A ,“取出的两个元素构成可约分数”为事件B ,则n (A )=7,n (AB )=4,所以P (B |A )=n (AB )n (A )=47.答案:479.某考生在一次考试中,共有10题供选择,已知该考生会答其中6题,随机从中抽5题供考生回答,答对3题及格,求该考生在第一题不会答的情况下及格的概率.解:设事件A 为从10题中抽5题,第一题不会答;设事件B 为从10题中依次抽5题,第一题不会答,其余4题中有3题或4题会答.n (A )=C 14C 49,n (B )=C 14(C 36C 13+C 46C 03).则P =C 14(C 36C 13+C 46C 03)C 14C 49=2542. 所以该考生在第一题不会答的情况下及格的概率为2542.10.某班从6名班干部(其中男生4人,女生2人)中,任选3人参加学校的义务劳动. (1)设所选3人中女生人数为X ,求X 的分布列. (2)求男生甲或女生乙被选中的概率.(3)设“男生甲被选中”为事件A ,“女生乙被选中”为事件B ,求P (B )和P (A |B ). 解:(1)X 的所有可能取值为0,1,2,依题意得P (X =0)=C 34C 36=15,P (X =1)=C 24C 12C 36=35,P (X=2)=C 14C 22C 36=15.所以X 的分布列为(2)则P (C )=C 34C 36=420=15;所以所求概率为P (C —)=1-P (C )=1-15=45.(3)P (B )=C 25C 36=1020=12;P (AB )=C 14C 36=15.所以P (A |B )=P (AB )P (B )=25.[B 能力提升]11.(2019·唐山高二检测)将三颗骰子各掷一次,设事件A 表示“三个点数都不相同”,B 表示“至少出现一个6点”,则概率P (A |B )等于( )A .6091B .12 C .518D .91216解析:选A .因为P (A |B )=P (AB )P (B ),P (AB )=C 13C 15C 1463=6063=60216,P (B )=1-P (B —)=1-5363=1-125216=91216.所以P (A |B )=P (AB )P (B )=6021691216=6091.12.从1~100共100个正整数中,任取一数,已知取出的一个数不大于50,则此数是2或3的倍数的概率为________.解析:设事件C 为“取出的数不大于50”,事件A 为“取出的数是2的倍数”,事件B 为“取出的数是3的倍数”.则P (C )=12,且所求概率为P (A ∪B |C )=P (A |C )+P (B |C )-P (AB |C )=P (AC )P (C )+P (BC )P (C )-P (ABC )P (C )=2×(25100+16100-8100)=3350. 答案:335013.一个口袋内装有2个白球和2个黑球,那么:(1)先摸出1个白球不放回,再摸出1个白球的概率是多少? (2)先摸出1个白球后放回,再摸出1个白球的概率是多少?解:(1)设“先摸出1个白球不放回”为事件A ,“再摸出1个白球”为事件B ,则“先后两次摸出白球”为事件AB ,“先摸一球不放回,再摸一球”共有4×3种结果,所以P (A )=12,P (AB )=2×14×3=16,所以P (B |A )=1612=13.所以先摸出1个白球不放回,再摸出1个白球的概率为13.(2)设“先摸出1个白球放回”为事件A 1,“再摸出1个白球”为事件B 1,“两次都摸出白球”为事件A 1B 1,P (A 1)=12,P (A 1B 1)=2×24×4=14,所以P (B 1|A 1)=P (A 1B 1)P (A 1)=1412=12.所以先摸出1个白球后放回,再摸出1个白球的概率为12.14.(选做题)在某次考试中,要从20道题中随机地抽出6道题,若考生至少能答对其中的4道题即可通过;若能答对其中的5道题就能获得优秀.已知某考生能答对其中的10道题,并且已知道他在这次考试中已经通过,求他获得优秀成绩的概率.解:设“该考生6道题全答对”为事件A ,“该考生恰好答对了5道题”为事件B ,“该考生恰好答对了4道题”为事件C ,“该考生在这次考试中通过”为事件D ,“该考生在这次考试中获得优秀”为事件E ,则D =A ∪B ∪C ,E =A ∪B ,且A ,B ,C 两两互斥,由古典概型的概率公式知P (D )=P (A ∪B ∪C )=P (A )+P (B )+P (C )=C 610C 620+C 510C 110C 620+C 410C 210C 620=12 180C 620,又AD =A ,BD =B ,所以P (E |D )=P (A ∪B |D )=P (A |D )+P (B |D )=P(AD)P(D)+P(BD)P(D)=P(A)P(D)+P(B)P(D)=C610C62012 180C620+C510C110C62012 180C620=1358.。
最新高考数学附加题加分练习(八)随机变量及其概率分布

随机变量及其概率分布1.袋中装有大小相同的黑球和白球共9个,从中任取2个都是白球的概率为.现512甲、乙两人从袋中轮流摸球,甲先取,乙后取,然后甲再取,…,每次摸取1个球,取出的球不放回,直到其中有一人取到白球时终止.用X 表示取球终止时取球的总次数.(1)求袋中原有白球的个数;(2)求随机变量X 的概率分布及数学期望E (X ).解 (1)设袋中原有n 个白球,则从9个球中任取2个球都是白球的概率为,C2nC29由题意知=,化简得n 2-n -30=0,C2nC29512解得n =6或n =-5(舍去),故袋中原有白球的个数为6.(2)由题意,X 的可能取值为1,2,3,4.P (X =1)==,P (X =2)==,69233×69×814P (X =3)==,P (X =4)==.3×2×69×8×71143×2×1×69×8×7×6184所以取球次数X 的概率分布为X 1234P2314114184所求数学期望E (X )=1×+2×+3×+4×=.23141141841072.某射击小组有甲、乙两名射手,甲的命中率为P 1=,乙的命中率为P 2,在射击23比武活动中每人射击两发子弹则完成一次检测.在一次检测中,若两人命中次数相等且都不少于一发,则称该射击小组为“先进和谐组”.(1)若P 2=,求该小组在一次检测中荣获“先进和谐组”的概率;12(2)在2018年每月进行1次检测,设这12次检测中该小组获得“先进和谐组”的次数为ξ,如果E (ξ)≥5,求P 2的取值范围.解 (1)所求概率P =+=.(C12·23·13)(C12·12·12)(23·23)(12·12)13(2)该小组在一次检测中荣获“先进和谐组”的概率为P =[C ·P 2·(1-P 2)]+P =P 2-P .(C12·23·13)12(23·23)289492而ξ~B (12,P ),所以E (ξ)=12P ,由E (ξ)≥5知,·12≥5,(89P 2-49P 2)解得≤P 2≤.3454又0≤P 2≤1,∴≤P 2≤1.343.(2018·南通调研)从集合{1,2,3,4,5}的所有非空子集中,等可能地取出m 个.(1)若m =1,求所取子集的元素既有奇数又有偶数的概率;(2)若m =2,记所取子集的元素个数之差的绝对值为ξ,求ξ的概率分布及数学期望E (ξ).解 (1)当m =1时,记事件A :“所取子集的元素既有奇数又有偶数”.则集合{1,2,3,4,5}的非空子集数为25-1=31,其中非空子集的元素全为奇数的子集数为23-1=7,全为偶数的子集数为22-1=3,所以P (A )==.31-(7+3)312131(2)当m =2时,ξ的所有可能取值为0,1,2,3,4,则P (ξ=0)===,C2C15+C2C25+C2C35+C2C45C 2311104652293P (ξ=1)===,C15C25+C25C35+C35C45+C45C55C 2312054654193P (ξ=2)===,C15C35+C25C45+C35C55C 2311104652293P (ξ=3)===,C15C45+C25C55C 23135465793P (ξ=4)===,C15C55C 2315465193所以ξ的概率分布为ξ01234P229341932293793193所以ξ的数学期望E (ξ)=0×+1×+2×+3×+4×=.229341932293793193110934.(2018·启东模拟)如图,已知正六棱锥S -ABCDEF 的底面边长为2,高为1.现从该棱锥的7个顶点中随机选取3个点构成三角形,设随机变量X 表示所得三角形的面积.(1)求概率P (X =)的值;3(2)求X 的概率分布,并求其数学期望E (X ).解 (1)从7个顶点中随机选取3个点构成三角形,共有C =35(种)取法.其中X =37的三角形如△ABF ,这类三角形共有6个.3因此P (X =)==.36C37635(2)由题意知,X 的可能取值为,2,,2,3.3633其中X =的三角形如△ABF ,这类三角形共有6个;3其中X =2的三角形有两类,如△SAD (3个),△SAB (6个),共有9个;其中X =的三角形如△SBD ,这类三角形共有6个;6其中X =2的三角形如△CDF ,这类三角形共有12个;3其中X =3的三角形如△BDF ,这类三角形共有2个.3因此P (X =)=,P (X =2)=,P (X =)=,36359356635P (X =2)=,P (X =3)=.312353235所以随机变量X 的概率分布为X3262333P (X )6359356351235235所求数学期望E (X )=×+2×+×+2×+3×=36359356635312353235.363+66+1835。
高三数学天天练38 概率、随机变量及其分布

天天练38 概率、随机变量及其分布
一、选择题
1.(·成都一诊)把J 、Q 、K 3张方块牌随机分给甲、乙、丙三人,每人1张,事件A :“甲得方块J ”与事件B :“乙得方块J ”是( )
A .不可能事件
B .必然事件
C .对立事件
D .互斥但不对立事件
2.从{1,2,3,4,5}中随机选取一个数a ,从{1,2,3}中随机选取一个数b ,则a <b 的概率为( )
A.45
B.35
C.25
D.15
3.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( )
A.13
B.12
C.23
D.34 4.
在如图所示的正方形中随机掷一粒豆子,豆子落在该正方形内切圆的四分之一圆(如图中阴影部分)中的概率是( )
A.π4
B.14
C.π16
D.116
5.(·郑州二模)设X ~B (4,p ),其中0<p <12,且P (X =2)=8
27,那么P (X =1)=( )
A.881
B.1681
C.827
D.3281
6.(·江西九校联考(二))先后掷骰子(骰子的六个面上分别标有的点数为1、2、3、4、5、6)两次,落在水平桌面上,记正面朝上的点数分别为x ,y ,设事件A 为“x +y 为偶数”,事件B 为“x ,y 中有偶数且x ≠y ”,则P (B |A )=( )
A.13
B.12
C.16
D.14。
高中数学概率与统计概率分布练习题及答案

高中数学概率与统计概率分布练习题及答案1. 离散型随机变量问题1一次买彩票,抽奖号码是从1到30的整数,每个号码中奖的概率是相等的。
求以下事件的概率:a) 中奖号码小于等于10b) 中奖号码是偶数c) 中奖号码是质数解答1a) 中奖号码小于等于10的概率为10/30,即1/3。
b) 中奖号码是偶数的概率为15/30,即1/2。
c) 中奖号码是质数的概率为8/30,即4/15。
问题2某商品的销售量每天可以是0、1、2或3箱,各箱销售的概率分别为0.1、0.3、0.4和0.2。
求销售量的概率分布表。
解答2销售量的概率分布表如下:销售量 | 0 | 1 | 2 | 3--- | --- | --- | --- | ---概率 | 0.1 | 0.3 | 0.4 | 0.22. 连续型随机变量问题3某地每天的气温符合正态分布,均值为20摄氏度,标准差为3摄氏度。
求以下事件的概率:a) 气温大于等于15摄氏度b) 气温在15摄氏度到25摄氏度之间解答3a) 气温大于等于15摄氏度的概率可以通过计算标准正态分布的累积概率得到,约为0.8413。
b) 气温在15摄氏度到25摄氏度之间的概率可以通过计算标准正态分布的累积概率得到,约为0.6827。
问题4某工厂生产的铆钉的长度符合正态分布,均值为5毫米,标准差为0.2毫米。
若从工厂中随机抽取一只铆钉,求其长度在5.2毫米到5.5毫米之间的概率。
解答4将问题转化为标准正态分布,得到长度在1到2.5之间的概率约为0.3944。
以上是高中数学概率与统计概率分布的练习题及答案。
苏教版高中数学选修2-3同步练习:随机变量及其概率分布

2.1 随机变量及其概率分布基础训练1.①某寻呼台一小时内收到的寻呼次数ξ;②长江上某水文站观察到一天中的水位ξ;③某超市一天中的顾客量ξ 其中的ξ是离散型随机变量的是【 】A .①B .②C .②③D .①③2.下列叙述中,是离散型随机变量的为【 】A .某人早晨在车站等出租车的时间B .将一颗均匀硬币掷十次,出现正面或反面的次数C .连续不断的射击,首次命中目标所需要的次数D .袋中有2个黑球6个红球,任取2个,取得一个红球的可能性3.随机变量ξ的所有等可能取值为1,2,,n …,若()40.3P ξ<=,则【 】A .3n =B .4n =C .10n =D .不能确定4.抛掷两次骰子,两个点的和不等于8的概率为【 】A .1112B .3136C .536D .112 5.如果ξ是一个离散型随机变量,则假命题是【 】A . ξ取每一个可能值的概率都是非负数;B . ξ取所有可能值的概率之和为1C . ξ取某几个值的概率等于分别取其中每个值的概率之和D . ξ在某一范围内取值的概率大于它取这个范围内各个值的概率之和6.抛掷两枚骰子一次,设η为第一枚骰子与第二枚骰子的点数之差,则它的所有可能取值为【 】A .N ∈≤≤ηη,50B . N ∈≤≤ηη,61C . Z ∈≤≤-ηη,05D . Z ∈≤≤-ηη,557. 写出下列随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果(1)一袋中装有5只同样大小的白球,编号为1,2,3,4,5现从该袋内随机取出3只球,被取出的球的最大号码数ξ;(2)某单位的某部电话在单位时间内收到的呼叫次数η8.袋中有大小相同的5个小球,分别标有1、2、3、4、5五个号码,现在在有放回的条件下取球两次,设两次小球号码之和为Y,则Y所有可能值的个数?{Y=4}的概率是多少?拓展训练1.下列叙述中,是随机变量的有【】①某工厂加工的零件,实际尺寸与规定尺寸之差;②标准状态下,水沸腾的温度;③某大桥一天经过的车辆数;④向平面上投掷一点,此点坐标.A.②③B.①②C.①③④D.①③2.抛掷两枚骰子一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数之差为X,则“X>4”表示的实验结果是【】A.第一枚6点,第二枚2点B.第一枚5点,第二枚1点C.第一枚1点,第二枚6点D.第一枚6点,第二枚1点3.从标有1~10的10支竹签中任取2支,设所得2支竹签上的数字之和为X,那么随机变量X可能的取值有【】A.17个B.18个C.19个D.20个4.袋中有大小相同的红球6个,白球5个,从袋中每次任取一球(不放回),直到取出球是白球为止,取球次数是一个随机变量,这个随机变量的可能取值为.5.某城市出租汽车的起步价为10元,行驶路程不超出4km,则按10元的标准收租车费若行驶路程超出4km,则按每超出lkm加收2元计费(超出不足1km的部分按lkm计).从这个城市的民航机场到某宾馆的路程为15km.某司机常驾车在机场与此宾馆之间接送旅客,由于行车路线的不同以及途中停车时间要转换成行车路程(这个城市规定,每停车5分钟按lkm路程计费),这个司机一次接送旅客的行车路程ξ是一个随机变量,(1)他收旅客的租车费η是否也是一个随机变量?如果是,找出租车费η与行车路程ξ的关系式;(2)已知某旅客实付租车费38元,而出租汽车实际行驶了15km,问出租车在途中因故停车累计最多几分钟?这种情况下,停车累计时间是否也是一个随机变量?参考答案基础训练1.B2.C3.C4.B5.D6.D7. (1) ξ可取3,4,5ξ=3,表示取出的3个球的编号为1,2,3;ξ=4,表示取出的3个球的编号为1,2,4或1,3,4或2,3,4;ξ=5,表示取出的3个球的编号为1,2,5或1,3,5或1,4,5或2,3或3,4,5(2)η可取0,1,…,n ,η=i ,表示被呼叫i 次,其中i=0,1,2,…8.可取2~10之间的所有整数,共有9个;{Y =4}表示“第一次抽1号、第二次抽3号,或者第一次抽3号、第二次抽1号,或者第一次、第二次都抽2号”.所以253553)4(=⨯==Y P拓展训练1.C2. D3.A4.1,2,3,4,5,65. (1)依题意得η=2(ξ-4)+10,即η=2ξ+2.随机变量ξ是关于试验结果的函数,即每一个试验结果对应着一个实数;随机变量ξ的线性组合η=a ξ+b (其中a 、b 是常数)也是随机变量.(2)由38=2ξ+2,得ξ=18,5×(18-15)=15.所以,出租车在途中因故停车累计最多15分钟.停车累计时间不足五分钟,按五分钟计.所以,停车累计时间也是随机变量,可能取10~15之间的任一值.。
高考数学全程训练计划:天天练34 概率、随机变量及分布

天天练34 概率、随机变量及分布小题狂练○34一、选择题1.从1,2,3,4,5这五个数中任取两个数,其中:①恰有一个是偶数和恰有一个是奇数;②至少有一个是奇数和两个都是奇数;③至少有一个是奇数和两个都是偶数;④至少有一个是奇数和至少有一个是偶数.上述事件中,是对立事件的是( )A.① B.②④C.③ D.①③答案:C解析:从1,2,3,4,5这五个数中任取两个数有3种情况:一奇一偶,两个奇数,两个偶数.其中“至少有一个是奇数”包含一奇一偶或两个奇数这两种情况,它与两个都是偶数是对立事件.又①②④中的事件可以同时发生,不是对立事件.2.[2018·全国卷Ⅱ]从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为( )A.0.6 B.0.5C.0.4 D.0.3答案:D解析:设两名男同学为A,B,三名女同学为a,b,c,则从5人中任选2人有(A,a),(A,b),(A,c),(B,a),(B,b),(B,c),(a,b),(a,c),(b,c),(A,B),共10种.2人都是女同学的情形有(a,b),(a,c),(b,c),共3种,故所求概率为310=0.3.3.[2018·全国卷Ⅲ]若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为( )A.0.3 B.0.4C.0.6 D.0.7答案:B解析:由题意可知不用现金支付的概率为1-0.45-0.15=0.4.故选B.4.[2019·湖北七市教科研协作体模拟]从数字1,2,3,4,5中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于12的概率为( )A.225B.13125C.18125 D.29125答案:A解析:从数字1,2,3,4,5中,随机抽取3个数字(允许重复)组成一个三位数,基本事件总数n =53=125. 其各位数字之和等于12包含的基本事件有: 由2,5,5能组成3个满足条件的三位数, 由4,4,4能组成1个满足条件的三位数, 由3,4,5能组成6个满足条件的三位数, 满足条件的三位数共有3+1+6=10个, ∴其各位数字之和等于12的概率为P =10125=225.5.[2019·石家庄高中毕业班模拟考试(一)]已知函数f(x)=2x(x <0),其值域为D,在区间(-1,2)上随机取一个数x,则x∈D 的概率是( )A.12B.13C.14D.23 答案:B解析:因为函数y =2x是R 上的增函数,所以函数f(x)的值域是(0,1),所以所求概率是13,故选B.6.[2019·河南名校联考]现有2个正方体,3个三棱柱,4个球和1个圆台,从中任取一个几何体,则该几何体是旋转体的概率为( )A.110B.25C.12D.710 答案:C解析:由题意知共有10个几何体,其中旋转体为球和圆台,共5个,根据古典概型,从中任取一个几何体,则该几何体是旋转体的概率P =510=12.故选C.7.[2019·湖南三湘名校第三次联考]已知以原点O 为圆心,1为半径的圆以及函数y =x 3的图象如图所示,则向圆内任意投掷一粒小米(视为质点),该小米落入阴影部分的概率为( )A.12B.14C.16D.18 答案:B解析:由图形的对称性知,所求概率为14π×12π×12=14.故选B.8.[2019·贵阳检测]在△ABC 中,AB =5,AC =12,BC =13,一只小蚂蚁从△ABC 的内切圆的圆心处开始随机爬行,当蚂蚁(在三角形内部)与△ABC 各边距离不小于1时,其行动是安全的,则这只小蚂蚁在△ABC 内任意爬行时,其行动是安全的概率为( )A.14B.49C.12D.23 答案:A解析:设△ABC 内切圆的半径为r,则12×5×12=5+12+132×r ,∴r=2,由题意,与△ABC 各边距离等于1的点组成的图形△A′B′C′与△ABC 相似,△A′B′C′内切圆的半径为1,∴△A′B′C′与△ABC 的相似比为12,∴△A′B′C′与△ABC 的面积之比为14,∴这只小蚂蚁在△ABC 内任意爬行时,其行动是安全的概率是14,故选A.二、非选择题9.一架飞机向目标投弹,击毁目标的概率为0.2,目标未受损的概率为0.4,则目标受损但未完全击毁的概率为________.答案:0.4解析:∵一架飞机向目标投弹,击毁目标的概率为0.2,目标未受损的概率为0.4,∴P(目标未受损)=0.4,P(目标受损)=1-0.4=0.6,目标受损分为完全击毁和未完全击毁两种情形,它们是对立事件,P(目标受损)=P(目标受损但未完全击毁)+P(目标受损且击毁),即0.6=P(目标受损但未完全击毁)+0.2,∴P(目标受损但未完全击毁)=0.6-0.2=0.4.10.如图,在等腰直角△ABC 中,过直角顶点C 作射线CM 交AB 于M,则使得AM 小于AC 的概率为________.答案:34解析:当AM =AC 时,△ACM 为以A 为顶点的等腰三角形,∠ACM=180°-45°2=67.5°.当∠ACM<67.5°时,AM<AC,所以AM 小于AC 的概率P =∠ACM的度数∠ACB的度数=67.5°90°=34.11.某校有三个兴趣小组,甲、乙两名学生每人选择其中一个参加,且每人参加每个兴趣小组的可能性相同,则甲、乙不在同一个兴趣小组的概率为________.答案:23解析:本题考查古典概型.甲、乙两名学生参加兴趣小组的结果共有9种,其中甲、乙不在同一个兴趣小组的结果有6种,故所求的概率为69=23.12.[2019·重庆适应性测试]从2,3,4,5,6这5个数字中任取3个,则所取3个数之和为偶数的概率为________.答案:25解析:依题意,从2,3,4,5,6这5个数字中任取3个,共有10种不同的取法,其中所取3个数之和为偶数的取法共有1+3=4种(包含两种情形:一种情形是所取的3个数均为偶数,有1种取法;另一种情形是所取的3个数中2个是奇数,另一个是偶数,有3种取法),因此所求的概率为410=25.课时测评○34一、选择题1.[2019·海淀模拟]抛掷一枚均匀的骰子2次,在下列事件中,与事件“第一次得到6点”不相互独立的是( )A .第二次得到6点B .第二次的点数不超过3C .第二次的点数是奇数D .两次得到的点数和是12答案:D解析:事件“第二次得到6点”、“第二次的点数不超过3”、“第二次的点数是奇数”与事件“第一次得到6点”均相互独立,而对于事件“两次得到的点数和是12”,由于第一次得到6点,所以第二次也是6点,故不相互独立,故选D.2.[2019·湖南郴州质量监测]甲、乙、丙三人站成一排照相,甲排在左边的概率是( ) A .1 B.16C.12D.13 答案:D解析:甲、乙、丙三人站成一排照相的站法有甲乙丙、甲丙乙、乙甲丙、乙丙甲、丙甲乙,丙乙甲,共6种,其中甲排在左边的站法为2种, ∴甲排在左边的概率是26=13.故选D.3.[2019·绵阳诊断]某射手每次射击击中目标的概率是23,且各次射击的结果互不影响.假设这名射手射击5次,则有3次连续击中目标,另外2种未击中目标的概率为( )A.89B.7381C.881D.19答案:C解析:因为该射手每次射击击中目标的概率是23,所以每次射击不中的概率为13,设“第i 次射击击中目标”为事件A i (i =1,2,3,4,5),“该射手在5次射击中,有3次连续击中目标,另外2次未击中目标”为事件A,则P(A)=P(A 1A 2A 3A 4A 5)+P(A 1A 2A 3A 4A 5)+P(A1A 2A 3A 4A 5)=⎝ ⎛⎭⎪⎫233×⎝ ⎛⎭⎪⎫132+13×⎝ ⎛⎭⎪⎫233×13+⎝ ⎛⎭⎪⎫132×⎝ ⎛⎭⎪⎫233=881. 4.一个多面体的直观图和三视图如图所示,点M 是AB 的中点,一只蝴蝶在几何体ADF -BCE 内自由飞翔,则它飞入几何体F -AMCD 内的概率为( )A.34B.23C.13D.12 答案:D解析:因为V F -AMCD =13×S AMCD ×DF=14a 3,V ADF -BCE =12a 3,所以它飞入几何体F -AMCD 内的概率为14a 312a 3=12.5.欧阳修在《卖油翁》中写到:“(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿”,可见卖油翁的技术之高超,若铜钱直径2 cm,中间有边长为1 cm 的正方形小孔,随机向铜钱上滴一滴油(油滴大小忽略不计),则油恰好落入孔中的概率是( )A.14πB.12πC.1π D.2π答案:C解析:根据几何概型的求解方法可知,用正方形的面积除以圆的面积即为所求概率,故P =S 正方形S 圆=1π.故选C.6.[2019·山西运城模拟]已知五条长度分别为1,3,5,7,9的线段,现从这五条线段中任取三条,则所取三条线段能构成一个三角形的概率为( )A.110 B.310C.12D.710 答案:B解析:从五条中任取三条,共有1、3、5,1、3、7,1、3、9,1、5、7,1、5、9,1、7、9,3、5、7,3、5、9,3、7、9,5、7、9十种情况.其中仅3、5、7,3、7、9,5、7、9三种情况可以构成三角形,故构成三角形的概率P =310.7.[2019·湖北省四校高三上学期第二次联考试题]如图所示的图案是由两个等边三角形构成的六角星,其中这两个等边三角形的三边分别对应平行,且各边都被交点三等分,若往该图案内投掷一点,则该点落在图中阴影部分内的概率为( )A.14B.13C.12D.23 答案:C解析:设六角星的中心为点O,分别将点O 与两个等边三角形的六个交点连接起来,则将阴影部分分成了六个全等的小等边三角形,并且与其余六个小三角形也是全等的,所以所求的概率P =12,故选C.8.[2019·成都测试]小明在花店定了一束鲜花,花店承诺将在第二天早上7:30~8:30之间将鲜花送到小明家.若小明第二天离开家去公司上班的时间在早上8:00~9:00之间,则小明在离开家之前收到鲜花的概率是( )A.18B.14C.34D.78 答案:D解析:如图,设送花人到达小明家的时间为x,小明离家去上班的时间为y,记小明离家前能收到鲜花为事件A.(x,y)可以看成平面中的点,试验的全部结果所构成的区域为Ω={(x,y)|7.5≤x≤8.5,8≤y≤9},这是一个正方形区域,面积为S Ω=1×1=1,事件A 所构成的区域为A ={(x,y)|y≥x,7.5≤x≤8.5,8≤y≤9},即图中的阴影部分,面积为S A =1-12×12×12=78.这是一个几何概型,所以P(A)=S A S Ω=78,故选D.二、非选择题9.[2019·怀化二模]设a∈{1,2,3},b∈⎩⎨⎧⎭⎬⎫12,4,6,求函数y =log b a 1x 是减函数的概率为________.答案:58解析:∵f(x)=1x 在区间(0,+∞)上是减函数,又函数y =log b a 1x 是减函数,∴ba>1,∵a∈{1,2,3},b∈⎩⎨⎧⎭⎬⎫12,4,6,则b a =16,14,12,43,2,3,4,6,共8个值, 其中满足b a >1的有43,2,3,4,6,共5个值,∴函数y =log b a 1x 是减函数的概率为58.10.[2019·南昌市项目第一次模拟]在圆x 2+y 2=4上任取一点,则该点到直线x +y -22=0的距离d∈[0,1]的概率为________.答案:13解析:圆x 2+y 2=4的圆心为O(0,0),半径r =2,所以圆心O 到直线x +y -22=0的距离为d 1=|0+0-22|12+12=2=r, 所以直线x +y -22=0与圆O 相切.不妨设圆x 2+y 2=4上的点到直线x +y -22=0的距离d∈[0,1]的所有点都在AB 上,其中直线AB 与直线x +y -22=0平行,直线AB 与直线x +y -22=0的距离为1,所以圆心到直线AB 的距离为r -1=1,所以cos ⎝ ⎛⎭⎪⎫12∠AOB =12,所以12∠AOB=π3,得∠AOB=2π3,所以所求的概率P =23π·22π·2=13.11.某商场有奖销售中,购满100元商品得1张奖券,多购多得,1 000张奖券为一个开奖单位,设特等将1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A 、B 、C,求:(1)P(A),P(B),P(C); (2)1张奖券的中奖概率;(3)1张奖券不中特等奖且不中一等奖的概率. 解析:(1)P(A)=11 000,P(B)=101 000=1100,P(C)=501 000=120.故事件A,B,C 的概率分别为11 000,1100,120. (2)1张奖券中奖包含中特等奖、一等奖、二等奖.设“1张奖券中奖”这个事件为M,则M =A∪B∪C. ∵A、B 、C 两两互斥,∴P(M)=P(A∪B∪C)=P(A)+P(B)+P(C)=1+10+501 000=611 000.故1张奖券的中奖概率为611 000.(3)设“1张奖券不中特等奖且不中一等奖”为事件N,则事件N 与“1张奖券中特等奖或中一等奖”为对立事件,∴P(N)=1-P(A∪B)=1-⎝⎛⎭⎪⎫11 000+1100=9891 000.故1张奖券不中特等奖且不中一等奖的概率为9891 000.。
新教材高中数学习题课二随机变量及其分布新人教A版选择性必修第三册

习题课(二) 随机变量及其分布一、选择题1.已知事件A 发生时,事件B 一定发生,P (A )=13P (B ),则P (A |B )等于( )A.16 B.14 C.13D.12解析:选C 因为P (AB )=P (A )=13P (B ),所以P (A |B )=P AB P B =13.2.甲击中目标的概率是12,如果击中赢10分,否则输11分,用X 表示他的得分,计算X 的均值为( )A .0.5分B .-0.5分C .1分D .5分解析:选B E (X )=10×12+(-11)×12=-0.5.3.已知离散型随机变量ξ的概率分布列如下:ξ 1 3 5 P0.5m0.2则数学期望E (ξ)等于( A .1 B .0.6 C .2+3mD .2.4解析:选D 由题意得m =1-0.5-0.2=0.3, 所以E (ξ)=1×0.5+3×0.3+5×0.2=2.4.4.已知随机变量X ~B ⎝ ⎛⎭⎪⎫6,12,则D (2X +1)等于( ) A .6 B .4 C .3D .9解析:选A 因为D (2X +1)=D (X )×22=4D (X ),D (X )=6×12×⎝ ⎛⎭⎪⎫1-12=32,所以D (2X+1)=4×32=6.5.1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱随机取出一球,则两次都取到红球的概率是( )A.1127 B.1124 C.827D.924解析:选C 设从1号箱取到红球为事件A ,从2号箱取到红球为事件B . 由题意,P (A )=42+4=23,P (B |A )=3+18+1=49, 所以P (AB )=P (B |A )·P (A )=23×49=827,所以两次都取到红球的概率为827.6.一台仪器每启动一次都随机地出现一个5位的二进制数A =(例如:若a 1=a 3=a 5=124A 的各位数中,已知a 1=1,a k (k =2,3,4,5)出现0的概率为13,出现1的概率为23,记X =a 1+a 2+a 3+a 4+a 5,现在仪器启动一次,则E (X )=( )A.83 B.113 C.89D.119解析:选B 法一:X 的所有可能取值为1,2,3,4,5,P (X =1)=C 44⎝ ⎛⎭⎪⎫134⎝ ⎛⎭⎪⎫230=181, P (X =2)=C 34⎝ ⎛⎭⎪⎫133⎝ ⎛⎭⎪⎫231=881, P (X =3)=C 24⎝ ⎛⎭⎪⎫132⎝ ⎛⎭⎪⎫232=827, P (X =4)=C 14⎝ ⎛⎭⎪⎫131⎝ ⎛⎭⎪⎫233=3281, P (X =5)=C 04⎝ ⎛⎭⎪⎫130⎝ ⎛⎭⎪⎫234=1681, 所以E (X )=1×181+2×881+3×827+4×3281+5×1681=113.法二:由题意,X 的所有可能取值为1,2,3,4,5, 设Y =X -1,则Y 的所有可能取值为0,1,2,3,4,因此Y ~B ⎝ ⎛⎭⎪⎫4,23,所以E (Y )=4×23=83, 从而E (X )=E (Y +1)=E (Y )+1=83+1=113.二、填空题7.从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则P (B |A )=________.解析:P (A )=C 23+C 22C 25=410=25,P (AB )=C 22C 25=110,由条件概率公式,得P (B |A )=P ABP A =11025=14. 答案:148.邮局工作人员整理邮件,从一个信箱中任取一封信,记一封信的质量为X (单位:克),如果P (X <10)=0.3,P (10≤X ≤30)=0.4,那么P (X >30)等于________.解析:根据随机变量的概率分布的性质, 可知P (X <10)+P (10≤X ≤30)+P (X >30)=1, 故P (X >30)=1-0.3-0.4=0.3. 答案:0.39.某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为________.解析:种子发芽率为0.9,不发芽率为0.1, 每粒种子发芽与否相互独立,故设没有发芽的种子数为ξ,则ξ~B (1 000,0.1),∴E (ξ)=1 000×0.1=100,故需补种的种子数X 的期望为2E (ξ)=200. 答案: 200 三、解答题10.某一射手射击所得环数X 的分布列如下:X 4 5 6 7 8 9 10 P0.020.040.060.09m0.290.22(1)求m (2)求此射手“射击一次命中的环数≥7”的概率.解:(1)由分布列的性质得m =1-(0.02+0.04+0.06+0.09+0.29+0.22)=0.28. (2)P (射击一次命中的环数≥7)=0.09+0.28+0.29+0.22=0.88.11.随机抽取某中学高一年级若干名学生的一次数学统测成绩,得到样本,并进行统计,已知分组区间和频数是[50,60),2;[60, 70),7;[70,80),10;[80,90),x ;[90,100],2,其频率分布直方图受到破坏,可见部分如图所示,据此解答如下问题.(1)求样本容量及x 的值;(2)从成绩不低于80分的学生中随机选取2人,记2人中成绩不低于90分的人数为ξ,求ξ的数学期望.解:(1)由题意,得分数在[50,60)内的频数为2, 频率为0.008×10=0.08, 所以样本容量n =20.08=25,x =25-(2+7+10+2)=4.(2)成绩不低于80分的人数为4+2=6,成绩不低于90分的人数为2, 所以ξ的所有可能取值为0,1,2,因为P (ξ=0)=C 24C 26=25,P (ξ=1)=C 14C 12C 26=815,P (ξ=2)=C 22C 26=115,所以ξ的分布列为ξ 0 1 2 P25815115所以ξ的数学期望E (ξ)=0×5+1×15+2×15=3.12.经调查统计,网民在网上光顾某淘宝小店,经过一番浏览后,对该店铺中的A ,B ,C 三种商品有购买意向.该淘宝小店推出买一种送5元优惠券的活动.已知某网民购买A ,B ,C 商品的概率分别为23,p 1,p 2(p 1<p 2),至少购买一种的概率为2324,最多购买两种的概率为34.假设该网民是否购买这三种商品相互独立.(1)求该网民分别购买B ,C 两种商品的概率;(2)用随机变量X 表示该网民购买商品所享受的优惠券钱数,求X 的分布列和数学期望. 解:(1)由题意可知至少购买一种的概率为2324,所以一种都不买的概率为1-2324=124,即⎝ ⎛⎭⎪⎫1-23(1-p 1)(1-p 2)=124.① 又因为最多购买两种商品的概率为34,所以三种都买的概率为1-34=14,即23p 1p 2=14.② 联立①②,解得⎩⎪⎨⎪⎧ p 1=12,p 2=34或⎩⎪⎨⎪⎧p 1=34,p 2=12.因为p 1<p 2,所以某网民购买B ,C 两种商品的概率分别为p 1=12,p 2=34.(2)用随机变量X 表示该网民购买商品所享受的优惠券钱数,由题意可得X 的所有可能取值为0,5,10,15.则P (X =0)=124,P (X =5)=23×12×14+13×12×14+13×12×34=14, P (X =10)=23×12×14+23×12×34+13×12×34=1124, P (X =15)=23×12×34=14.所以X 的分布列为则E (X )=0×124+5×14+10×24+15×4=12.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学-随机变量及其概率分布练习基础巩固题组 (建议用时:40分钟)一、填空题1.(·武汉模拟)从装有3个白球,4个红球的箱子中,随机取出了3个球,恰好是2个白球,1个红球的概率是________.解析 如果将白球视为合格品,红球视为不合格品,则这是一个超几何分布问题,故所求概率为P =C 23C 14C 37=1235.答案12352.设X 是一个离散型随机变量,其分布列为:则q 等于________. 解析 由分布列的性质得:⎩⎨⎧0≤1-2q <1,0≤q 2<1,0.5+1-2q +q 2=1⇒⎩⎪⎨⎪⎧0<q ≤12,q =1±22.∴q =1-22. 答案 1-223.设某项试验的成功率是失败率的2倍,用随机变量X 去描述1次试验的成功次数,则P (X =0)等于________.解析 由已知得X 的所有可能取值为0,1, 且P (X =1)=2P (X =0),由P (X =1)+P (X =0)=1,得P (X =0)=13.答案134.在15个村庄有7个村庄交通不方便,现从中任意选10个村庄,用X 表示这10个村庄中交通不方便的村庄数,则P (x =4)的概率为____________(不必化简).解析 X 服从超几何分布,故P (X =k )=C k 7C 10-k8C 1015,k =4.答案 C 47C 68C 10155.随机变量X 的概率分布规律为P (X =n )=a n n +1(n =1,2,3,4),其中a 是常数,则P ⎝⎛⎭⎪⎫12<X <52的值为________. 解析 因为P (X =n )=a n n +1(n =1,2,3,4),所以a 1×2+a 2×3+a 3×4+a 4×5=a⎝ ⎛⎭⎪⎫1-12+12-13+13-14+14-15=45a . ∴4a 5=1,则a =54. 则P ⎝⎛⎭⎪⎫12<X <52=P (X =1)+P (X =2)=a 2+a 6=23a =56. 答案 566.(·西安质检)已知随机变量X 只能取三个值x 1,x 2,x 3,其概率依次成等差数列,则公差d 的取值范围是________.解析 设X 取x 1,x 2,x 3时的概率分别为a -d ,a ,a +d , 则(a -d )+a +(a +d )=1,∴a =13,由⎩⎪⎨⎪⎧13-d ≥0,13+d ≥0,得-13≤d ≤13.答案 ⎣⎢⎡⎦⎥⎤-13,137.设随机变量X 等可能取值1,2,3,…,n ,如果P (X <4)=0.3,那么n =________. 解析 由于随机变量X 等可能取1,2,3,…,n . 所以取到每个数的概率均为1n.∴P (X <4)=P (X =1)+P (X =2)+P (X =3)=3n=0.3,∴n =10.答案 108.口袋中有5只球,编号为1,2,3,4,5,从中任意取3只球,以X 表示取出的球的最大号码,则X 的分布列为________. 解析 X 的取值为3,4,5.又P (X =3)=1C 35=110,P (X =4)=C 23C 35=310,P (X =5)=C 24C 35=35.∴随机变量X 的分布列为答案二、解答题9.(·长沙调研)某商店试销某种商品20天,获得如下数据:试销结束后(该商品3件,当天营业结束后检查存货,若发现存量少于2件,则当天进货补充至3件,否则不进货,将频率视为概率. (1)求当天商店不进货的概率;(2)记X 为第二天开始营业时该商品的件数,求X 的分布列.解 (1)P (当天商店不进货)=P (当天商品销售量为0件)+P (当天商品销售量为1件)=120+520=310.(2)由题意知,X的可能取值为2,3.P(X=2)=P(当天商品销售量为1件)=520=14;P(X=3)=P(当天商品销售量为0件)+P(当天商品销售量为2件)+P(当天商品销售量为3件)=120+920+520=34.所以X的分布列为10.(·重庆卷)奖者先从装有3个红球与4个白球的袋中任意摸出3个球,再从装有1个蓝球与2个白球的袋中任意摸出1个球.根据摸出4个球中红球与蓝球的个数,设一、二、三等奖如下:(1)求一次摸奖恰好摸到1个红球的概率;(2)求摸奖者在一次摸奖中获奖金额X的分布列与数学期望E(X).解设A i(i=0,1,2,3)表示摸到i个红球,B j(j=0,1)表示摸到j个蓝球,则A i与B j独立.(1)恰好摸到1个红球的概率为P(A1)=C13C24C37=1835.(2)X的所有可能值为:0,10,50,200,且P(X=200)=P(A3B1)=P(A3)P(B1)=C33C37·13=1105;P(X=50)=P(A3B)=P(A3)P(B0)=C33C37·23=2105,P(X=10)=P(A2B1)=P(A2)P(B1)=C23C14C37·13=435,P(X=0)=1-1105-2105-435=67.综上知,获奖金额X的分布列为从而有E(X)=0×67+10×35+50×105+200×105=4(元).能力提升题组(建议用时:25分钟)一、填空题1.(·兰州模拟)从4名男生和2名女生中任选3人参加演讲比赛,设随机变量X表示所选3人中女生的人数,则P(X≤1)等于________.解P(X≤1)=1-P(X=2)=1-C14C22C36=45.答案4 52.设随机变量X的概率分布列如下表所示:F(x)=P(X≤x),则当x F(x)等于________.解∵a+13+16=1,∴a=12.∵x∈[1,2),∴F(x)=P(X≤x)=12+13=56.答案5 63.(·青岛调研)为质检某产品的质量,现抽取5件,测量产品中微量元素x,y 的含量(单位:毫克),测量数据如下:从上述5件产品中,随机抽取2件,则抽取的2件产品中优等品数X的分布列为________.解析5件抽测品中有2件优等品,则X的可能取值为0,1,2.P(X=0)=C23C25=0.3,P(X=1)=C13·C12C25=0.6,P(X=2)=C22C25=0.1.∴优等品数X的分布列为答案二、解答题4.(·广州质检)某班50位学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].(1)求图中x的值;(2)从成绩不低于80分的学生中随机选取2人,该2人中成绩在90分以上(含90分)的人数记为X,求X的分布列与数学期望.解(1)由频率分布直方图知(0.006×3+0.01+x+0.054)×10=1,解得x =0.018.(2)由频率分布直方图知成绩不低于80分的学生人数为(0.018+0.006)×10×50=12,成绩在90分以上(含90分)的人数为0.006×10×50=3.因此X可能取0,1,2三个值.P(X=0)=C29C212=611,P(X=1)=C19·C13C212=922,P(X=2)=C23C212=122.X的分布列为X 01 2P611922122故E(X)=0×611+1×922+2×22=2.。