(完整版)浙教版七年级上册数学第一单元试卷

合集下载

浙教版七年级数学上册单元测试题及答案全套

浙教版七年级数学上册单元测试题及答案全套

浙教版七年级数学上册单元测试题及答案全套第1章 有理数一、选择题(每小题3分,共30分)1.如果+3吨表示运入仓库的大米吨数,那么运出5吨大米表示为( ) A .-5吨 B .+5吨 C .-3吨 D .+3吨2.计算|-2|的结果是( ) A .2 B .-2 C .±2 D.123.在+3.5,-43,0,-2,-0.56,-0.101001中,负分数有( )A .4个B .3个C .2个D .1个4.某地连续四天每天的平均气温分别是:1 ℃,-1 ℃,0 ℃,2 ℃,则平均气温中最低的是( )A .-1 ℃B .0 ℃C .1 ℃D .2 ℃5.若|a |=-a ,则下列结论正确的是( ) A .a ≤0 B .a <0 C .a =0 D .a >06.如果一个数的相反数是最大的负整数,那么这个数是( ) A .-1 B .1 C .0 D .±17.已知有理数a ,b 在数轴上所对应的点的位置如图1-Z -1所示,则有( )图1-Z -1A .-a <0<bB .-b <a <0C .a <0<-bD .0<b <-a 8.下列说法正确的是( ) A .有理数的绝对值一定是正数B .如果两个数的绝对值相等,那么这两个数相等C .如果一个数是正数,那么这个数的绝对值是它本身D .如果一个数的绝对值是它本身,那么这个数是正数9.花店、书店、服装店依次坐落在一条东西走向的大街上,花店在书店西边10米处,服装店位于书店东边50米处,小明从书店沿街向东走了20米,接着又向西走了30米,此时小明的位置是( )A .花店B .服装店C .花店西20米D .服装店东-30米10.若规定[a ]表示不超过a 的最大整数,例如[4.3]=4,若n =[-2.1],则n 等于( ) A .2 B .-2 C .3 D .-3二、填空题(每小题3分,共24分) 11.2的相反数是________.12.某食品包装袋上标有“净含量450克±3克”,这包食品合格净含量范围是______克~453克.13.计算:|-12.5|+|-2.5|=________.14.若一个数绝对值为6,则这个数是________.15.比较大小:①-13________0;②0.05________-|-1|;③-23________-35.16.已知有理数a ,b 在数轴上对应的点的位置如图1-Z -2所示,且|a |>|b |,则A ,B ,C 三个点中可能是原点的是________.图1-Z -217.观察下列一列数:-12,23,-34,45,-56,…,你有什么发现?根据你的发现,写出第2018个数是________.18.若|m -4|+|n +3|=0,则m =,n =.三、解答题(共46分) 19.(6分)把下列各数分类:-3,0.45,12,0,9,-1,-134,10,-3.14.(1)正整数:{…};(2)负整数:{…}; (3)整数:{…}; (4)分数:{…}.20.(8分)在数轴上表示下列各数及其相反数,并比较这些数的大小. -2.5, -1, 0, 23.21.(10分)如图1-Z -3,数轴的单位长度为1.(1)如果点A,D表示的数互为相反数,那么点B表示的数是多少?(2)如果点B,D表示的数互为相反数,那么图中的四个点,哪一点表示的数的绝对值最大?为什么?图1-Z-322.(10分)某检修小组从A地出发,在东西方向的马路上检修线路,如果指定向东行驶为正,向西行驶为负,一天中行驶的距离记录如下(单位:千米):-3,+8,-9,+10,+4,-6,-2.(1)求检修小组总共走了多少千米;(2)若汽车每千米耗油0.3升,每升汽油需7.2元,则检修小组这一天需汽油费多少元?23.(12分)一辆公共汽车从起点站开出后,途中经过6个停靠站,最后到达终点站.下表记录了这辆公共汽车全程载客变化情况,其中正数表示上车人数.(1)中间第4站上车人数是________人,下车人数是________人;(2)中间的6个站中,第________站没有人上车,第________站没有人下车;(3)中间第2站开车时车上人数是________人,第5站停车时车上人数是________人;(4)从表中你还能知道什么信息?1.A 2.A 3.B 4.A 5.A 6.B 7.B 8.C 9.A 10.D 11.-212.447 13.1514.6或-6 15.①< ②> ③< 16.点C 17.2018201918.4 -319.解:(1)正整数:{9,10,…}; (2)负整数:{-3,-1,…};(3)整数:{-3,0,9,-1,10,…}; (4)分数:{0.45,12,-134,-3.14,…}.20.解:在数轴上表示略,-2.5<-1<-23<0<23<1<2.5.21.解:(1)点B 表示的数是-1.(2)点A 表示的数的绝对值最大.理由:当B ,D 表示的数互为相反数时,点A 表示-4,点B 表示-2,点C 表示1,点D 表示2,所以点A 表示的数的绝对值最大.22.解:(1)|-3|+|+8|+|-9|+|+10|+|+4|+|-6|+|-2|=42(千米).故共走了42千米.(2)42×0.3×7.2=90.72(元).故检修小组这一天需汽油费90.72元. 23.解:(1)1 7(2)6 3 (3)24 22(4)答案不唯一,如:从表中可以知道,中间的6个站中,第5站下车的人数最多,第1站上车的人数最多.第2章 有理数的运算一、选择题(每小题3分,共30分) 1.-53的倒数是( )A.53 B .-53 C.35 D .-352.比2小3的数是( ) A .1 B .-1 C .-5 D .53.据媒体报道,我国最新研制的“察打一体”无人机的速度极快,经测试最高速度可达204000米/分,这个数用科学记数法表示,正确的是( )A .204×103B .20.4×104C .2.04×105D .2.04×106 4.下列叙述正确的是( )A .近似数8.96×104精确到百分位B .近似数5.3万精确到千位C .0.130精确到百分位D .若两个有理数的差大于0,则这两个有理数都大于0 5.下列各式中,正确的是( )A .(-3)2=(-3)×2B .(-3)2=(-2)3C .(-3)2=32D .(-3)2=-326.在数轴上表示a ,b 的点的位置如图2-Z -1所示,则a ,b ,a +b ,a -b 中,负数有( )图2-Z -1A .1个B .2个C .3个D .4个7.计算25-3×[32+2×(-3)]+5的结果是( ) A .21 B .30 C .39 D .718.杨梅开始采摘啦!每筐杨梅以5千克为基准,超过的千克数记为正数,不足的千克数记为负数,记录如图2-Z -2.则这4筐杨梅的总质量是( )图2-Z -2A .19.7千克B .19.9千克C .20.1千克D .20.3千克9.从2,-3,4,-5四个数中任意选出两个数相乘,得到的最大乘积是( ) A .-6 B .-12 C .-20 D .1510.如果规定☆为一种运算符号,且a ☆b =a b -b a ,那么4☆(3☆2)的值为( ) A .3 B .1 C .-1 D .2 二、填空题(每小题3分,共24分)11. 计算(-3)+(+2),所得结果的符号为________.(填“+”或“-”)12.已知甲地的海拔是300 m ,乙地的海拔是-50 m ,那么甲地比乙地高________m. 13.已知(b +3)2+|a -2|=0,则b a 的值为________ . 14.计算:2-2÷13×3=________.15.五一期间,某服装商店举行促销活动,全部商品八折销售.一件标价为100元的运动服,打折后的售价应是________元.16.若a =1.9×105,b =9.1×104,则a ________b .(填“<”或“>”)17.计算:⎪⎪⎪⎪121-120+⎪⎪⎪⎪122-121+⎪⎪⎪⎪123-122+…+⎪⎪⎪⎪130-129=________.图2-Z -318.如图2-Z -3是一幅“苹果图”,第一行有1个苹果,第二行有2个苹果,第三行有4个苹果,第四行有8个苹果,…,你是否发现苹果的排列规律?猜猜看,第六行有______个苹果,第十行有________个苹果.(可用乘方的形式表示)三、解答题(共46分) 19.(12分)计算下列各题: (1)(-12.5)+20.5;(2)213×(-67);(3)10+2÷13×(-2);(4)1-(1-0.5)×14×[2-(-2)2].20.(12分)用简便方法计算: (1)9989÷(-119);(2)0.23×35×(-1)3-19×23-13×19×(-1)4-0.23×25.21.(10分)阅读下列解题过程: 计算:(-5)÷⎝⎛⎭⎫15-14×20.解:原式=(-5)÷⎝⎛⎭⎫-120×20 (第一步) =(-5)÷(-1) (第二步)=-5. (第三步)(1)上述解题过程中有两处错误:第一处是第________步,错误的原因是________________________________________; 第二处是第________步,错误的原因是________________________________________. (2)把正确的解题过程写出来.22.(12分)为了加强公民的节水意识,合理利用水资源,某市采用价格调控手段达到节若某户居民1月份用水8立方米,则应交水费:2×6+4×(8-6)=20(元). (1)若该户居民2月份交水费16元,计算该户居民2月份的用水量; (2)若该户居民3月份用水12.5立方米,则应交水费多少元?1.D 2.B 3.C 4.B 5.C 6.C 7.A8.C 9.D 10.A 11.-12.350 . 13.9 14.-16 15.80 . 16.>18.25 29 19.解:(1)原式=20.5-12.5=8. (2)原式=-73×67=-2.(3)原式=10+2×3×(-2)=10-12=-2.(4)原式=1-12×14×(2-4)=1-18×(-2)=1+14=54.20.解:(1)原式=9989×(-910)=(100-19)×(-910)=-(100×910-19×910)=-(90-110)=-89910.(2)原式=-0.23×35-19×23-13×19-0.23×25=-0.23×(35+25)-19×(23+13)=-0.23×1-19×1=-19.23.21.解:(1)二 违背了同级运算从左至右进行的法则 三 违背了同号两数相除结果为正的法则(2)原式=(-5)÷⎝⎛⎭⎫-120×20=(-5)×(-20)×20=2000. 22.解:(1)因为2×6=12(元),12<16<20,所以该户居民2月份用水超出6立方米,不超出10立方米.因为(16-12)÷4=1,所以超出6立方米的用水量是1立方米,所以该户居民2月份的用水量为6+1=7(米3).(2)因为不足1立方米的不收费,所以3月份的用水量12.5立方米按12立方米收费.所以该户居民3月份应交水费2×6+4×(10-6)+8×(12-10)=12+16+16=44(元).第3章 实数一、选择题(每小题3分,共30分)1.9的算术平方根是( ) A .81 B .3 C .-3 D .42.在-2,3,0.3·,27四个实数中,无理数的个数是( )A .1B .2C .3D .4 3.在0.5,53,⎪⎪⎪⎪⎪⎪-13三个数中,最大的数是( ) A .0.5 B.53C.⎪⎪⎪⎪⎪⎪-13 D .不能确定 4.若-b 是a 的立方根,则下列结论正确的是( )A .-b 3=aB .-b =a 3C .b =a 3D .b 3=a5. 若a =-25,b =3-1,则a -b 的值为( ) A .4 B .-4 C .6 D .-66.化简|6-3|+|2-6|的结果是( ) A .5 B .5-2 6 C .1 D .2 6-17.下列说法正确的有( )①任何实数平方根都有两个,且互为相反数; ②无理数就是带根号的数; ③数轴上所有的点都表示实数; ④负数没有立方根.A .1个B .2个C .3个D .4个8.6的整数部分为2,则它的小数部分可表示为( ) A .2- 6 B.6-2 C .-2- 6 D.6-19.已知20n 是整数,那满足条件的最小正整数n 为( ) A .2 B .3 C .4 D .510.若|x +2|+y -3=0,则xy 的值为( ) A .8 B .-6 C .5 D .6二、填空题(每小题3分,共24分) 11.3-8的值为________.12.如图3-Z -1所示,数轴上表示3的点可能是点A ,B ,C 中的________.图3-Z -113.写出一个比2大的无理数:________.14.在数轴上,点A 表示3,那么与点A 相距5个单位长度的点所表示的数是________. 15.a 是3的绝对值,b 是8的立方根,则a -b 的值为________.16.已知一块长方形地的长与宽的比为3∶2,面积为2400平方米,则这块地的长为________米.17.把下列各数填在相应的横线上.2,-32,3-8,0.5,2π,3.14159265,-|-25|,1.3030030003…(每相邻两个3之间依次多一个0).(1)有理数:______________________________________________________; (2)无理数:_________________________________________________________; (3)正实数:__________________________________________________________; (4)负实数:__________________________________________________________. 18.规定:用符号[x ]表示一个不大于实数x 的最大整数,例如:[3.69]=3,[3+1]=2,[-2.56]=-3,[-3]=-2.按这个规定,[-13-1]=________.三、解答题(共46分)19.(12分)计算:(1)-425-3-8125;(2)-9+5×(-6)+(-4)2÷3-8;(3)|1-2|+2×(2-1)(结果精确到0.1,2≈1.41).20.(6分)在数轴上表示下列各数,并把这些数按从小到大的顺序进行排列,用“<”连接:π,4,-1.5,0,3,- 2.图3-Z-221.(6分)一个正方体的体积是16 cm3,另一正方体的体积是这个正方体体积的4倍,求另一个正方体的表面积.22.(10分)已知25=x,y=2,z是9的平方根,求2x+y-5z的值.23.(12分)数学老师在课堂上提出一个问题:“通过探究知道:2=1.414…,它是个无限不循环小数,也叫无理数,它的整数部分是1,那么有谁能说出它的小数部分是多少?”“它的小数部分我们无法全部写出来,但可以用2-1来表示它的小数部分.”小明举手回答:张老师肯定了他的说法.现请你根据小明的说法解答:若5的小数部分是a,37的整数部分是b,求a+b-5的值.1.B 2.A 3.B 4.A5.B . 6.C 7.A 8.B 9.D 10.B 11.-2 12.点B13.答案不唯一,如 5 14.3± 5 15.1 16.6017.(1)-32,3-8,0.5,3.14159265,-|-25|(2)2,2π,1.3030030003…(每相邻两个3之间依次多一个0)(3)2,0.5,2π,3.14159265,1.3030030003…(每相邻两个3之间依次多一个0) (4)-32,3-8,-|-25|18.-519.(1)0 (2)-41 (3)1.2 20.解:如图所示:按从小到大的顺序进行排列如下:-1.5<-2<0<3<π<4.21.解:另一个正方体的体积=4×16=64(cm 3), 则该正方体的棱长=364=4(cm), 故它的表面积=6×(4×4)=96(cm 2).22.解:∵25=x ,∴x =5. ∵y =2,∴y =4. ∵z 是9的平方根, ∴z =±3.∴分两种情况:当z =3时,2x +y -5z =2×5+4-5×3=-1; 当z =-3时,2x +y -5z =2×5+4-5×(-3)=29. 综上所述,2x +y -5z 的值为-1或29. 23.解:∵4<5<9,36<37<49, ∴2<5<3,6<37<7, ∴a =5-2,b =6,∴a +b -5=5-2+6-5=4.第4章 代数式一、选择题(每小题3分,共24分) 1.下列说法正确的是( ) A .-3xy5的系数是-3B.2m2n的次数是2C.x-2y3是多项式D.x2-x-1的常数项是12.下列等式成立的是( )A.3a+2b=5ab B.a2+2a2=3a4C.5y3-3y3=2y3 D.3x3-x2=2x3.下表表示对x的每个取值某个代数式所对应的值,则满足表中所列条件的代数式是( )A.x+2 B.2x-3C.3x-10 D.-3x+24.化简(2x-3y)-3(4x-2y)的结果为( )A.-10x-3y B.-10x+3yC.10x-9y D.10x+9y5.一批电脑进价为a元/台,加上20%的利润后优惠8%出售,则售价为( )A.a(1+20%)元/台B.a(1+20%)8%元/台C.a(1+20%)(1-8%)元/台D.8%a元/台6.已知a是两位数,b(b≠0)是一位数,把a接写在b的右侧,就成为一个三位数,这个三位数可表示成( )A.10b+a B.baC.100b+a D.b+10a7.若2x2+x-1=0,则4x2+2x-5的值为( )A.-6 B.-4 C.-3 D.48. 如图1是由一些点组成的图形,按此规律,第n个图形中点的个数为( )图1A.n2+1 B.n2+2C.2n2+2 D.2n2-1二、填空题(每小题4分,共24分)9.“数a的2倍与10的和”用代数式表示为________.10.请写一个系数为-1,且只含有字母a,b,c的四次单项式为__________.11.若2x m-1y4与-x2y2n的和是单项式,则m n=________.12.已知M=x2-3x-2,N=2x2-3x-1,则M______N.(填“<”“>”或“=”) 13.在数轴上表示a,b,c三个实数的点的位置如图2所示,化简式子:|b-a|+|c -a|-|c-b|=________.图214.已知f (x )=1+1x ,其中f (a )表示当x =a 时代数式的值,如f (1)=1+11,f (2)=1+12,f (a )=1+1a,则f (1)·f (2)·f (3)·…·f (50)=________. 三、解答题(共52分) 15. (10分)计算:(1)5(a 2b -ab 2)-(ab 2+3a 2b );(2)-2a +(3a -1)-(a -5).16.(6分)先化简,再求值:6xy -3x 2y +xy -2x 2y +3,其中x =-2,y =-3.17.(8分)已知三角形的三边长分别是(2a +1)cm ,(a 2-2)cm ,(a 2-2a +1)cm. (1)求这个三角形的周长;(2)当a =3时,这个三角形的周长是多少?18.(8分)代数式x 4+ax 3+3x 2+5x 3-7x 2-bx 2+6x -2合并同类项后不含x 3,x 2项,求a ,b 的值.19.(10分)某景点的门票价格为:成人20元,学生10元,满40人可以购买团体票(打8折).设一个旅游团共有x(x>40)人,其中学生y人.(1)用代数式表示该旅游团应付的门票费;(2)如果旅游团有47个成人,12个学生,那么他们应付门票费多少元?20.(10分)某电子产品在春节后调整了价格,单价调为199元显得更有吸引力.林林想攒够了钱去买一个,已知林林每星期有a元零用钱.(1)林林计划每星期节省零用钱的30%,则n个星期能节省多少元钱?(2)当a=70时,10个星期能节省多少元钱?此时他是否有能力买下这个电子产品?1.C 2.C 3.D4.B [解析] (2x -3y )-3(4x -2y )=2x -3y -12x +6y =-10x +3y .故选B.5.C [解析] 加上利润后的价格为a (1+20%)元/台,优惠后的价格为a (1+20%)(1-8%)元/台.6.C 7.C 8.B 9.2a +1010.-ab 2c (答案不唯一) [解析] 由题设知单项式的系数为-1,又由单项式的意义知a ,b ,c 是乘积关系且指数之和为4,故在-a 2bc 或-ab 2c 或-abc 2中任写一个即可(注意:系数-1中的“1”省略不写).11.912.< [解析] 本题可先计算出M -N ,再与0作比较.因为M -N =(x 2-3x -2)-(2x2-3x -1)=-x 2-1<0,所以M <N .13.0 [解析] 由数轴上点的位置可得c <0<a <b , ∴b -a >0,c -a <0,c -b <0,∴|b -a |+|c -a |-|c -b |=b -a +a -c +c -b =0.14.51 [解析] 因为f (1)=1+11=21,f (2)=1+12=32,…,f (50)=1+150=5150,所以f (1)·f (2)·f (3)·…·f (50)=21×32×43×…×5150=51.15.解:(1)原式=5a 2b -5ab 2-ab 2-3a 2b =2a 2b -6ab 2.(2)原式=-2a +3a -1-a +5=4.16.解:原式=7xy -5x 2y +3.当x =-2,y =-3时,原式=105.17.解:(1)(2a +1)+(a 2-2)+(a 2-2a +1)=2a 2(cm).(2)当a =3时,2a 2=2×32=18.故当a =3时,这个三角形的周长是18 cm.18.解:x 4+ax 3+3x 2+5x 3-7x 2-bx 2+6x -2=x 4+(a +5)x 3-(4+b )x 2+6x -2.∵不含x 3,x 2项,∴a +5=0,4+b =0, ∴a =-5,b =-4.19.解:(1)成人门票费为20(x -y )元,学生门票费为10y 元,所以旅游团应付的总费用为[20(x -y )+10y ]×80%=(16x -8y )元.(2)旅游团有47个成人,12个学生,即x -y =47,y =12,所以[20(x -y )+10y ]×80%=(20×47+10×12)×80%=848(元).答:如果旅游团有47个成人,12个学生,那么他们应付门票费848元. 20.解:(1)30%a ×n =0.3na (元). 答:n 个星期能节省0.3na 元.(2)当a =70,n =10时,0.3na =0.3×10×70=210(元)>199元, 所以此时他有能力买下这个电子产品.第5章 一元一次方程一、选择题(每小题3分,共24分)1.下列方程中,不是一元一次方程的是( ) A .4x =2-2x B .0.1y =2C .x +3=y -5D .5x -2x =6x2.下列等式的变形,不正确的是( ) A .若x =y ,则x +a =y +a B .若x =y ,则a x =a yC .若x =y ,则x -a =y -aD .若x =y ,则ax =ay3.下列方程中,解为x =-2的方程是( ) A .2x +5=1-x B .3-2(x -1)=7-x C .x -2=-2-x D .1-14x =14x4.在解方程x -12-2x +33=1时,去分母正确是( )A .3(x -1)-2(2x +3)=6B .3(x -1)-2(2x +3)=1C .2(x -1)-2(2x +3)=6D .3(x -1)-2(2x +3)=35.若关于x 的方程3x -5=x -2m 解是x =12,则m 的值为( )A .2 B.12 C .-12D .16.若代数式x -1+x3的值是2,则x 的值是( )A .0.75B .1.75C .1.5 D. 3.57.某市为节约用水,制定了如下标准:用水不超过20吨,按每吨1.2元收费;超过20吨,则超出部分按每吨1.5元收费.小明家六月份的水费是平均每吨1.25元,那么小明家六月份应交水费( )A .20元B .24元C .30元D .36元8.如图5-Z -1,用黑白两种颜色的纸片,按黑色纸片数逐渐增加1的规律拼成下列图案,若第n 个图案中有2020个白色纸片,则n 的值为( )图5-Z -1A .671B .672C .673D .674 二、填空题(每小题3分,共21分)9.若3x 2k -3=5是一元一次方程,则k =________.10.请构造一个一元一次方程,使得方程的解为x =3:__________________.11.若-3a 5b 3y 与4a 4x +1b 6是同类项,则x =________,y =________. 12.如果2x +3的值与1-x 的值互为相反数,那么x =________.13.某书店把一本新书按标价的九折出售,仍可获利20%.若该书的进价为21元,则标价为________.14.一个两位数,个位上的数字是x ,十位上的数字比个位上的数字大2,且这个两位数与个位上的数字的差为50,由此列出方程为______________.15.用“☆”定义一种新运算:对于任意实数a ,b ,都有a ☆b =2a -3b +1.例如:2☆1=2×2-3×1+1.若x ☆(-3)=2,则x =________.三、解答题(共55分) 16.(12分)解下列方程: (1)-2x +8=8x -2;(2)5x +3(2-x )=8;(3)x 2-5x +116=1+2x -43.17.(9分)m 为何值时,代数式2m -5m -13的值与代数式7-m2的值的和等于5?18.(10分)戴口罩是抵御雾霾的无奈之举,某公司打算采购一批防雾霾口罩和滤片,已知口罩的价格为20元/只,公司预算可以购买半箱滤片和180只口罩;或者也可以购买3箱滤片和100只口罩,求每箱滤片的价格.19.(12分)甲、乙两站相距240千米,从甲站开出一列慢车,速度为每小时80千米,从乙站开出一列快车,速度为每小时120千米.(1)若两车同时开出,背向而行,则经过多长时间两车相距540千米?(2)若两车同时开出,同向而行(快车在后),则经过多长时间快车可追上慢车?(3)若两车同时开出,同向而行(慢车在后),则经过多长时间两车相距300千米?20.(12分)某市水果批发部门欲将A市的一批水果运往本市销售,有火车和汽车两种运输方式,运输过程中的损耗均为200元/时,其他主要参考数据如下:(1)如果选择汽车的总费用比选择火车的总费用多1100元,那么你知道本市与A市之间的路程是多少千米吗?请你列方程解答;(2)若A市与某市之间的路程为s千米,且知道火车与汽车在路上耽误的时间分别为2小时和3.1小时,要想将这批水果运往该市进行销售,则当s为多少时,选择火车和汽车运输所需费用相同?1.C 2.B 3.B 4.A 5.A6.D [解析] 由题意可得x -1+x 3=2,整理得3x -1-x =6,解得x =3.5. 7.C [解析] 设小明家六月份用水x 吨,由题意得1.2×20+1.5×(x -20)=1.25x ,解得x =24,∴1.25x =30,所以小明家六月份应交水费30元.故选C.8.C [解析] 第1个图案中白色纸片有4张,从第2个图案起,每一个图案都比前一个图案多3张白色纸片,所以第n 个图案中白色纸片的张数=4+3(n -1)=(3n +1)张.根据题意,得3n +1=2020,解得n =673.故选C.9.210.答案不唯一,如x -3=011.1 212.-4 [解析] 根据题意,得2x +3+1-x =0,解得x =-4.13.28元 [解析] 本题考查一元一次方程的应用,根据公式:售价-进价进价×100%=利润率,可设标价为x 元,则0.9x -2121×100%=20%,解得x =28. 14.10(x +2)=5015.-4 [解析] ∵x ☆(-3)=2,∴2x -3×(-3)+1=2,解得x =-4.16.[解析] 解方程时,有分母的先去分母,有括号的要去括号,再通过移项、合并同类项、两边同除以未知数的系数这几个步骤,求出未知数的值.解:(1)x =1.(2)去括号,得5x +6-3x =8,移项、合并同类项,得2x =2,两边同除以2,得x =1.(3)x =-32. 17.解:根据题意,得2m -5m -13+7-m 2=5, 去分母,得12m -2(5m -1)+3(7-m )=30,去括号,得12m -10m +2+21-3m =30,移项、合并同类项,得-m =7,两边同除以-1,得m =-7.18.解:设每箱滤片的价格为x 元,则180×20+12x =3x +100×20, 解得x =640.答:每箱滤片的价格为640元.19.解:(1)设经过x 小时两车相距540千米,由题意得80x +120x =540-240,解得x =32. 答:经过32小时两车相距540千米. (2)设经过y 小时快车可追上慢车.由题意得120y -80y =240,解得y =6.答:经过6小时快车可追上慢车.(3)设经过z 小时两车相距300千米.由题意得120z -80z =300-240.解得z =32. 答:经过32小时两车相距300千米. 20.解:(1)设本市与A 市之间的路程是x 千米,由题意得200·x 80+20·x +900-(200·x 100+15·x +2000)=1100, 解得x =400.答:本市与A 市之间的路程是400千米. (2)选择汽车的总费用=200⎝ ⎛⎭⎪⎫s 80+3.1+20s +900=(22.5s +1520)元,选择火车的总费用=200⎝ ⎛⎭⎪⎫s 100+2+15s +2000=(17s +2400)元, 令22.5s +1520=17s +2400,解得s =160.故当s =160时,选择火车和汽车运输所需总费用相同.。

浙教版数学七年级第一章第1章 测试卷附答案

浙教版数学七年级第一章第1章  测试卷附答案

浙教版七年级数学上册第1章 测试卷一、选择题(每题3分,共30分)1.-15的相反数是( ) A .-15 B.15 C .-5 D .52.如果潜水艇下潜3 m 记做-3 m ,那么潜水艇上浮4 m 记做( )A .4 mB .-4 mC .7 mD .1 m3.在0,1,-12,-1四个数中,最小的是( ) A .0 B .1 C .-12 D .-14.数轴上表示-12的点到原点的距离是( ) A .-12 B.12 C .-2 D .25.一个数的绝对值等于3,这个数是( )A .3B .-3C .3或-3 D.136.下列各数:0.01,10,-6.67,-13,0,-90,-(-3),-|-2|,其中是负数的共有( )A .2个B .3个C .4个D .5个7.下列说法正确的是( )A .符号不同的两个数互为相反数B .零的绝对值是它本身C .一个数的绝对值一定是它本身D .在有理数中,没有绝对值最小的数8.如图所示的数轴被墨迹盖住了一部分,被盖住的整数点有( )A .7个B .8个C .9个D .10个9.在数轴上与表示-3的点的距离等于5的点所表示的数是( )A .-8B .2C .-8和2D .110.如果a ,b 表示的是有理数,并且|a |+|b |=0,那么( )A .a ,b 的值不存在B .a 和b 符号相反C .a ,b 都不为0D .a =b =0二、填空题(每题3分,共24分)11.在一批零件的检测中,如果一个零件的质量超过标准质量0.05 g ,记做+0.05 g ,那么-0.03 g 表示____________________.12.在有理数-3,0,20,-1.25,134,-|-12|,-(-5)中,正整数是__________,负整数是__________,非负数是________________.13.最大的负整数是________,最小的正整数是________,绝对值最小的有理数是________.14.比较大小:-34________-45(填“>”或“<”). 15.若|a -2|与|4-b|互为相反数,则b -a -1的值是________.16.下面是杭州钱塘江段某年雨季一周内的水位变化情况(其中0表示警戒水位,高于警戒水位为正),则水位最高的是星期________.星期 一 二 三 四 五 六 日水位变化/米+0.30 +0.41 +0.25 +0.10 0 -0.13 -0.2 17.数轴上-1所对应的点为A ,将A 点向右平移4个单位长度再向左平移6个单位长度,则此时A 点到原点的距离为________个单位长度.18.在数轴上,点A 表示的数是1,点B ,C 表示的数互为相反数,且点C 与点A 间的距离为3,则点B 表示的数是________.三、解答题(19,20,21题每题6分,22,23题每题8分,24题12分,共46分)19.把下列各数填在相应的横线上:15,-12,0.81,-3,227,-3.1,-4,171,0,3.14,1.6. 正数:__________________________; 负分数:_______________________; 非负整数:______________________; 有理数:_______________________.20.如图,数轴上的点A ,B ,C ,D ,E 大致分别表示什么数?其中哪些数互为相反数?21.在如图所示的数轴上表示下列各数,并按从小到大的顺序用“<”把这些数连接起来.-12,0,-2.5,-3,112.22.为了有效控制酒后驾驶,A市某交警的汽车在一条南北方向的大街上巡逻,规定向北为正,向南为负,已知从出发点开始所行驶的路程(单位:千米)为+3,-2,+1,+2,-3,-1,+2.(1)若此时遇到紧急情况要求这辆汽车回到出发点,请问司机该如何行驶?(2)当该辆汽车回到出发点时,一共行驶了多少千米?23.在社会实践活动中,环保小组甲、乙、丙三位同学一起连续五天记录了高峰时段10分钟内通过解放路的车辆数(向东为正,向西为负),如下表.(1)若每辆汽车排放的尾气一样多,哪一天的污染指数最高?哪一天的污染指数最低?(2)假如在这10分钟内,车辆数不超过60辆时,空气质量为良,车辆数超过60辆时,空气质量为差.请你对这五天的空气质量作一个评价.24.如图,在数轴上,点A表示的数是-30,点B表示的数是170.(1)一只电子青蛙M,从点B出发,以每秒4个单位长度的速度向左运动.同时另一只电子青蛙N,从点A出发,以每秒6个单位长度的速度向右运动.假设它们在点C处相遇,求点C表示的数.(2)两只电子青蛙在点C处相遇后,继续沿原来的运动方向运动.当电子青蛙M到达点A时,问:电子青蛙N处在什么位置?(3)如果电子青蛙M从点B出发向右运动,同时电子青蛙N也向右运动.(1)中其他条件不变,假设它们在点D处相遇,求点D所表示的数.答案一、1.B 【提示】根据只有符号不同的两个数互为相反数求解即可.2.A 3.D4.B 【提示】数轴上的点到原点的距离就是该点所表示的数的绝对值.5.C 【提示】因为|3|=3,|-3|=3,所以这个数是3或-3.6.C 【提示】注意-(-3)=3,-|-2|=-2.7.B 【提示】A.只有符号不同的两个数互为相反数,故本选项错误;B .零的绝对值是它本身,故本选项正确;C .零和正数的绝对值是它本身,故本选项错误;D .在有理数中,绝对值最小的数是零,故本选项错误.8.B9.C 【提示】本题运用数形结合思想进行解答.在数轴上与表示-3的点的距离等于5的点,可能在表示-3的点的左边,也可能在表示-3的点的右边,据此即可求解.10.D二、11.零件的质量低于标准质量0.03 g12.20,-(-5);-3,-|-12|;0,20,134,-(-5) 【提示】-|-12|=-12,-(-5)=5.13.-1;1;0 【提示】最大的负整数是-1;最小的正整数是1;正数和负数的绝对值都是正数,0的绝对值是0,所以绝对值最小的有理数是0.14.>15.1 【提示】根据|a -2|与|4-b |互为相反数,可得|a -2|+|4-b |=0,由绝对值的非负性可得a =2,b =4,所以b -a -1=4-2-1=1.16.二 【提示】因为+0.41>+0.30>+0.25>+0.10>0>-0.13>-0.2,所以星期二的水位最高.17.3 18.2或-4三、19.解:正数:15,0.81,227,171,3.14,1.6; 负分数:-12,-3.1; 非负整数:15,171,0;有理数:15,-12,0.81,-3,227,-3.1,-4,171,0,3.14,1.6. 20.解:由数轴上各点到原点的距离的大小可知各点所表示的数大致为:点A 所表示的数是-3.8;点B 所表示的数是-2.2;点C 所表示的数是-0.8;点D 所表示的数是0.8;点E 所表示的数是2.2.故互为相反数的数有-0.8和0.8,-2.2和2.2.【提示】本题运用了数形结合思想,可根据数轴上各点到原点的距离估计出各点所表示的数,再根据相反数的定义解答.答案不唯一.21.解:各数在数轴上表示如图.按从小到大的顺序排列为-3<-2.5<-12<0<112.22.解:(1)这辆汽车向北行驶了3+1+2+2=8(千米),向南行驶了2+3+1=6(千米),故此时这辆汽车应向南行驶8-6=2(千米).(2)|+3|+|-2|+|+1|+|+2|+|-3|+|-1|+|+2|+|-2|=16(千米).答:一共行驶了16千米.23.解:(1)由表可知,五天高峰时段10分钟内通过解放路的车辆数分别为65辆、40辆、50辆、85辆、55辆,所以第四天的污染指数最高,第二天的污染指数最低.(2)第二天、第三天、第五天的空气质量为良,第一天、第四天的空气质量为差.【提示】(1)污染指数的高低取决于车辆数的多少,车辆数越大,污染指数越高,反之,则越低,与汽车的行驶方向无关.(2)车辆数与汽车的行驶方向无关,只要求出每天通过的汽车辆数,再与60比较即可.24.解:(1)相遇时间为|-30-170|÷(6+4)=20(s).所以点C所表示的数是170-4×20=90.(2)当电子青蛙M到达点A时,相遇后所用的时间是|90-(-30)|÷4=30(s),所以电子青蛙N相遇后移动的距离是6×30=180,90+180=270,所以电子青蛙N处在表示270的点的位置.(3)它们在点D处相遇,所用的时间是|-30-170|÷(6-4)=100(s).电子青蛙M移动的距离为4×100=400,400+170=570,所以点D所表示的数是570.。

(完整版)浙教版七年级上册数学第一单元试卷

(完整版)浙教版七年级上册数学第一单元试卷

浙教版七年级上册数学第一单元试卷姓名 成绩一、选择题(20分)1、在3、-5、0、-1这四个数中,最小的数是( )A .0B .-1C .3D .-52、袋中有3个红球,4个白球,2个黄球,5个蓝球,每个球除了颜色不同外其余都相同,伸手进袋任摸1个球,则摸到哪种颜色的球可能性最大?( )A .红球B .白球C .黄球D .蓝球3、下列各数中,是负数的是( )。

(A)-(-3) (B)-|-3| (C) (-3)2 (D) |-3|4、下列各组数中,互为相反数的是( )A .1-与2)1(- B. 2)1(-与 1 C.2与21 D.2与2- 5、下列判断正确的是( )A.锐角的补角不一定是钝角;B.一个角的补角一定大于这个角C.如果两个角是同一个角的补角,那么它们相等;D.锐角和钝角互补6、方程5-3x=8的解是( ).(A )x=1 (B )x=-1 (C )x=133 (D )x=-1337、下列变形中, 不正确的是( ).(A) a +(b +c -d)=a +b +c -d (B) a -(b -c +d)=a -b +c -d(C) a -b -(c -d)=a -b -c -d (D) a +b -(-c -d)=a +b +c +d8、若a 是有理数,则4a 与3a 的大小关系是( )A. 4a >3aB. 4a =3aC. 4a <3aD.不能确定9、如图,若数轴上的两点A 、B 表示的数分别为a 、b ,则下列结论正确的是( ).(A) b -a>0 (B) a -b>0 (C) ab >0 (D) a +b>0(A) 60° ( B) 75° (C) 90° ( D) 135°二、填空题(16分)1、用四舍五入法对下列各数取近似数:(1)0.00356≈ (保留两个有效数字)(2)1.8935≈ (精确到0.001)2、关于x 的方程132-=-m x 解为1-=x ,则=m3、若3||=x ,则=x 。

浙教版七年级数学上第一章《有理数》单元测试卷含答案

浙教版七年级数学上第一章《有理数》单元测试卷含答案

浙教版七年级数学上第一章《有理数》单元测试卷含答案第一章《有理数》单元测试卷班级:_______ 学号:______ 姓名:____________ 成绩:____________一、选择题1.│-3│的相反数是()。

A、3B、-3C、0答案:B。

解析:│-3│=3,相反数为-3.2.飞机上升-30米,实际上就是()。

A、上升30米B、下降30米C、下降-30米D、先上升30米,再下降30米。

答案:C。

解析:上升是正数,下降是负数,所以飞机上升-30米实际上就是下降30米。

3.最小的正整数是()。

A、-1B、0C、1D、2.答案:C。

解析:正整数是大于0的整数,最小的正整数是1.4.绝对值最小的有理数的倒数是()。

A、1B、-1C、0D、不存在。

答案:B。

解析:绝对值最小的有理数是0,它的倒数不存在,所以选B。

5.在已知的数轴上,表示-2.75的点是()。

A、E点B、F点C、G点D、H点。

答案:B。

解析:-2.75在-3和-2之间,所以表示它的点是F点。

6.下列对“0”的说法中,不正确的是()。

A、既不是正数,也不是负数B、是最小的整数C、是有理数D、是非负数。

答案:B。

解析:0是整数,但不是最小的整数,所以选B。

7.在-3,-1/11,-33/13,2002各数中,是正数的有()。

A、0个B、1个C、2个D、3个。

答案:B。

解析:-3和-33/13是负数,2002是正数,所以只有-1/11是正数,答案为1个。

8.比较-0.5,-1/11,0.5的大小,应有()。

A。

-1/11.-1/11.-0.5C。

-0.5.-1/11.0.5 D。

0.5.-0.5.-1/11.答案:B。

解析:-1/11是负数,所以比较大小时要先取相反数,即比较1/11,-1/2,1/2的大小,所以答案为0.5.-1/11.-0.5.9.│a│=-a,a一定是()。

A、正数B、负数C、非正数D、非负数。

答案:B。

解析:左边是非负数,右边是负数,所以a必须是负数。

浙教版七年级数学(上)各单元测试题【精品全套】.doc

浙教版七年级数学(上)各单元测试题【精品全套】.doc

浙教版七年级数学(上)各单元测试题【精品全套】七上数学第一章从自然数到有理数测试试卷一、填一填:1、若上升15米记作+15米,则-8米表示2、比较大小:43-54-; +0.001 —100; —π —3.14 3、 的相反数是—2.1; —3的绝对值是 ; 21-的倒数是 4、绝对值大于3而不大于6的整数有 个,它们分别是 5、已知下列各数:—3.14, 24, +17, ,217- ,165 —0.01, 0,其中整数有 个,负分数有 个, 非负数有 个。

6、观察下列一排数,找出其中的规律后再填空:1, 2, —3, —4, 5, 6, —7, , ,……, ,…… (第2007个数) 7、若a a =,则a 0 ;若a a -=,则a 08、在数轴上表示—3, 4的两个点之间的距离是 个单位长度,这两个数之间的有理数有 个;这两个数之间的整数有 个。

9、数轴上表示互为相反数的两个点之间的距离为7,则这两数为10、小明和小强是住同一幢楼的好朋友,小强住三楼,小明住六楼,小强每天回家走18级楼梯,则小明每天回家走 级楼梯。

二、选一选:1、下列各对数中,互为相反数的是( ) (A )21-和0.2 (B )32和23 (C )—1.75和431 (D )2和()2--2、0是( )(A )整数 (B )负整数 (C )正有理数 (D )负有理数 3、不大于4的正整数的个数为( )(A )2个 (B )3个 (C ) 4个 (D )5个 4、下列各数中既是正数又是整数的是( ) (A )—7.8 (B )31(C )—3 (D )106 5、在,8- ,201-,01.0- ,211- 17-中最大的数是( )(A )17- (B ),201-(C ),211- (D ),01.0-6、有理数a1-的值一定不是( )(A )正整数 (B )负整数 (C )负分数 (D )0 7、一个数的相反数是最大的负整数,则这个数是( ) (A )—1 (B )1 (C )0 (D )±1 8、下列关系一定成立的是( )(A )若b a =,则b a = (B )若b a =,则b a = (C )若b a -=,则b a = (D )若b a -=,则b a =9、数轴上到数—2所表示的点的距离为4的点所表示的数是( ) (A )—6 (B )6 (C )2 (D )—6或210、一个商店把货物按标价的九折出售,仍可获利20%,若进价为21元,则标价为( ) (A )28元 (B ) 27.72元 (C )30元 (D )29.17元 三、做一做:1、把下列各数填在相应的大括号内:10, —0.0082, —2130, 3.14, —2, 0, —98, —821, 1, ①整数集合:{ }②正有理数集合:{ } ③负分数集合:{ } ④自然数集合:{ }2、把下列各数在数轴上表示出来,并将它们按照从小到大的顺序排列。

浙教版七年级数学上册单元测试题及答案【全套 共七个单元】

浙教版七年级数学上册单元测试题及答案【全套 共七个单元】

浙教版七年级数学上册单元测试题及答案【全套共七个单元】【第一单元测试题及答案】1. 单项选择题(每题2分,共10题)( ) 1. 下面是浙教版七年级数学上册第一单元的测试题,其中四个选项中只有一个是正确的答案。

请根据题意选择正确答案。

问题:把1,2,3,4这四个数的平方相加得到的结果是多少?A. 5B. 10C. 14D. 30( ) 2. 以下表格是七年级一班同学的身高数据统计。

根据表格回答问题。

表格:| 姓名 | 身高(cm)||----|------------|| 小明 | 160 || 小红 | 155 || 小刚 | 163 |问题:小明、小红和小刚三个人中身高最高的是谁?A. 小明B. 小红C. 小刚( ) 3. 如果三角形的一个角为70°,另外两个角则分别为多少度?A. 70°B. 110°C. 120°D. 190°( ) 4. 以下哪个数是奇数?A. 2B. 5C. 10D. 12( ) 5. 下面哪个数是质数?A. 1B. 4C. 9D. 11( ) 6. 当a=3,b=5时,a²+b²的结果是多少?A. 8B. 16C. 18D. 34( ) 7. 韩冬买了一本书,原价为48元,商场进行半价特卖,请问韩冬需要支付多少钱?A. 12元B. 24元C. 36元D. 48元( ) 8. 用数字2、3、4、5这4个数字能组成多少不重复三位数?A. 6个B. 8个C. 12个D. 24个( ) 9. 下面哪个图形是圆?A. 正方形B. 矩形C. 三角形D. 圆形( ) 10. 已知正方形的一条边长为6 cm,周长是多少?A. 18 cmB. 24 cmC. 36 cmD. 42 cm答案:1. C2. 小刚3. B4. B5. D6. C7. B8. D9. D10. C2. 填空题(每题2分,共10题)请根据题意,填写正确答案。

(完整版)2020年浙教新版七年级上册数学《第1章有理数》单元测试卷(解析版)

(完整版)2020年浙教新版七年级上册数学《第1章有理数》单元测试卷(解析版)

2020年浙教新版七年级上册数学《第1章有理数》单元测试卷一.选择题(共10小题)1.如果+30%表示增加30%,那么﹣10%表示()A.增加20%B.增加10%C.减少10%D.减少20%2.在﹣2,0,﹣0.5,3,中,负数的个数是()A.1B.2C.3D.43.在﹣,+,﹣3,2,0,4,5,﹣1中,非负数有()A.4个B.5个C.6个D.7个4.下列说法错误的是()A.整数和分数统称有理数B.正分数和负分数统称分数C.正数和负数统称有理数D.正整数、负整数和零统称整数5.有理数a、b在数轴上的位置如图所示,则化简|a﹣b|﹣2|a|的结果为()A.﹣a﹣b B.3a﹣b C.a+b D.2a﹣b6.点A在数轴上表示的数是2,已知AB的长度等于3,则点B表示的数是()A..﹣1B..3C..5D.﹣.1或57.﹣的相反数是()A.B.C.﹣D.﹣8.在2,,﹣2,0中,互为相反数的是()A.0与2B.与2C.2与﹣2D.与﹣29.下列正确的是()A.若|a|=|b|,则a=b B.若a2=b2,则a=bC.若a3=b3,则a=b D.若|a|=a,则a>010.已知a、b、c都为整数,且满足|a﹣b|2019+|b﹣c|2020=1,则|a﹣b|+|b﹣c|﹣|a﹣c|的结果是()A.1B.2或1C.0D.1或0二.填空题(共8小题)11.如果存款600元记作+600元,那么取款400元记作元.12.如果水位上升5米记作+5米,那么水位下降6米可记作米.13.在有理数1.7,﹣17,0,﹣5,﹣0.001,,2003,3.14,π,﹣1中负分数有;自然数有;整数有.14.在有理数集合中,最小的正整数是a,最大的负整数是b,则a﹣|b|=.15.已知数轴上表示数a的点到原点的距离是3个单位长度,则﹣a+|a|的值为.16.已知A、B是数轴上的点,点A向左移动7个单位长度后与点B重合.若点B表示的数是﹣3,则点A表示的数是.17.如果a=﹣a,那么a=.18.﹣1的相反数是.三.解答题(共8小题)19.某检修小组从A地出发,在东西方向的线路上检修线路,如果规定向东方向行驶为正,向西方向行驶为负,一天行驶记录如下(单位:km):﹣4,+7,﹣9,+8,+5,﹣3,+1,﹣5.(1)求收工时的位置;(2)若每km耗油量为0.5升,则从出发到收工共耗油多少升?20.空气质量指数是国际上普遍采用的定量评价空气质量好坏的重要指标,空气质量指数不超过50则空气质量评估为优.下表记录了我市11月某一周7天的空气质量指数变化情况.规定:空气质量指数50记为零,空气质量指数超过50记为正,空气质量指数低于50记为负.星期一星期二星期三星期四星期五星期六星期日+18﹣4﹣1﹣18﹣10+28+29解答以下问题:(1)根据表格可知,星期四空气质量指数为,星期六比星期二空气质量指数高;(2)求这一周7天的平均空气质量指数.21.把下面的有理数填在相应的大括号里:(友情提示:将各数用逗号分开)5,,0,5,20%,﹣3.1,6正数集合{…};负数集合{…};整数集合{…};分数集合{…};22.把下列各数填入相应的大括号内:﹣13.5,2,0,0.128,﹣2.236,3.14,+27,﹣15%,﹣1,,26负数集合{…}整数集合{…}分数集合{…}23.如图,数轴上A点表示的数是﹣2,B点表示的数是5,C点表示的数是10.(1)若要使A、C两点所表示的数是一对相反数,则“原点”表示的数是:.(2)若此时恰有一只老鼠在B点,一只小猫在C点,老鼠发现小猫后立即以每秒一个单位的速度向点A方向逃跑,小猫随即以每秒两个单位的速度追击.①在小猫未抓住老鼠前,用时间t(秒)的代数式表示老鼠和小猫在移动过程中分别与点A之间的距离;②小猫逮住老鼠时的“位置”恰好在,求时间t.24.如图,数轴上有三个点A、B、C,它们可以沿着数轴左右移动,请回答:(1)点A、B、C分别表示的数是.(2)将点B向右移动三个单位长度后到达点D,点D表示的数是.(3)移动点A到达点E,使B、C、E三点的其中任意一点为连接另外两点之间线段的中点,请直接写出所有点A移动的距离和方向.25.已知|x+y﹣3|=﹣2x﹣2y,求(x+y)3的值.26.已知|x﹣1|=2,求|1+x|﹣5的值.2020年浙教新版七年级上册数学《第1章有理数》单元测试卷参考答案与试题解析一.选择题(共10小题)1.如果+30%表示增加30%,那么﹣10%表示()A.增加20%B.增加10%C.减少10%D.减少20%【分析】找到和“增加”具有相反意义的量,直接得答案.【解答】解:∵增加和减少是互为相反意义的量,若“+”表示“增加”,那么“﹣”表示“减少”,∴﹣10%表示减少了10%.故选:C.【点评】本题考查了用正负数表示具有相反意义的量.找到和“增加”具有相反意义的量是解决本题的关键.2.在﹣2,0,﹣0.5,3,中,负数的个数是()A.1B.2C.3D.4【分析】根据题目中个各数,可以判断哪个数是负数,从而可以解答本题.【解答】解:∵在﹣2,0,﹣0.5,3,中,负数是﹣2,﹣0.5,∴在﹣2,0,﹣0.5,3,中,负数的个数是2个,故选:B.【点评】本题考查正数和负数,解题的关键是明确负数的定义,可以判断一个数是否为负数.3.在﹣,+,﹣3,2,0,4,5,﹣1中,非负数有()A.4个B.5个C.6个D.7个【分析】根据非负数的定义即可解决问题.【解答】解:在﹣,+,﹣3,2,0,4,5,﹣1中,非负数有+,2,0,4,5,一共5个.故选:B.【点评】本题考查有理数的分类,解题的关键是熟练掌握有理数的分类,属于中考常考题型.4.下列说法错误的是()A.整数和分数统称有理数B.正分数和负分数统称分数C.正数和负数统称有理数D.正整数、负整数和零统称整数【分析】根据有理数的定义和分类对各选项分析判断后利用排除法求解.【解答】解:A、整数和分数统称有理数正确,不符合题意;B、正分数和负分数统称分数正确,不符合题意;C、应为正数、负数和零统称有理数,符合题意;D、正整数、负整数和零统称整数正确,不符合题意.故选:C.【点评】本题考查了有理数的分类和相关概念,是基础题,需熟记.5.有理数a、b在数轴上的位置如图所示,则化简|a﹣b|﹣2|a|的结果为()A.﹣a﹣b B.3a﹣b C.a+b D.2a﹣b【分析】先根据数轴确定出a、b的正负情况,然后求出a﹣b<0,根据绝对值的性质去掉绝对值号,再合并同类项即可得解.【解答】解:根据题意得a<0,b>0,∴a﹣b<0,∴|a﹣b|﹣2|a|=b﹣a+2a=a+b.故选:C.【点评】本题考查了绝对值的性质,合并同类项,数轴的知识,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.6.点A在数轴上表示的数是2,已知AB的长度等于3,则点B表示的数是()A..﹣1B..3C..5D.﹣.1或5【分析】分点B在点A的左侧或右侧两种情况,再由数轴上两点间的距离等于数轴上的点所对应的较大的数减去较小的数即可得出结果.【解答】解:若点B在A的左侧,则点B表示的数是2﹣3=﹣1,若点B在点A的右侧,则点B表示的数是2+3=5,∴点B表示的数是﹣1或5,故选:D.【点评】本题考查了数轴上点的位置与两点间的距离,到一个点的距离是一个定值的点所对应的数的求法为左减右加是解题的关键.7.﹣的相反数是()A.B.C.﹣D.﹣【分析】根据相反数的定义直接求得结果.【解答】解:﹣的相反数是.故选:B.【点评】本题主要考查了相反数的性质,解题的关键是明确只有符号不同的两个数互为相反数,0的相反数是0.8.在2,,﹣2,0中,互为相反数的是()A.0与2B.与2C.2与﹣2D.与﹣2【分析】根据相反数的定义,只有符号不同的两个数是互为相反数解答.【解答】解:2与﹣2互为相反数.故选:C.【点评】本题主要考查了相反数的定义,是基础题,比较简单,熟记相反数的定义是解题的关键.9.下列正确的是()A.若|a|=|b|,则a=b B.若a2=b2,则a=bC.若a3=b3,则a=b D.若|a|=a,则a>0【分析】跟绝对值的特点,可判断A、D,根据乘方相等,可得底数的关系,可判断B、C.【解答】解:A、若|a|=|b|,则a=b或a+b=0,故A错误;B、若a2=b2,则a=b或a+b=0,故B错误;C、若a3=b3,则a=b,故C正确;D、若|a|=a,则a≥0,故D错误;故选:C.【点评】本题考查了有理数的乘方,底数相等,立方相等,注意平方相等,底数相等或互为相反数,绝对值相等,绝对值表示的数相等或互为相反数.10.已知a、b、c都为整数,且满足|a﹣b|2019+|b﹣c|2020=1,则|a﹣b|+|b﹣c|﹣|a﹣c|的结果是()A.1B.2或1C.0D.1或0【分析】根据绝对值的意义列方程组即可求解.【解答】解:∵a、b、c都为整数,∴a﹣b和b﹣c都为整数,根据已知得,或,得b=c,|a﹣b|=1或a=b,|b﹣c|=1所以|a﹣b|+|b﹣c|﹣|a﹣c|=|a﹣b|﹣|a﹣b|=0或|a﹣b|+|b﹣c|﹣|a﹣c|=|b﹣c|﹣|b﹣c|=0.故选:C.【点评】本题主要考查了绝对值,解决本题的关键是分情况列方程组.二.填空题(共8小题)11.如果存款600元记作+600元,那么取款400元记作﹣400元.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:∵存款600元记作+600元,∴取款400元记作﹣400元.故答案为:﹣400.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.12.如果水位上升5米记作+5米,那么水位下降6米可记作﹣6米.【分析】根据在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示解答.【解答】解:如果水位上升5米记作+5米,那么水位下降6米可记作﹣6米,故答案为:﹣6.【点评】本题考查了正数和负数,具有相反意义的量都是互相依存的两个量,它包含两个要素,一是它们的意义相反,二是它们都是数量.13.在有理数1.7,﹣17,0,﹣5,﹣0.001,,2003,3.14,π,﹣1中负分数有﹣5,﹣0.001;自然数有0,2003;整数有﹣17,0,2003,﹣1.【分析】按照有理数的分类填写:有理数.【解答】解:在有理数1.7,﹣17,0,﹣5,﹣0.001,,2003,3.14,π,﹣1中负分数有﹣5,﹣0.001;自然数有0,2003;整数有﹣17,0,2003,﹣1.故答案为:﹣5,﹣0.001;0,2003;﹣17,0,2003,﹣1.【点评】本题考查了有理数的有关定义,认真掌握整数、分数、正整数、负分数、自然数的定义与特点.注意正整数和自然数的区别;注意0是整数,也是自然数,但不是正数.14.在有理数集合中,最小的正整数是a,最大的负整数是b,则a﹣|b|=0.【分析】先依据有理数的相关概念求得a、b的值,然后代入计算即可.【解答】解:∵最小的正整数是a,最大的负整数是b,∴a=1,b=﹣1.∴a﹣|b|=1﹣1=0.故答案为:0.【点评】本题主要考查的是有理数、绝对值,代数式求值,求得a、b的值是解题的关键.15.已知数轴上表示数a的点到原点的距离是3个单位长度,则﹣a+|a|的值为0或6.【分析】根据绝对值的定义可得a的值,从而问题可解.【解答】解:数轴上表示数a的点到原点的距离是3个单位长度∴|a|=3∴a=3或a=﹣3当a=3时,﹣a+|a|=﹣3+3=0当a=﹣3时,﹣a+|a|=3+3=6故答案为:0或6.【点评】本题考查了绝对值的定义及其简单计算,明确绝对值的定义并正确列式,是解题的关键.16.已知A、B是数轴上的点,点A向左移动7个单位长度后与点B重合.若点B表示的数是﹣3,则点A表示的数是4.【分析】根据左移减,由点A向左移动7个单位长度后与点B重合,点B表示的数是﹣3,列出算式﹣3+7计算即可求解.【解答】解:﹣3+7=4.故点A表示的数是4.故答案为:4.【点评】考查了数轴,关键是熟悉左移减右移加的知识点是解题的关键.17.如果a=﹣a,那么a=0.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解;如果a=﹣a,那么a=0,故答案为:0.【点评】本题考查了相反数,解题的关键是掌握相反数的定义.18.﹣1的相反数是1.【分析】根据相反数的定义分别填空即可.【解答】解:﹣1的相反数是1.故答案为:1.【点评】本题考查了相反数,解决本题的关键是熟记相反数的定义.三.解答题(共8小题)19.某检修小组从A地出发,在东西方向的线路上检修线路,如果规定向东方向行驶为正,向西方向行驶为负,一天行驶记录如下(单位:km):﹣4,+7,﹣9,+8,+5,﹣3,+1,﹣5.(1)求收工时的位置;(2)若每km耗油量为0.5升,则从出发到收工共耗油多少升?【分析】(1)利用正负数加法运算的法则,即可求出结论;(2)不管朝什么方向走,都要耗油,故耗油量只跟路程有关,即各数据绝对值之和.【解答】解:(1)﹣4+(+7)+(﹣9)+(+8)+(+5)+(﹣3)+(+1)+(﹣5)=﹣4+7﹣9+8+5﹣3+1﹣5=0km.答:收工时回到出发地A地.(2)(|﹣4|+|+7|+|﹣9|+|+8|+|+5|+|﹣3|+|+1|+|﹣5|)×0.5=(4+7+9+8+5+3+1+5)×0.5=42×0.5=21(升).答:从出发到收工共耗油21升.【点评】本题考查了正数和负数的加法运算,解题的关键是:(1)牢记负数加法运算的法则;(2)耗油跟路程有关,与正负无关,即用到绝对值相加.20.空气质量指数是国际上普遍采用的定量评价空气质量好坏的重要指标,空气质量指数不超过50则空气质量评估为优.下表记录了我市11月某一周7天的空气质量指数变化情况.规定:空气质量指数50记为零,空气质量指数超过50记为正,空气质量指数低于50记为负.星期一星期二星期三星期四星期五星期六星期日+18﹣4﹣1﹣18﹣10+28+29解答以下问题:(1)根据表格可知,星期四空气质量指数为32,星期六比星期二空气质量指数高32;(2)求这一周7天的平均空气质量指数.【分析】(1)根据空气质量指数50记为零,与50相加可得星期四的指数,星期六﹣星期二可得星期六比星期二空气质量指数高的指数;(2)将表中数据相加后计算平均数与50相加可得结论.【解答】解:(1)星期四空气质量指数为:50+(﹣18)=32,星期六比星期二空气质量指数高:+28﹣(﹣4)=32,故答案为:32,32;(2)50+(+18﹣4﹣1﹣18﹣10+28+29),=50+6,=56,答:这一周7天的平均空气质量指数为56.【点评】本题考查了正数和负数.解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.21.把下面的有理数填在相应的大括号里:(友情提示:将各数用逗号分开)5,,0,5,20%,﹣3.1,6正数集合{5,,0,5,20%,6…};负数集合{﹣3.1…};整数集合{5,0,5,6…};分数集合{,20%,﹣3.1…};【分析】根据有理数的分类,可得答案.【解答】解:正数集合{5,,0,5,20%,6,…};负数集合{﹣3.1,…};整数集合{5,0,5,6,…};分数集合{,20%,﹣3.1,…}.故答案为:5,,0,5,20%,6;﹣3.1;5,0,5,6;,20%,﹣3.1.【点评】本题考查了有理数.解题的关键是掌握有理数的分类方法.22.把下列各数填入相应的大括号内:﹣13.5,2,0,0.128,﹣2.236,3.14,+27,﹣15%,﹣1,,26负数集合{﹣13.5,﹣2.236,﹣15%,﹣1…}整数集合{2,0,+27,﹣1…}分数集合{﹣13.5,0.128,﹣2.236,3.14,﹣15%,,26…}【分析】利用负数,整数,分数的定义判断即可.【解答】解:负数集合{﹣13.5,﹣2.236,﹣15%,﹣1…}整数集合{ 2,0,+27,﹣1…}分数集合{﹣13.5,0.128,﹣2.236,3.14,﹣15%,,26…}故答案为:{﹣13.5,﹣2.236,﹣15%,﹣1…};{ 2,0,+27,﹣1…};{﹣13.5,0.128,﹣2.236,3.14,﹣15%,,26…}.【点评】此题考查了有理数,熟练掌握各自的定义是解本题的关键.23.如图,数轴上A点表示的数是﹣2,B点表示的数是5,C点表示的数是10.(1)若要使A、C两点所表示的数是一对相反数,则“原点”表示的数是:4.(2)若此时恰有一只老鼠在B点,一只小猫在C点,老鼠发现小猫后立即以每秒一个单位的速度向点A方向逃跑,小猫随即以每秒两个单位的速度追击.①在小猫未抓住老鼠前,用时间t(秒)的代数式表示老鼠和小猫在移动过程中分别与点A之间的距离;②小猫逮住老鼠时的“位置”恰好在原点,求时间t.【分析】(1)根据相反数的意义,求出“原点”到两点的距离,在利用该距离求得“原点”的位置即可;(2)①根据两点的距离直接表示即可;②利用到点的距离相等时,小猫逮到老鼠,列出关于t的方程,求出t的值,再求出该位置即可.【解答】解:(1)根据相反数的意义,可知“原点”到两点的距离分别为:(10+2)÷2=6,∴“原点”表示的数为:﹣2+6=4,故答案为:4;(2)①老鼠在移动过程中与点A之间的距离为:7﹣t,小猫在移动过程中与点A之间的距离为:12﹣2t;②根据题意,得:7﹣t=12﹣2t,解得:t=5,此时小猫逮到老鼠的位置是:5﹣5=0,即在原点,故答案为:原点.【点评】本题主要考查相反数与数轴的综合应用,解决第(2)小题的②时,能利用小猫逮到老鼠时,它们的位置距离点A相等列出方程式关键.24.如图,数轴上有三个点A、B、C,它们可以沿着数轴左右移动,请回答:(1)点A、B、C分别表示的数是﹣4、﹣2、3.(2)将点B向右移动三个单位长度后到达点D,点D表示的数是1.(3)移动点A到达点E,使B、C、E三点的其中任意一点为连接另外两点之间线段的中点,请直接写出所有点A移动的距离和方向.【分析】(1)根据数轴上的点的对应性即可求解;(2)将点B向右移动三个单位长度后到达点D,则点D表示的数为﹣2+3=1;(3)分类讨论:当点A向左移动时,则点B为线段AC的中点;当点A向右移动并且落在BC之间,则A点为BC的中点;当点A向右移动并且在线段BC的延长线上,则C 点为BA的中点,然后根据中点的定义分别求出对应的A点表示的数,从而得到移动的距离.【解答】解:(1)(1)点A、B、C分别表示的数是﹣4、﹣2、3.(2)将点B向右移动三个单位长度后到达点D,点D表示的数是﹣2+3=1;(3)当点A向左移动时,则点B为线段AC的中点,∵线段BC=3﹣(﹣2)=5,∴点A距离点B有5个单位,∴点A要向左移动3个单位长度;当点A向右移动并且落在BC之间,则A点为BC的中点,∴A点在B点右侧,距离B点2.5个单位,∴点A要向右移动4.5 单位长度;当点A向右移动并且在线段BC的延长线上,则C点为BA的中点,∴点A要向右移动12个单位长度;故答案为:(1)﹣4,﹣2,3;(2)1.【点评】本题考查了数轴:数轴三要素(原点、正方向和单位长度);数轴上左边的点表示的数比右边的点表示的数要小.也考查了平移的性质.25.已知|x+y﹣3|=﹣2x﹣2y,求(x+y)3的值.【分析】先根据|x+y﹣3|=﹣2x﹣2y=﹣2(x+y)≥0,得到x+y≤0,再根据绝对值的性质即可得出x+y的值,再根据立方的定义即可求解.【解答】解:∵|x+y﹣3|=﹣2x﹣2y=﹣2(x+y)≥0,∴x+y≤0,﹣(x+y)+3=﹣2(x+y),x+y=﹣3,(x+y)3=(﹣3)3=﹣27.【点评】本题主要考查了绝对值的性质以及乘方的运用,解题时注意:任意一个有理数的绝对值是非负数.26.已知|x﹣1|=2,求|1+x|﹣5的值.【分析】根据绝对值的性质求出x的值,代入代数式计算即可.【解答】解:∵|x﹣1|=2,∴x﹣1=±2,解得,x=3或﹣1,当x=3时,|1+x|﹣5=﹣1,当x=﹣1时,|1+x|﹣5=﹣5.【点评】本题考查的是绝对值的概念和性质,掌握一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0是解题的关键.。

浙教版 七年级上册第1章 有理数单元检测(含答案)

浙教版 七年级上册第1章 有理数单元检测(含答案)

浙教版七年级数学上册第1章有理数单元测试卷第Ⅰ卷(选择题)一、单选题(本题有10小题,每小题3分,共30分)1.-2的相反数是()A.2 B.-2 C.12D.-122.如果温度上升3 ℃,记做+3 ℃,那么温度下降2 ℃记做() A.-2 ℃B.+2 ℃C.+3 ℃D.-3 ℃3.一个数的绝对值等于25,这个数是()A.-25或25B.25C.-25D.524.下表是几种液体在标准大气压下的沸点:液体名称液态氧液态氢液态氮液态氦沸点(℃) -183 -253 -196 -268.9 则沸点最高的液体是()A.液态氧B.液态氢C.液态氮D.液态氦5.下列说法正确的是()A.0只能表示没有B.-a一定是负数C.一个数不是正数就是负数D.没有最小的有理数6.若||a=||b,则a与b的关系是()A.a=b B.a=-bC.a=0或b=0 D.a=b或a=-b7.有理数a在数轴上的对应点的位置如图所示,若有理数b满足-a<b<a,则b的值不可能是()A.2 B.0 C.-1 D.-38.如图,数轴上点A和点B表示的数分别是-1和3,点P到A,B两点的距离之和为6,则点P表示的数是()A.-3 B.-3或5 C.-2 D.-2或49.有理数a,b在数轴上的对应点的位置如图所示,下列结论正确的是()A.-b<0 B.-(-a)>0C.-b>0 D.-a<010.正方形ABCD 在数轴上的位置如图所示,点A ,D 对应的数分别为0和1,若正方形ABCD 绕着顶点沿顺时针方向在数轴上连续翻转,翻转1次后,点C 表示的数为2,则翻转5次后,数轴上表示5的点是( )A .点CB .点DC .点AD .点B第Ⅱ卷 (非选择题)二、填空题(本题有6小题,每小题4分,共24分)11.-||-1的相反数是________;绝对值不大于4的整数有________________________. 12.用“<”“>”或“=”填空:-|-1|________-43.13.在-8,202,327,0,-5,+13,14,-6.9中,正整数有m 个,负分数有n 个,则m +n 的值为________.14.数轴上,点A 表示的数是-3,到点A 的距离为4个单位长度的点表示的数是____________. 15.当a =________时,|1-a |+2有最小值,且最小值是________.16.中国古代的算筹计数法可追溯到公元前5世纪.摆法有纵式和横式两种(如图所示),以算筹计数的方法是摆个位为纵,十位为横,百位为纵,千位为横……这样纵横依次交替.宋代以后出现了笔算,在个位数划上斜线以表示负数,如表示-752, 表示2 369,则表示________.三、解答题(本题有8小题,共66分) 17.(6分)把下列各数填在相应的横线上:-5,-45,2 023,-(-4),217,-|-13|,-36%,0,6.2. (1)正数:______________________________; (2)负数:______________________________; (3)分数:______________________________;(4)非负整数:________________________________.18.(6分)把2,0,⎪⎪⎪⎪⎪⎪-12,-π及它们的相反数表示在数轴上,并按从小到大的顺序用“<”连接.19.(6分)写出符合下列条件的数: (1)大于-3且小于2的所有整数; (2)绝对值大于2且小于5的所有负整数;(3)在数轴上,到表示-1的点的距离为2的点表示的数.20.(8分)有六张卡片,卡片正面分别写有六个数,背面分别写有六个字母,如下表.正面-(-2) |-3| -|-2| -1 -(+3) 4背面 a h k n s t(1)画数轴并在数轴上表示出卡片正面的数;(2)将卡片正面的数由大到小排列,然后将卡片翻转,卡片上的字母组成的是________.21.(8分)王叔叔骑车从家出发,先向南骑行3 km到达A村,继续向南骑行5 km到达B村,然后向北骑行14 km到达C村,最后回到家.(1)以王叔叔家为原点,以向南为正方向,用0.5 cm表示1 km,画出数轴,并在该数轴上表示出A,B,C三个村庄的位置.(2)C村离A村有多远?(3)王叔叔一共骑行了多少千米?22.(10分)已知在纸面上有一数轴(如图),折叠纸面.例如:若数轴上数2对应的点与数-2对应的点重合,则数轴上数-4对应的点与数4对应的点重合.若数轴上数-7对应的点与数1对应的点重合,根据此情境解决下列问题:(1)数轴上数3对应的点与数________对应的点重合;(2)若点A到原点的距离是5个单位长度,并且A,B两点经折叠后重合,则点B表示的数是______________;(3)若数轴上M,N两点之间的距离为2 022(点M在点N的右侧),并且M,N两点经折叠后重合,求点M,N表示的数.23.(10分)如图,某快递员要从公司点A出发,前往B,C,D等地派发包裹,规定:向上或向右走为正,向下或向左走为负,并且行走方向顺序为先左右后上下.如果从A到B记为A→B(+1,+4),从B到A记为B→A(-1,-4),其中第一个数表示左右方向走的路程,第二个数表示上下方向走的路程,请根据图中信息完成如下问题:(1)A→C(____,____),B→D(____,____),C→D(____,____);(2)若该快递员的行走路线为A→B→C→D,请计算该快递员走过的路程;(3)若该快递员从公司点A去某处点P的行走路线依次为(+2,+2),(+1,-1),(-2,+3),(-1,-2),请在图中标出点P的位置.24.(12分)数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.【阅读】|3-1|表示3与1的差的绝对值,也可理解为3与1两数在数轴上所对应的两点之间的距离;|3+1|可以看做|3-(-1)|,表示3与-1的差的绝对值,也可理解为3与-1两数在数轴上所对应的两点之间的距离. 【探索】(1)|3-(-1)|=________.(2)利用数轴(如图),解决下列问题:①若||x -()-1=3,求x 的值; ②若||x -1=||x +3,求x 的值;③若||x -3+||x +2=5,列出所有符合条件的整数x 的值.答案一、1.A 2.A 3.A 4.A 5.D 6.D 7.D 8.D 9.A 10.B二、11.1;-4,-3,-2,-1,0,1,2,3,4 12.> 13.3 14.1或-7 15.1;2 16.-7 416三、17.解:(1)2 023,-(-4),217,6.2(2)-5,-45,-|-13|,-36% (3)-45,217,-36%,6.2 (4)2 023,-(-4),018.解:如图.-π<-2<-⎪⎪⎪⎪⎪⎪-12<0<⎪⎪⎪⎪⎪⎪-12<2<π.19.解:(1)-2,-1,0,1.(2)-3,-4. (3)1,-3.20.解:(1)如图所示.(2)thanks 点拨:∵4>|-3|>-(-2)>-1>-|-2|>-(+3), ∴卡片上的字母组成的是thanks .21.解:(1)图略.(2)3+|-6|=9(km). ∴C 村离A 村9 km .(3)|3|+|5|+|-14|+|6|=28(km). 答:王叔叔一共骑行了28 km .22.解:(1)-9 (2)-11或-1(3)点M 表示的数是1 008,点N 表示的数是-1 014.23.解:(1)+3;+4;+3;-2;+1;-2(2)因为A→B(+1,+4),B→C(+2,0),C→D(+1,-2),所以该快递员走过的路程为|+1|+|+4|+|+2|+|0|+|+1|+|-2|=1+4+2+0+1+2=10.(3)点P的位置如图所示.24.解:(1)4(2)①x的值为2或-4.②x的值为-1.③所有符合条件的整数x的值有-2,-1,0,1,2,3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙教版七年级上册数学第一单元试卷
姓名 成绩
一、选择题(20分)
1、在3、-5、0、-1这四个数中,最小的数是( )
A .0
B .-1
C .3
D .-5
2、袋中有3个红球,4个白球,2个黄球,5个蓝球,每个球除了颜色不同外其
余都相同,伸手进袋任摸1个球,则摸到哪种颜色的球可能性最大?( )
A .红球
B .白球
C .黄球
D .蓝球
3、下列各数中,是负数的是( )。

(A)-(-3) (B)-|-3| (C) (-3)2 (D) |-3|
4、下列各组数中,互为相反数的是( )
A .1-与2)1(- B. 2)1(-与 1 C.2与2
1 D.2与2- 5、下列判断正确的是( )
A.锐角的补角不一定是钝角;
B.一个角的补角一定大于这个角
C.如果两个角是同一个角的补角,那么它们相等;
D.锐角和钝角互补
6、方程5-3x=8的解是( ).
(A )x=1 (B )x=-1 (C )x=133 (D )x=-133
7、下列变形中, 不正确的是( ).
(A) a +(b +c -d)=a +b +c -d (B) a -(b -c +d)=a -b +c -d
(C) a -b -(c -d)=a -b -c -d (D) a +b -(-c -d)=a +b +c +d
8、若a 是有理数,则4a 与3a 的大小关系是( )
A. 4a >3a
B. 4a =3a
C. 4a <3a
D.不能确定
9、如图,若数轴上的两点A 、B 表示的数分别为a 、b ,则下列结论正确的是( ).
(A) b -a>0 (B) a -b>0 (C) ab >0 (D) a +b>0
(A) 60° ( B) 75° (C) 90° ( D) 135°
二、填空题(16分)
1、用四舍五入法对下列各数取近似数:
(1)0.00356≈ (保留两个有效数字)
(2)1.8935≈ (精确到0.001)
2、关于x 的方程132-=-m x 解为1-=x ,则=m
3、若3||=x ,则=x 。

4、2
1-的倒数是 5、若某三位数的个位数字为a ,十位数字为b ,百位数字为c ,则此三位数可表示为
6、已知甲地的海拔高度是300m ,乙地的海拔高度是-50m ,那么甲地比乙地高____________m .
三、解答题(64分)
1、计算(10分)
⎪⎭
⎫ ⎝⎛-÷⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-----121314132
4
1)4(2)2(3÷-⨯--
2、解方程(10分)
13
453=---x x 6)5(34=--x x
3、化简求值(12分)
]4)32(23[522a a a a ----,其中2
1-=a
)3(2)52(422222ab b a b a ab b a --+-+,其中1-=a ,3
2-=b
4、全班同学准备到公园划船游玩,班长作安排时发现,若比计划少租一船则正好每船坐9人,若比计划多租一船则正好每船坐6人。

问,这个班共有几位同学?(10分)
5、如图,将两块直角三角尺的直角顶点C 叠放在一起,
① 若∠DCB=35°,求ACB 的度数(3分)
② 若∠ACB=140°,求DCE 的度数(5分)
③ 猜想∠ACB 与∠DCE 的大小关系,并写出你的猜想,不需要说明理由。

(2分)
6、小王去年存入银行一笔钱,七个月后取出时,减去缴纳的利息税(税率为20%) 后获得本息和共5600元。

已知月利率为1.5%,问小王存入银行的本金是多少?(12分) A B C D E。

相关文档
最新文档