概率论第一章习题习题课

合集下载

概率论第一章习题课

概率论第一章习题课

P AB P A P B P BC P B P C P AC P A P C P ABC P A P B P C
返回主目录
第一章
习题课
2 、三个事件的独立性
设A、B、C是三个随机事件,如果
返回主目录
第一章
习题课
例3(续) 2)由全概率公式和条件概率公式,有
P ( A1 A2 ) P ( A1 A2 B1 ) P ( B1 ) P ( A1 A2 B2 ) P ( B2 ) 2 2 P10 1 P18 1 ( 9 51 ) ( 2 2 ) 10 49 29 2 P P
“A,B,C中至少有一发生” : “A,B,C中最多有一发生” :
AB C A BC A B C A B C AB BC AC
返回主目录
第一章
习题课
2 给出了随机事件的频率及概率的含义和基本性 质。要求熟练掌握概率的基本性质:
(1) 概率的(公理化)定义
1
30
0
0 P ( A) ;
(1)第一次取到的零件是一等品的概率;P ( A1 ) ? (2)第一次取到的零件是一等品的条件下 , 第二次取到的也是一等品的概率;P ( A2 A1 ) ? (3)已知第一次取到的零件是一等品,求它 是第一箱的零件的概率;
P ( B2 A1 ) ?
返回主目录
第一章
习题课
全概率公式和贝叶斯公式
nA
,事件AB所含样本
n AB P ( B A) nA
返回主目录
第一章
习题课
(2) 乘法公式
10
20
P A1 A2 An P A1 P A2 A1 P A3 A1 A2 P An A1 A2 An 1

概率论与数理统计练习题(含答案)

概率论与数理统计练习题(含答案)

第一章 随机事件及其概率练习: 1. 判断正误(1)必然事件在一次试验中一定发生,小概率事件在一次试验中一定不发生。

(B )(2)事件的发生与否取决于它所包含的全部样本点是否同时出现。

(B )(3)事件的对立与互不相容是等价的。

(B ) (4)若()0,P A = 则A =∅。

(B )(5)()0.4,()0.5,()0.2P A P B P AB ===若则。

(B ) (6)A,B,C 三个事件至少发生两个可表示为AB BC AC ⋃⋃(A ) (7)考察有两个孩子的家庭孩子的性别,{()Ω=两个男孩(,两个女孩),(一个男孩,}一个女孩),则P{}1=3两个女孩。

(B )(8)若P(A)P(B)≤,则⊂A B 。

(B ) (9)n 个事件若满足,,()()()i j i j i j P A A P A P A ∀=,则n 个事件相互独立。

(B )(10)只有当A B ⊂时,有P(B-A)=P(B)-P(A)。

(A ) 2. 选择题(1)设A, B 两事件满足P(AB)=0,则©A. A 与B 互斥B. AB 是不可能事件C. AB 未必是不可能事件D. P(A)=0 或 P(B)=0 (2)设A, B 为两事件,则P(A-B)等于(C)A. P(A)-P(B)B. P(A)-P(B)+P(AB)C. P(A)-P(AB)D. P(A)+P(B)-P(AB) (3)以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为(D)A. “甲种产品滞销,乙种产品畅销”B. “甲乙两种产品均畅销”C. “甲种产品滞销”D. “甲种产品滞销或乙种产品畅销”(4)若A, B 为两随机事件,且B A ⊂,则下列式子正确的是(A) A. P(A ∪B)=P(A) B. P(AB)=P(A) C. P(B|A)=P(B) D. P(B-A)=P(B)-P(A) (5)设(),(),()P A B a P A b P B c ⋃===,则()P AB 等于(B)A. ()a c c + B . 1a c +-C.a b c +- D. (1)b c -(6)假设事件A 和B 满足P(B|A)=1, 则(B)A. A 是必然事件 B . (|)0P B A = C. A B ⊃ D. A B ⊂ (7)设0<P(A)<1,0<P(B)<1, (|)(|)1P A B P A B += 则(D)A. 事件A, B 互不相容B. 事件A 和B 互相对立C. 事件A, B 互不独立 D . 事件A, B 互相独立8.,,.,,.D ,,.,,.,,1419.(),(),(),(),()37514131433.,.,.,.,37351535105A B A AB A B B AB A B C AB A B D AB A B P B A P B A P AB P A P B A B C φφφφ≠=≠====对于任意两个事件必有(C )若则一定独立;若则一定独立;若则有可能独立;若则一定不独立;已知则的值分别为:(D)三解答题1.(),(),(),(),(),(),().P A p P B q P AB r P A B P AB P A B P AB ===设求下列事件的概率:解:由德摩根律有____()()1()1;P A B P AB P AB r ⋃==-=-()()()();P AB P B AB P B P AB q r =-=-=-()()()()(1)()1;P A B P A P B P AB p q q r r p ⋃=+-=-+--=+-________()()1[()()()]1().P AB P A B P A P B P AB p q r =⋃=-+-=-+-2.甲乙两人独立地对同一目标射击一次,命中率分别是0.6和0.5,现已知目标被命中,求它是甲射击命中的概率。

概率论习题一

概率论习题一

第一章(A)1、设A,B为两个事件,若A⊃B,则下列结论(C )恒成立A、AB互斥B、A 、B互斥C、A、B互斥D、A、B互斥2、以A表示事件“甲种产品畅销,乙种产品滞销”,则A表示(C )A、甲种产品滞销,乙种产品畅销B、甲乙两种产品均畅销C、甲产品滞销或乙产品畅销D、甲乙两种产品均滞销3、设A、B为两个事件,若A⊂B ,则一定有(B )/A、P(AB)=P(B)B、P(A B)=P(B)C、P(B│A)=P(B)D、P(A│B)=P(B)4、设AB为两个随机事件,则p(A B),P(AB),P(A)+P(B)由小到大的顺序是( A )A P(AB)≤p(A B)≤P(A)+P(B)B P(A)+P(B)≤P(AB)≤p(A B)C p(A B)≤P(AB)≤P(A)+P(B)D P(AB)≤P(A)+P(B)≤p(A B)5、设AB为两个事件,且0<P(A)<1,P(B)>0,P(B│A)=P(B│A),则必有( C )A、P(A│B)=P(A│B)B、P(A│B)≠P(A│B)C、P(A│B)=P(A)D、P(A│B)=P(B)6、—7、设A 、B 、C 为三个相互独立的随机事件,且有0<P(C)<1,则下列事件不相互独立的是( A )A AC 与CB AB 与C C B A 与CD B A -与C 7、在一次实验中,事件A 发生的概率为p(0<p<1),进行n 次独立重复试验,则事件A 之多发生一次的概率为( D ) A n p -1 B n p C ()N P --11 D ()()111--+-n np np p8、对飞机连续射击三次,每次发射一枚炮弹,事件i A (i=1,2,3)表示第i 次射击击中飞机,则“至少有一次击中飞机”可表示为321A A A ,“至多击中一次”表示为321321321321A A A A A A A A A A A A 9、设A 、B 为随机事件,则()()B A B A =B10、若事件A 、B 互不相容,则()B A P -=P(A),()A B P -=P(B),若事件A 、B 相互独立,则()B A P -=)()(B P A P ,()A B P -=)()(A P B P 11、已知P(A)=,P(B)=,P(B │A)=,则()B A P =,()=B A P . 12、已知P(A)=,P(B)=,若A 、B 相互独立,则()B A P =.13、根据调查所知,一个城镇居民三口之家每年至少用600元买粮食的概率是,至少用4000元买副食的概率是,至少用600元买粮食同时用4000元买副食的概率为,则一个三口之家至少用600元买粮食或至少用4000元买副食的概率为_____。

概率论第一章习题

概率论第一章习题
5 i i C5 C5 则 P( Ai ) 5 C10
且 P(5 i 0 A i ) 1
根据概率的有限可加性,所求概率为
5 0 4 1 C C C 113 5 5 5 C5 P(5 A ) 1 P ( A ) P ( A ) 1 i 2 i 0 1 5 C10 C150 126
空集
P( AB BA) P( AB ) P( BA) P( AB BA)
P( A) P( B) 2P( AB)
8
第1章 概率论的基本概念
习题4(2)
4. 设A,B是两个事件. (2) 验证事件A和事件B恰有一个发生的概率为 P(A) + P(B)-2P(AB) 方法二 AB A B AB A B “事件A,B都发生” = AB “ 事件A,B都不发生” = A B
16
第1章 概率论的基本概念
习题22
22. 一学生接连参加同一课程的两次考试. 第一次及格的 概率为p, 若第一次及格则第二次及格的概率也为p; 若第 一次不及格则第二次及格的概率为p/2. (1) 若至少有一次及格则他能取得某种资格,求他取得该 资格的概率. (2) 若已知他第二次已经及格,求他第一次及格的概率. 解: 令Ai=“第i次考试及格”,i=1,2 由题给条件可知 P( A1 ) p, P( A2 | A1 ) p, P( A2 | A1 ) p / 2 可得 P( A1 ) 1 p , P( A1 A2 ) P( A2 | A1 ) P( A1 ) p 2
或利用条件概率的乘法定理可得
P( A B C) P(C | A B ) P( A B ) [1 P(C | A B )]P( A B ) P( A B ) P( A B C ) 7 / 60

1概率ACH1-习题课

1概率ACH1-习题课
3 分析:样本空间: 10
C
(1)最小号码为5,即从6、7、8、9、10里选两个, 所求概率为:
C C
2 5 3 10
1 12
(2)最大号码为5,即从1,2,3,4里选两个,
2 所求概率为: 4 3 10
1 C = 20 C
8、从一批由1100件正品,400件次品组成的产品中
任取200件.求: (1)恰有90件次品的概率;(2)至少有2件次品的概率。
解: P( AB) P( A) P( AB ) =0.7-0.5=0.2
P ( AB) P( AB) P( B A B ) P ( A B ) P( A) P ( B ) P( AB )
0.2 0.25. 0.7 0.6 0.5
16、根据以往资料表明,某一3口之家,患某种传染病的概率
贝叶斯公式
P ( Bi A) P ( Bi | A) P ( A) P ( A | Bi ) P ( Bi )
P( A | B )P( B )
j 1 j j
n
i 1,2,, n
事件的独立性
P ( A1 An ) P ( A1 ) P ( An ) P ( A1 An ) 1 P ( A1 An ) 1 P ( A1 An ) 1 P ( A1 ) P ( An )
配成一双”(事件A)的概率是多少?
4 解: 样本空间总数:C10 210
1
3
5
7
9
事件A:4只恰成1双或恰成2双.
2 4只恰成2双的取法: C5 10
2 4 2 61 8 10 1 1 2 1 1 ) 4只恰成1双的取法:C5 C4 C2C2 120 或C(C8 - C4 120 5

概率论第一章习题课

概率论第一章习题课
例有 两个箱子,第一个箱子有5个白球10 个红球,第二个箱子有5个白球10个红球,现 从第一个箱子中任取出1个球放于第二个箱 子里,然后从第二个箱子中任取1个球放于第 一个箱子里,最后从第一个箱子中任取2个球, 求2个球全是红球的概率.
分析 本题是考查全概率公式.

由条件知,
P(A4 ) =P(先从第一个箱子中任取出红球, 后从第二个箱子中取出白球)
5 /15 5 /16 5 / 48
P(A5 ) =P(先从第一个箱子中任取出红球, 后从第二个箱子中取出红球)
+P(先从第一个箱子中任取出白球, 后从第二个箱子中取出白球)
5 /15 11 /16 10 /15 6 /16 23 / 48
P(A6 ) =P(先从第一个箱子中任取出白球, 后从第二个箱子中取出红球)
5.法关于最小样本容量 n 的简单求

已知步枪射击命中目标的概率 p 0.4, 问至少需要多少支步枪才能保证击中目标的 概率不少于0.9?
分 析 此类问题首先设所需步枪数为 ,
再根据题意写出计算有关事件的概率式子, 把对概率的要求用不等式表示出来,从而解 出。
解 设X 为n支步枪中命中目标的次数, 则
记 Ai {取得了i第双手套}, i 1,2, ,5
P( A) P( A1 A2 A5 )
5
P( Ai ) P( Ai Aj ) P( A1A A5 )
i 1
i j
=5(C82/C140)-C(52 1/C140)+0 +0=13/21
例 将 n 封信从信封中取出后随机地装
5 6 23 10 20 15 1 48 105 48 105 48 105 9

概率论基础第一版课后练习题含答案

概率论基础第一版课后练习题含答案

概率论基础第一版课后练习题含答案第一章试验与事件习题1.1在一家商店的百货部有不少于三只铅笔和不多于五只铅笔。

一名顾客在不知道这一点的情况下购买两只铅笔。

试问顾客买到至少一枝铅笔的概率是多少?答案:假设所有可能购买的铅笔数量为N,并设顾客购买的两支铅笔为A和B。

1. 所有购买方式:- 购买一枝铅笔的情况有3+4+5=12种 - 购买两枝不同的铅笔的情况有$C_{3}^{3} \\times C_{4}^{4} \\times C_{5}^{5} = 1$ 种 - 购买两枝相同的铅笔的情况有C32+C42+C52=20种2. 至少购买一枝铅笔的情况是,购买两枝不同的铅笔、购买两枝相同的铅笔、只购买一枝铅笔。

即(1+20+12)种。

因此,顾客买到至少一枝铅笔的概率为:$P=\\dfrac{1+20+12}{3+4+5 \\choose 2}=0.9$。

习题1.2小明受邀参加某微信群的聚会,詹嫣是这个群的一员。

在该群中,除了詹嫣外,其他人不能辨别出小明和任何一位其他人是否是同一人。

试问,如若只在詹嫣的帮助下,做到让三位不知情的其他成员分不清他与其他成员之间的关系,则考虑以下概率事件: - 以A表示小明与已知一人不是同一人 - 以B表示小明与已知两人不是同一人 - 以C表示已知两人中,至少一人就是小明 - 以D表示已知的三个人均不是小明那么事件A,B,C,D中,哪些是不可能发生的?哪些是必然发生的?哪些是可能发生的?答案:- 不可能发生的事件:B和D。

因为如果小明与已知的两人都不是同一人,那么已知的两人肯定是同一人,与已知的两人中,至少一人就是小明的条件矛盾;如果已知的三个人均不是小明,那么小明就不可能在群里。

- 必然发生的事件:C。

因为在已知的人中,肯定至少有一个人是小明。

- 可能发生的事件:A。

因为无法确定小明是与已知的哪一位不是同一人。

概率论第一章习题课

概率论第一章习题课

概率论与数理统计第一章习题课1. 掷3枚硬币, 求出现3个正面的概率. 解: 设事件A ={出现3个正面}基本事件总数n =23, 有利于A 的基本事件数n A =1, 即A 为一基本事件,则125.08121)(3====n n A P A .2. 10把钥匙中有3把能打开门, 今任取两把, 求能打开门的概率. 解: 设事件A ={能打开门}, 则A 为不能打开门基本事件总数210C n =, 有利于A 的基本事件数27C n A =, 467.0157910212167)(21027==⨯⨯⋅⨯⨯==C C A P因此, 533.0467.01)(1)(=-=-=A P A P .3. 100个产品中有3个次品,任取5个, 求其次品数分别为0,1,2,3的概率.解: 设A i 为取到i 个次品, i =0,1,2,3,基本事件总数5100C n =, 有利于A i 的基本事件数为3,2,1,0,5973==-i C C n i i i则138.09833209495432194959697396979899100543213)(856.0334920314719969798991009394959697)(510049711510059700=⨯⨯⨯=⨯⨯⨯⨯⨯⨯⨯⋅⨯⨯⨯⨯⨯⨯⨯⨯=⨯===⨯⨯⨯⨯=⨯⨯⨯⨯⨯⨯⨯⨯===C C n n A P C C n n A P00006.09833512196979697989910054321)(006.0983359532195969739697989910054321)(51002973351003972322=⨯⨯==⨯⨯⋅⨯⨯⨯⨯⨯⨯⨯⨯====⨯⨯=⨯⨯⨯⨯⨯⋅⨯⨯⨯⨯⨯⨯⨯⨯===C C n n A P C C C n n A P4. 一个袋内有5个红球, 3个白球, 2个黑球, 计算任取3个球恰为一红, 一白, 一黑的概率.解: 设A 为任取三个球恰为一红一白一黑的事件,则基本事件总数310C n =, 有利于A 的基本事件数为121315C C C n A =, 则25.0412358910321)(310121315==⨯⨯⨯⨯⨯⨯⨯===C C C C n n A P A5. 两封信随机地投入四个邮筒, 求前两个邮筒内没有信的概率以及第一个邮筒内只有一封信的概率.解: 设A 为前两个邮筒没有信的事件, B 为第一个邮筒内只有一封信的事件,则基本事件总数1644=⨯=n , 有利于A 的基本事件数422=⨯=A n , 有利于B 的基本事件数632=⨯=B n , 则25.041164)(====n n A P A 375.083166)(====n n B P B . 6. 为防止意外, 在矿内同时设有两种报警系统A 与B , 每种系统单独使用时, 其有效的概率系统A 为0.92, 系统B 为0.93, 在A 失灵的条件下, B 有效的概率为0.85, 求(1) 发生意外时, 这两个报警系统至少有一个有效的概率 (2) B 失灵的条件下, A 有效的概率解: 设A 为系统A 有效, B 为系统B 有效, 则根据题意有P (A )=0.92, P (B )=0.93, 85.0)|(=A B P(1) 两个系统至少一个有效的事件为A ∪B , 其对立事件为两个系统都失效, 即B A B A = , 而15.085.01)|(1)|(=-=-=A B P A B P , 则988.0012.01)(1)(012.015.008.015.0)92.01()|()()(=-=-==⨯=⨯-==B A P B A P A B P A P B A P(2) B 失灵条件下A 有效的概率为)|(B A P , 则829.093.01012.01)()(1)|(1)|(=--=-=-=B P B A P B A P B A P 7. 用3个机床加工同一种零件, 零件由各机床加工的概率分别为0.5, 0.3, 0.2, 各机床加工的零件为合格品的概率分别等于0.94, 0.9, 0.95, 求全部产品中的合格率.解: 设A 1,A 2,A 3零件由第1,2,3个机床加工, B 为产品合格,A 1,A 2,A 3构成完备事件组.则根据题意有P (A 1)=0.5, P (A 2)=0.3, P (A 3)=0.2, P (B |A 1)=0.94, P (B |A 2)=0.9, P (B |A 3)=0.95,由全概率公式得全部产品的合格率P (B )为93.095.02.09.03.094.05.0)|()()(31=⨯+⨯+⨯==∑=i i i A B P A P B P8. 12个乒乓球中有9个新的3个旧的, 第一次比赛取出了3个, 用完后放回去, 第二次比赛又取出3个, 求第二次取到的3个球中有2个新球的概率.解: 设A 0,A 1,A 2,A 3为第一次比赛取到了0,1,2,3个新球, A 0,A 1,A 2,A 3构成完备事件组.设B 为第二次取到的3个球中有2个新球. 则有22962156101112321)|(,552132101112789321)(,442152167101112321)|(,55272101112389321)(,552842178101112321)|(,2202710111239321)(,552732189101112321)|(,2201101112321)(312162633123933121527231213292312142813122319131213290312330=⋅⨯⨯⋅⨯⨯⨯⨯===⨯⨯⨯⨯⨯⨯⨯⨯⨯===⋅⨯⨯⋅⨯⨯⨯⨯===⨯⨯⨯⨯⨯⨯⨯⨯===⋅⨯⨯⋅⨯⨯⨯⨯===⨯⨯⨯⨯⨯⨯===⋅⨯⨯⋅⨯⨯⨯⨯===⨯⨯⨯⨯==C C C A B P C C A P C C C A B P C C C A P C C C A B P C C C A P C C C A B P C C A P根据全概率公式有455.01562.02341.00625.00022.022955214421552755282202755272201)|()()(30=+++=⋅+⋅+⋅+⋅==∑=i i i A B P A P B P9. 某商店收进甲厂生产的产品30箱, 乙厂生产的同种产品20箱, 甲厂每箱100个, 废品率为0.06, 乙厂每箱装120个, 废品率是0.05, 求:(1)任取一箱, 从中任取一个为废品的概率;(2)若将所有产品开箱混放, 求任取一个为废品的概率. 解: (1) 设B 为任取一箱, 从中任取一个为废品的事件. 设A 为取到甲厂的箱, 则A 与A 构成完备事件组4.05020)(,6.05030)(====A P A P 05.0)|(,06.0)|(==AB P A B P 056.005.04.006.06.0)|()()|()()(=⨯+⨯=+=A B P A P A B P A P B P(2) 设B 为开箱混放后任取一个为废品的事件.则甲厂产品的总数为30×100=3000个, 其中废品总数为3000×0.06=180个,乙厂产品的总数为20×120=2400个, 其中废品总数为2400×0.05=120个, 因此...055555555.0540030024003000120180)(==++=B P10. 有两个口袋, 甲袋中盛有两个白球, 一个黑球, 乙袋中盛有一个白球两个黑球. 由甲袋中任取一个球放入乙袋, 再从乙袋中取出一个球, 求取到白球的概率.解: 设事件A 为从甲袋中取出的是白球, 则A 为从甲袋中取出的是黑球, A 与A 构成完备事件组. 设事件B 为从乙袋中取到的是白球. 则P (A )=2/3, P (A )=1/3, P (B |A )=2/4=1/2, P (B |A )=1/4, 则根据全概率公式有417.012541312132)|()()|()()(==⨯+⨯=+=A B P A P A B P A P B P11. 上题中若发现从乙袋中取出的是白球, 问从甲袋中取出放入乙袋的球, 黑白哪种颜色可能性大?解: 事件假设如上题, 而现在要求的是在事件B 已经发生条件下, 事件A 和A 发生的条件概率P (A |B )和P (A |B )哪个大, 可以套用贝叶斯公式进行计算, 而计算时分母为P (B )已上题算出为0.417, 因此2.0417.04131)()|()()|(8.0417.02132)()|()()|(=⨯===⨯==B P A B P A P B A P B P A B P A P B A PP (A |B )>P (A |B ), 因此在乙袋取出的是白球的情况下, 甲袋放入乙袋的球是白球的可能性大.12. 假设有3箱同种型号的零件, 里面分别装有50件, 30件和40件, 而一等品分别有20件, 12件及24件. 现在任选一箱从中随机地先后各抽取一个零件(第一次取到的零件不放回). 试求先取出的零件是一等品的概率; 并计算两次都取出一等品的概率.解: 称这三箱分别为甲,乙,丙箱, 假设A 1,A 2,A 3分别为取到甲,乙,丙箱的事件, 则A 1,A 2,A 3构成完备事件组. 易知P (A 1)=P (A 2)=P (A 3)=1/3. 设B 为先取出的是一等品的事件. 则6.04024)|(,4.03012)|(,4.05020)|(321======A B P A B P A B P 根据全概率公式有467.036.04.04.0)|()()(31=++==∑=i i i A B P A P B P 设C 为两次都取到一等品的事件, 则38.039402324)|(1517.029301112)|(1551.049501920)|(240224323021222502201=⨯⨯===⨯⨯===⨯⨯==C C A C P C C A C P C C A C P根据全概率公式有22.033538.01517.01551.0)|()()(31=++==∑=i i i A C P A P C P13. 发报台分别以概率0.6和0.4发出信号“·”和“—”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不可能事件 随机试验中不可能出现的结果. 必然事件的对立面是不可能事件,不可能事件 的对立面是必然事件,它们互称为 的验 样本 S ,而 A ,空 B ,A k(k 间 1 ,2, 为 ) 是 S的子 . 集
(1) 包含关系
若事件 A 出现,必然导致 B 出现, 则称事件 B 包含事件 A,记作 BA 或 A B .
P (A )P (B ),P (B A )P (B )P (A ). 40对于任一 A,P事 (A)件 1.
5 0设 A 是 A 的对 ,则 立 P (A ) 事 1P (A 件 ). 60(加法公 )对式于任意A 两 ,B事 有件
P(AB)P(A)P(B)P(AB ).
n 个事件和的情况
n
P (A 1 A 2 A n ) P(Ai) P(AiAj)
古典概型中事件概率的计算公式
设试验 E 的样本空间由n 个样本点构成, A 为E 的任意一个事件,且包含 m 个样本点, 则事 件 A 出现的概率记为:
P{A}m n
A所包 样含 本样 点本 总点 数的 . 个数
称此为概率的古典定义.
几何概率
当随机试验的样本空间是某个区域,并且任意 一点落在度量 (长度, 面积, 体积) 相同的子区域是 等可能的,则事件A的概率可定义为
随机事件
10 随机试验E的所有可能结果组成的集合称 为样本空间,记为 S.
20 样本空间的元素 ,即试验E 的每一个结果, 称为样本点.
30 随机试验 E 的样本空间 S 的子集称为 E 的随机事件, 简称事件.
重要的随机事件
基本事件 由一个样本点组成的单点集. 必然事件 随机试验中必然会出现的结果.
图示B 包含A
AB S
(2) A等于B 若事件A包含事件B,而且事件B包 含事件A, 则称事件A与事件B相等,记作 A=B.
(3) 事件A与B的并(和事件) 事A 件 B {xx A 或 x B }称为 A 与 事 事 B 的 件 和.事件 图示事件A与B的并
B
A
S
(4) 事件A与B的交(积事件) 事A 件 B{xx A 且 x B }称为 A事 与事 B 的 积 件 事 . 件 积事件也可 AB 记 或A 作B . 图示事件A与B 的积
P ( A 1 A 2 ) P ( A 1 ) P ( A 2 )
概率的可列可加性
概率的性质
10 P()0. 20若A1,A2,,An是两两互不相,则 容有 的事
P ( A 1 A 2 A n ) P ( A 1 ) P ( A 2 ) P ( A n ).
概率的有限可加性 30设 A ,B 为两,且 个 A B 事 ,则件
2 0f(S ) 1 , f( ) 0 ;
30若A1, A2,, Ak 是两两互不相 ,则容的事 f(A1A2Ak)fn(A1)fn(A2)fn(Ak).
概率的定义
设 E是随机 ,S是 试它 验的样 .对 本 E 于 的 空每 间 一事 A赋 件于一,个 记实 为 P(A数 )称 , 为A 事 的件 概 率 ,如果集合 P()函 满数 足下列 : 条件 10非负 : 对 性于每一 A,有 个 P(A)事 0;件 20规范 : 对 性于必 S,有 然 P(S事 )1;件 30可列可:加 设A 性 1,A2,是两两互不相 事件 ,即对i于 j,AiAj ,i,j1,2,,则有
一、重点与难点
1.重点
随机事件的概念
古典概型的概率计算方法 概率的加法公式 条件概率和乘法公式的应用
全概率公式和贝叶斯公式的应用
2.难点
古典概型的概率计算 全概率公式的应用
二、主要内容
随机 现象
随机 试验
随机事件
概率
基必 本然 事事 件件
不对
可立
能 事

件件
定性 义质
条件
事件的 事件的关系和运算
概率
i1
1ijn
P ( A iA jA k ) ( 1 ) n 1 P ( A 1 A 2 A n ).
1 i j k n
等可能概型 (古典概型)
定义
(1) 试验的样本空间有 只限 包个 含元; 素 (2 )试验中每个基本生 事的 件可 发能性.相同 具有以上两个特验 点称 的为 试等可能概典 型或 概型.
A AB B S
(5) 事件A与B互不相容 (互斥) 若事件 A 的出现必然导致事件 B 不出现 , B 出现也必然导致 A 不出现,则称事件 A 与 B互不相 容,即 A B A B .
图示 A 与 B 互斥
A
B
S
(6) 事件A与B的差
由事件A出现而事件B不出现所组成的事件称
为事件A与B的差.记作 A- B.
独立性 全概率公式与贝叶斯公式
古典 概型
几何 概率
乘法 定理
随机现象
在一定条件下可能出现也可能不出现的现象 称为随机现象.
随机试验
在概率论中,把具有以下三个特征的试验称为 随机试验.
10 可以在相同的条件下重复地进行;
20 每次试验的可能结果不止一个,并且能事 先明确试验的所有可能结果;
30 进行一次试验之前不能确定哪一个结果 会出现.
4 0 德 摩 :A 根 B A B ,律 A B A B .
概率
(1)频率的定义
在相同的,进 条行 件n了 次 下试,在 验这 n次 试验,事 中件 A发生的n次 A称数 为事 A发 件生的 频数 .比值 nnA称为事 A发件 生的,并 频记 率 fn成 (A).
(2)频率的性质 设 A 是随机试验 E 的任一事件, 则 100fn(A )1;
A
B
S
A
B A S
AB
A B S 且 A B .
互斥
对立
事件运算的性质 设A,B,C为事 ,则 件 有 1 0 交A 换 B B 律 A ,A B B . A
20结合 (A 律 B ) CA (B C ), (A)C B A (B)C .
30分配律 (AB)C(AC)(BC)A CB,C (AB)C(AC)(BC)(AC)B (C).
图示A与B的差 BA
BA
AAB
B S
B AAB S
(7) 事件A的对立事件
设A表示“事件A出现”, 则“事件A不出现” 称为事件A的对立事件或逆事件.记A .作
图示 A 与 B 的对立
B A A
S
若 A 与 B 互逆,则有A B S 且 A B .
说明 对立事件与互斥事件的区别
A、B互斥
A、B对立
相关文档
最新文档