复杂网络可靠性研究进展
复杂网络科学的研究进展及应用

复杂网络科学的研究进展及应用随着科学技术的发展,人类对于复杂网络科学的研究也越来越深入,并在各种领域得到了广泛的应用。
本文将简要介绍复杂网络科学的概念,研究方法和应用领域。
一、什么是复杂网络科学复杂网络科学是研究网络结构、功能和演化规律的学科,它涵盖了很多方面,包括物理学、计算机科学、数学、生物学、社会学等多个学科。
它所研究的网络包括社交网络、物质传输网络、生物网络等多种类型。
复杂网络的特点是节点之间存在复杂的联系,网络结构存在复杂的拓扑结构和模式。
复杂网络具有刻画网络结构、预测网络演化、控制网络活动等方面应用价值。
同时,复杂网络也是智能科学、生命科学、计算科学等多个学科的重要基础和工具。
二、复杂网络的研究方法复杂网络科学的研究方法主要有两种:统计描述和建模仿真。
统计描述是指通过统计手段对网络的拓扑结构和特征进行描述和分析。
例如,度分布、聚类系数、介数中心性等指标可以有效地反映网络的特征和规律。
建模仿真是指通过建立模型对网络的演化过程和行为进行分析和预测。
例如,随机网络模型、小世界网络模型、无标度网络模型等可以模拟各种复杂网络,并对其动态演化进行探究。
三、复杂网络的应用领域复杂网络科学在各种领域都有广泛的应用。
以下是几个典型的应用领域:1.社交网络社交网络是目前复杂网络应用最为广泛的领域之一。
社交网络的研究和应用,主要包括如何对网络中个体的行为和关系进行建模和分析,以及如何利用这些模型来进行推荐、广告投放、舆情监控等。
例如,Facebook、Twitter等社交媒体平台利用用户在平台上的活动行为和关系,实现了精准推荐和广告投放。
同时,社交网络在疫情和自然灾害等重大事件中,也发挥了巨大的作用。
2.生物网络生物网络是指生命体内的各种关系网络。
生物网络的研究和应用,主要包括对基因表达、蛋白质相互作用、代谢途径等方面的分析和建模。
例如,对基因表达网络的研究,可以为肿瘤等疾病的诊断和治疗提供一定的参考。
同时,生物网络建模还可以为人工生命、分子计算等领域提供灵感和指导。
基于复杂网络的城市轨道交通网络可靠性研究

《 研究 l l {
l 关键词 i
l 文章编 号 j
l… j一
前, 往往采 用专 家经 验等定 性信 息的形 式来 描述 系统 城市轨道交通 网络 复杂网络 可靠性测度
的可靠性 , 该城 市轨道 交通 网络 的可靠 度不太高 ” 如“ 等, 这种描述本身就存在模糊性 , 以用基 于概率论 的 难
} 1
l {摘
要 通常的可靠性理论难以有效分析城市轨道交
起步 , 研究的基础 很薄 弱 , 特别 是在 我 国的各个城 市 , 轨道交通仍然处于 集 中建 设 时期 , 具有 一定 规模 的网 络还未形成 , 实际的样本数据 匮乏 , 本数据少 的问题 样 极为突出。因此 , 何在小 样本 条件 下确定 系统 的可 如 靠性参数是一个 迫切需要解决 的问题 。
络 可靠性 的衡 量 指标 , 原先 基 于设 施设 备 的可 靠性 将
1 2 模 糊 性 .
由于可靠性数 据较少 , 特别是 在方 案论证 和 系统
设计 的早期阶段 , 由于分析和评定 的失 效数据样 本小 ,
l 究拓展至基 于交通 系统 管理 者和使 用者的全局性 基于大样本数据的概率模 型和统计方法难 以适 用。 目 j研
题归为随机网络或规则网络的问题来研究。
1 城市轨 道交通 网络可 靠性分析 的难度
1 1 大 系统 与 小样 本 .
城市交 通 网络 系统是 一个错综复杂 的大系统 。概
率论是可靠性最主要 的理论基础 , 中的大数定律决定 其
了在可靠性试 验或数据分 析时 , 必须有足够 的样本量。 对于城市轨道交通系统而言 , 网络可靠性的研究还刚刚
作者简介 :陈菁菁 , , 士, 女 博 工程 师, 主要研究城市轨 道交通运营 安
复杂网络的性质及研究进展

复杂网络的性质及研究进展随着互联网技术的进步,现代社会中出现了大量复杂网络。
复杂网络是一类由大量节点和连接构成的复杂结构,如社交网络、互联网、物流网络等。
复杂网络中的节点可以是人、机器、城市、物品等,节点间的连接可以是关系、交易、信息传递等。
复杂网络的性质及研究进展成为当前网络科学热门话题。
一、复杂网络的性质复杂网络具有许多独特的性质。
其中最著名的是小世界现象和无尺度性。
小世界现象指的是在相对较少的步数内,两个节点间可以通过少量的中间节点相互连接。
这个现象源于节点个数巨大的复杂网络中所存在的“短路”现象。
无尺度性则指的是复杂网络中存在少数节点拥有极高的度数,这些度数相对较低的节点则占据大多数。
这个现象发生的原因是特定节点的度数与网络结构有关,而网络结构可以不断扩大,使得度数与网络尺寸成幂律分布。
另外,复杂网络还具有同配性和社团结构这些特征。
同配性指的是节点之间存在相似的连接方式。
也就是说,度数大的节点会与度数大的节点相连,而度数小的节点会与度数小的节点相连。
在社交网络中,身份地位相近的人之间也会有相似的交际方式。
社团结构则指的是节点在网络中的归属群体。
网络社团结构不仅有助于分析节点间的关系,而且有助于我们更好地理解复杂网络的拓扑性质。
二、复杂网络研究进展近年来,复杂网络的研究取得了非常显著的进展。
1. 复杂网络模型为了更好地研究复杂网络,科学家提出了一些复杂网络模型。
比较常用的模型有随机图模型、小世界模型、无尺度网络模型等。
这些模型的提出极大地推动了复杂网络的研究,使得我们能够更加深入地理解复杂网络的性质和演化规律。
2. 复杂网络在社会与生命科学中的应用复杂网络不仅被广泛应用于计算机科学领域,而且在社会网络与生命科学领域也有着广泛的应用。
例如,社交网络分析被广泛应用于研究社交关系、信息传播和个人信任等问题;基因调控网络分析被应用于研究生物调控机制和疾病发生机理等重要问题。
复杂网络为社会与生命科学领域的研究提供了一个全新的视角,使得我们能够更加全面地了解问题背后的本质。
基于复杂网络理论的广州轨道交通网络可靠性研究

n t r h r ce si i s o y t e c re tri ta st fG a g h u,a d t e ma f n t n o a se t — ewo k c a a t r t s h wn b h u r n al r n i o u n z o i c n h l ci ft n f r5 .
Oco e 2 0 tb r 0l
文 章 编 号 :10  ̄7 4( 00 50 9 -7 09 4 2 1 )0 -140
基 于 复杂 网络 理 论 的广 州轨道 交通 网络 可 靠 性 研 究
刘志谦, 瑞 宋
( 京 交 通 大 学 交 通运 输 学 院 , 京 104 ) 北 北 0 04
Absr c Ur n r i ta i newo k c n b e ade sac mp e e wo k c nssi fsai n n i e . t a t: ba al rnst t r a er g r d a o l xn t r o it o t to sa d ln s ng Ex lrn o ne tvt fr i ta i n t r o po i g c n c iiy o al rnst ewo k byc mplx n t r h o yha eti i nfc n e o t e e — e ewo k t e r s c ran sg i a c n isa e s i
基于复杂网络理论的客运专线网络可靠性分析

复杂 网络是 具有 海量 节点 和复杂 连接 拓扑结 构 的 网络模 型 , 实世 界 中很 多 系统 都可 以看 作 复 杂 网 现
无 向图 的主要统计 特 征有度 分布 (eredsi tn 、 dge ir ui ) 聚类 系 数 (ls r gce c n) tb o c t i of i t 和平 均 路径 长 u en i e
中图分 类号 : 2 8 文献 标识 码 :A 文章编 号 : 0 5— 3 3 2 1 )2— 0 5— 5 U 3 2 9 0 7 (0 2 0 0 8 0
0 引 言
根 据我 国《 中长期 铁路 网规划 》 20 调整 )至 2 2 我 国将 完 成建设 16万 k 客运 专 线 , 时 (08年 , 0 0年 . m 届
的静 态统计 特征 , 包括 度分 布、 类 系数 和 平均路 径 长度 , 出客 运 专 线 网络是 典 型 的无 标 度 复 聚 得
杂 网络 。分 别在 随机性 攻 击和选择 性攻 击 两种模 式 下 , 网络 的全局 效率 和 最 大连通 子 图的相 从
对大 小 两个指标 , 对客 运 专线 网络 的可 靠性 进 行 分析 , 知客 运 专线 网络 对 随机 性 攻 击 的 抗破 得 坏能 力较 强 , 而对 选择 性攻 击的抗 攻 击能 力较 弱 , 最后提 出 了提 高客运 专线 网络 可靠 性的 建议 。 关 键词 : 客运 专线 ; 网络 ; 杂 网络 ; 复 可靠性
数 。
2 客 运 专线 网络 的复 杂 网络模 型
以客运 专线 网络 为研究 对 象 , 取 已有 客运 专 线 网 选
络上 的部分 车站 (5个 ) 为 节点 , 立 复 杂 网络模 型 。 7 作 建
控制网络中复杂系统的同步与稳定性分析

控制网络中复杂系统的同步与稳定性分析随着互联网的迅猛发展,网络中的复杂系统的同步与稳定性成为了一个重要的研究课题。
网络中的复杂系统包括物理系统、生物系统、社交网络等,它们的同步与稳定性对于保证系统的可靠性和稳定性至关重要。
本文将探讨控制网络中复杂系统的同步与稳定性的分析方法和研究进展。
首先,我们需要了解什么是复杂系统的同步与稳定性。
同步是指网络中的系统在时间上或空间上的状态呈现一致性和相互协调的特性。
稳定性则表示系统在受到外界扰动后,能够保持平衡和正常运行的能力。
针对网络中复杂系统的同步与稳定性,研究者们提出了多种分析方法和理论模型。
其中一个重要的分析方法是基于图论的方法。
通过将网络中的复杂系统抽象成图模型,利用图的拓扑结构和连接强度来分析系统的同步和稳定性。
例如,通过定义网络的节点和边以及它们之间的权重,可以进一步研究网络中的同步现象。
另一个重要的分析方法是基于控制理论的方法。
通过引入控制机制,对网络中的复杂系统进行控制和调节,以实现系统的同步和稳定性。
例如,通过设计合适的控制策略,可以在网络中实现系统的集中同步和分布式同步。
同时,控制机制还可以提供系统的稳定性分析,以确保系统在面对不确定性和噪声干扰时依然稳定运行。
除了以上的分析方法,网络中复杂系统的同步与稳定性还可以通过数学建模和仿真实验进行分析。
通过建立系统的数学模型,利用数学方法进行求解和分析,可以更准确地预测系统的同步和稳定性。
同时,通过仿真实验可以模拟复杂网络中不同情况下的同步和稳定性变化,从而评估不同因素对系统的影响。
近年来,研究者们在控制网络中复杂系统的同步与稳定性方面取得了一系列的研究进展。
例如,在图论方面,研究者发现了一些网络结构对于系统的同步和稳定性具有重要影响,如小世界网络和无标度网络。
同时,研究者还提出了一些具有启发性的控制策略,如最优控制和自适应控制,以实现网络系统的同步和稳定性。
此外,研究者们还注意到网络中的非线性和时滞对于系统的同步和稳定性具有重要影响。
复杂网络系统研究与应用

复杂网络系统研究与应用随着互联网技术的不断发展,人类社会正在向着一个高度复杂、高度互联的网络时代发展。
在这个新的时代中,复杂网络系统成为了一个备受关注的话题。
复杂网络系统不仅是一个学术研究领域,而且在许多行业领域中有着重要的应用价值。
本文将介绍复杂网络系统的研究和应用,并且探讨其未来发展趋势。
一、复杂网络系统的定义与特征复杂网络系统是指由许多个体互相连接而成的网络结构。
它具有许多特征,如规模大、结构复杂、动态性强、随机性高等。
复杂网络系统的研究需要运用到数学、物理、计算机科学等多个学科领域的知识和方法,主要包括网络结构分析、信息传播模型、动力学模型、统计机器学习等。
二、复杂网络系统的研究进展复杂网络系统的研究始于上世纪70年代,随着互联网的诞生和数据技术的不断完善,相关研究工作也得到了迅速发展。
当前,复杂网络系统的研究主要集中于以下几个方面:A. 网络结构分析:该研究方向主要是分析网络中的节点数量、连接密度、节点度分布、连通性等结构特征,探究不同类型的网络结构所具有的规律性和随机性。
B. 信息传播模型:该研究方向主要是分析信息在网络中传播的规律性,以及在不同网络结构下信息传播的速度、范围和效果等问题。
C. 动力学模型:该研究方向主要是研究网络中各个节点之间的动态变化规律及其影响因素,以及网络的自组织、演化等过程。
D. 统计机器学习:该研究方向主要是利用一系列机器学习方法,构建基于大数据的网络预测、分类和优化模型,实现对复杂网络系统的精确控制和协调管理。
三、复杂网络系统的应用领域复杂网络系统在许多领域都有着广泛的应用,下面介绍几个典型的应用领域:A. 社交网络:社交网络是复杂网络系统的一个典型应用领域。
以Facebook、微博等为代表的社交平台已成为人们日常交流、信息传播和商业活动等的重要场所。
复杂网络系统的研究可以为社交网络的优化和管理提供关键的技术支持。
B. 金融网络:金融网络是复杂网络系统的另一个重要应用领域。
基于深度学习的复杂网络分析与优化研究

基于深度学习的复杂网络分析与优化研究复杂网络分析与优化在当今信息时代具有重要的意义和价值,然而,由于网络结构的复杂性和海量数据的存在,传统的分析方法效率低下,难以满足实际应用的需求。
近年来,基于深度学习的方法成为网络分析与优化的研究热点。
本文将针对基于深度学习的复杂网络分析与优化进行综述和深入讨论。
首先,本文将介绍深度学习在复杂网络分析方面的应用。
深度学习可以从底层的网络结构特征中学习到高层次的数据表征,能够发现网络中隐藏的规律和关系。
例如,图卷积网络(Graph Convolutional Network,简称GCN)是深度学习在图领域的经典模型,通过卷积操作在图上学习特征表示,在社交网络分析、生物网络分析等领域取得了显著的效果。
此外,深度学习还可以用于复杂网络的异常检测、社区发现、链接预测等任务,提高了网络分析的准确性和效率。
接着,本文将探讨深度学习在复杂网络优化方面的应用。
复杂网络优化是指在网络中寻找最优解或基于某种目标进行优化。
深度学习可以通过学习网络的表示和参数化的方法,进行复杂网络的优化。
例如,深度强化学习(Deep Reinforcement Learning,简称DRL)可以应用于复杂网络的动态路由优化,通过训练智能体在网络中自主学习网络结构和参数,并根据网络状态采取动态决策,优化网络的性能和效率。
此外,深度学习还可以用于复杂网络的拓扑结构设计、资源分配与调度等方面,提高网络的可靠性和灵活性。
在研究方法方面,本文将重点介绍基于深度学习的复杂网络分析与优化的常见算法和模型。
例如,除了前面提到的GCN和DRL,还有基于卷积神经网络(Convolutional Neural Network,简称CNN)的网络表示学习方法,基于自编码器(Autoencoder)的异常检测方法,基于生成对抗网络(Generative Adversarial Network,简称GAN)的社区发现方法等。
这些模型和算法通过对网络数据的特征学习和生成,提高了网络分析和优化的性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
面前 : 这些网络到底有多可靠?能否做到“ 召之即来 、 来之能战、 战之能胜” ?网络的可靠性水平可否达到
收稿 日期 :00— 5 2 21 0 —0 基金项 目: 国家自 然科学基金资助项 目(07116946 ) 77 11 , 005 0 作者简 介 : 娟, 博士生, 赵 女, 主要从事复杂网络和网络系统可靠性¨ 。
随着 复杂 网络研究 的不断 深入 与 发展 , 网络抗 毁 性 【 可靠 性 l j 直 是研 究 的热 点 问题 。网 卜“和 1 一 络 可靠性水 平对 网络能 否正 常运 转 起 着 至 关 重要 的作 用 , 网络 一 旦发 生故 障 , 能 造 成 灾 难性 的影 响 : 可 20 0 3年美加 电 网故障导致 大规模 停 电 ,05年 台 湾地 震 海底 光 缆损 坏 导 致 整个 亚 太 地 区 的互 联 网服 务 20 几近瘫 痪 ,08年 汶川地 震迫使 通信 、 20 交通 中断 ,09年 暴风影 音缺 陷 引起 大规模 的 网瘫 事件 ,00年百 20 21 度遭 黑客篡 改域名 引起大 规模 网络 中断 问题 ……越 来越 频 繁发 生 的事 故 将 一 系列 严 峻 的 问题 摆 在人 们
摘
要
在分析 网络 可靠性概念和内涵的基础上 , 从基本可靠性和任务可靠性 两个
方 面, 网络 系统 的生存性 、 以 抗毁 性 、 可用性 、 可信 性 和 完成 性 为主 线 , 系统地 总结 了网络
可靠性的相关研 究进展 , 对未来发展趋势进行 了展望。
关键 词 复 杂 网络 ; 可靠性 ; 抗毁性 ; 生存 性 ; 完成性 ; 用性 ; 可 可信 性
2 世纪以来 , 1 以信息技术的飞速发展为基础, 人类社会加快 了网络化进程。交通 网络 、 通信 网络、 电
力 网络 、 物流 网络 ……可 以说 ,我 们被 网络 包 围着 ” 网络 已成 为 人类 生产 、 “ , 生活 不 可或 缺 的一 部 分 。因 此 , 网络定 性 特征 与定 量规 律 的深入探 索 、 学理解 以及 可 能 的应 用 , 系统 科学 以及 信息 科 学研 究 中 对 科 是
di1 .99 ji n 17 74 .0 0 0 .1 o: 36 /. s.62— 8 32 1.5 0 5 0 s
复杂 网络 可 靠性 研 究进 展
赵 娟 , 郭 平 吴 俊 邓 宏 钟 谭 跃进 , , ,
( . 勤工程 学院 训 练部 , 1后 重庆 4 1 1 ; . 0 3 1 2 国防科技 大学 信 息 系统与 管理 学院 , 沙 4 0 7 ) 长 10 3
文 献标志 码 : A 中图分类号 : 9 9;P 0 N 4 T 32
Re iw n t la ii fCo lx Newoks v e o he Reib lt o mp e t r y
Z A un , U ig , u D N o gzo g ,A u -n H O Ja G O Pn WU Jn , E G H n — n T N Y ej h i ( . eto riig L U, h nqn 0 3 1 C ia2 C l g f no t nSs ms n a ae e t 1D p.f a n , E C o g i 4 1 1 , hn ;. o eeo f ma o yt dM n gm n , T n g l I r i e a N t nl n esyo ees eh o g , hn sa 1 0 3 C ia ai a U i ri f f eT c nl y C agh 0 7 , hn ) o v t D n o 4
rla iiy i h n pr s n e a e n t e tpoo y r la lt nd t ro ma c e ib l y,e p ciey. nal te f t e r s a c e ib l s te e e td b s d o h o l g eibii a hepef r n e rla ii rs e t l Fi l y,h uur e e r h t y t v te d n t e n t r eibii r ic s e r n s o h ewok r la lt a e d s u s d. y
Ke wo d c mp e ew r s r l bl y; v l ea i t ; u vv b l y p r r a i t ; v i b l y; e e d bl y y rs o lx n t o k ;e i i t i un rb l y s r ia i t ; e o b l y a al i t d p n a i t a i n i i fm i a i i
Abt c T edf io n ersac b c o e okrl b i r fsya a zd A ss macl eiw o e ok sr t h e n i a dt eerhoj t f t r e ait aei t nl e . yt t a rv nnt r a tn h e nw i ly r l y e i e w
第2 6卷 第 5期 21 00年 9月
后
勤
工
程
学
院
学
报
V0 | 6 No 5 l2 .
Se . 01 p2 0
J RNA OGI T C GI E NG U VE I Y OU L OF L S I AL EN NE RI NI RS T
文 章 编 号 :62—74 (0 0 0 0 7 0 17 8 3 2 1 )5— 0 2— 8