3的倍数特征
3的倍数的特征教案

3的倍数的特征教案第三课时“3的倍数的特征”教学设计教学内容:人教版五年级下册第19、20页教学目标:1、通过观察、猜测、交流、验证等活动,使学生经历探索3的倍数的特征的过程,理解3的倍数特征,能判断一个数是不是3的倍数。
2、培养学生观察、分析及概括问题的能力,发展学生的抽象思维,培养合作交流意识,提高学生的合情推理能力。
3、让学生体验数学问题的探究性和挑战性,进一步激发学生学习数学的兴趣,并从中获得积极的情感体验。
教学重点:理解和掌握3的倍数的特征,并能熟练地去判断一个数是否是3的倍数。
教学难点:3的倍数的数的特征的归纳过程。
教学准备:课件教学过程:1一、复习旧知激趣引入1、2的倍数有什么特征, 5的倍数有什么特征,2、123这个数,它是2或5的倍数吗,是3的倍数吗,213、231也是3的倍数,信不信,口算验证一下。
今天我们研究3的倍数的特征,二、猜想验证探究新知(一)猜一猜:3的倍数有什么特征,(二)探索规律、验证猜想1、找寻3的倍数若干写算式,从3的1倍写起,写出若干个3的倍数2、观察验证请同学们观察一下,3的倍数个位上是哪些数字,刚才那位同学的猜想正确吗,举例验证:如13、16、19是不是3的倍数,要判断一个数是不是3的倍数,能不能只看个位,3、猜想研究的途径从个位研究一个数的倍数的特征,不适合研究3的倍数的特征,想一想,还可以从哪个方面研究呢,从一个数的十位去研究、把各个数位上的数加起来研究4、探究特征,验证猜想:3的倍数究竟有什么样的特征呢,小组内交流谈论,说说自己的发现。
2班内汇报交流:每个小组的发现。
汇报交流:?3的倍数交换两个数字的位置后,得到的还是3的倍数。
?3 的倍数各位上数字相加,和是3,没有变还是3的倍数。
5、引导概括规律:观察这些3的倍数,它们十位与个位上数的和跟3有着怎样的关系,分组讨论。
用自己的话说出3的倍数的特征。
同桌交流。
教师板书:一个数各位上的数的和是3的倍数,这个数就是3的倍数。
3的倍数特征

3的倍数特征[教学目标]1、经历探索3倍数的特征的过程,理解3倍数的特征,能判断一个数是不是3的倍数。
2、发展分析、比较、猜测、验证的能力。
[教学重、难点]发展分析、比较、猜测、验证的能力。
[教学过程]一、3的倍数的特征的猜想我们研究了2、5的倍数的特征,那么3的倍数有什么特征呢?引导学生提出猜想。
学生可能会猜想:个位上能被3整除的数能被3整除等,老师引导学生进行讨论、研究。
二、3的倍数的特征的探究让学生在100以内的数表中找出3的倍数,用自己的方式做记号,并观察、思考3的倍数有什么特征。
在此基础上引导学生将3的倍数每个数位的各个数字加起来再观察,逐步引导学生发现规律,从而归纳出3的倍数的特征。
引导学生归纳3的倍数的特征:每个数位的各个数字加起来是3的倍数。
试一试:尝试用3的倍数特征来判断一个数是不是3的倍数。
三、练一练第2题:让学生准备几张卡片:3、0、4、5 边摆边想,再交流讨论思考的过程。
(1)30、45、54 (2)30、54 (3)30、45 (4)30四、实践活动让学生运用研究3的倍数的特征的方法去研究9的倍数。
让学生经历涂、画、想等过程,使学生获得真实的体验。
五、尝试检验(1)出示84、92、102、315(2)利用规律进行检验。
(3)小结:这个规律对三位数一样成立。
[板书设计]3的倍数的特征3的倍数的特征:这个数各位数字之和是3的倍数。
[教学反思]《3的倍数的特征》是学生在学习过2.5倍数特征之后的又一内容,因为2.5的倍数的特征仅仅体现在个位上的数,比较明显,容易理解。
而3的倍数的特征,不能只从个位上的数来判断,必须把其他各位上的数相加,看所得的和是否为3的倍数来判断,学生理解起来有一定的困难。
我决定在这节课中突出学生的自主探索,使学生猜想——观察——再观察——动手试验的过程中,概括归纳出了3的倍数特征。
3的倍数的特征

“3的倍数的特征”教学反思
“3的倍数的特征”是在学习了“2、5的倍数的特征”后学习的。
可以像探索“2、5的倍数的特征”的教学方法一样,在多个3的倍数中去发现3的倍数的特征。
但正由于学习了“2、5的倍数的特征”,学生很容易受知识迁移的影响去研究各个数位上的数的特征,但都无法发现。
在备课时,我就想,如果课本上没有提示,或者老师没有点破,学生想破头也难想出方法来。
事实上我私底下调查过成绩特别好的学生,也是如此。
这个时候我当然想到这样引导学生:当我们凭经验来研究新事物的时候,如果不能取得成果,那么就要求我们要改变策略,换换思路了。
但改变策略也很难发现规律,所以我就想如何能够引导学生来发现3的倍数的特征是从各个数位上的数字之和去考虑,但没找到方法,就只好让学生自学课本,按照小博士的点拨去发现规律了。
不过心中还留着这种念想,也算是一种遗憾吧。
我为什么会想到不让学生看课本提示来找规律呢?因为我想:告诉学生走哪条路不如让学生自己去找路。
这课上完后的几天,我与备课组的同事们说起这回事,田德珍老师说了一个方法,我觉得还可以,她是这样说的,可以写几个这样的数,如:129、219、921、291、192、912.很容易验证这些都是3的倍数,然后让学生观察,思考,应该就容易发现3的倍数的特征了。
又是遗憾早没想到这种方法,不过以后教学这课的时候我就要用这种方法了。
第二单元《3的倍数的特征》教案

5.3的倍数在日常生活中的应用。
二、核心素养目标
《3的倍数的特征》教学旨在培养学生的以下核心素养:
1.数学抽象:通过探究和归纳,使学生理解数的倍数概念,提高数学抽象思维能力。
2.逻辑推理:培养学生运用逻辑推理方法,分析并证明3的倍数的特征,增强推理能力。
3.数学建模:让学生运用所学知识解决实际问题,建立数学模型,提高数学建模素养。
-重点三:分析数列中3的倍数的规律,如每隔两个数出现一个3的倍数等。
-重点四:结合实际情境,让学生学会将数学知识应用于生活,如购物时如何判断总价是否为3的倍数。
2.教学难点
(1)理解并掌握如何运用各位数字之和判断一个数是否为3的倍数。
(2)在数列中找出并应用3的倍数的规律。
(3)将抽象的数学概念应用于解决具体问题。
五、教学反思
在今天的课堂中,我们探讨了《3的倍数的特征》,整体教学过程让我有了以下几点思考。
首先,我发现同学们对3的倍数的概念掌握得还不错,但在运用各位数字之和判断一个数是否为3的倍数时,部分同学还是感到有些困难。这一点让我意识到,在今后的教学中,需要加强对这一知识点的讲解和练习,让学生更好地理解并运用这一方法。
其次,在实践活动环节,同学们分组讨论和实验操作的过程中,我注意到他们对3的倍数在实际生活中的应用有了更深刻的认识。但同时,我也发现有些小组在讨论时,观点较为片面,未能全面考虑到3的倍数在各种情境下的应用。针对这一问题,我计划在接下来的课堂中,引入更多丰富多样的实例,激发学生的思考,帮助他们更好地将数学知识应用于实际生活。
3.重点难点解析:在讲授过程中,我会特别强调3的倍数的定义和判断方法这两个重点。对于难点部分,如理解各位数字之和与3的倍数的关系,我会通过举例和图示来帮助大家理解。
是3的倍数的特征

是3的倍数的特征
3的倍数的特征有以下几个方面:
1.整除性质:3的倍数具有整除3的性质,即一个数能够被3整除,那么它就是3的倍数。
例如,6除以3的结果是2,说明6是3的倍数。
2.数位和:一个数的各个位数之和如果能够被3整除,那么这个数也是3的倍数。
例如,123的各个位数之和是6,因为6能被3整除,所以123是3的倍数。
3.末尾为0:为0、3、6、9的数字都能被3整除,因此如果一个数的末尾是0、3、6、9中的一个,那么它就是3的倍数。
4.各位数字之和为3的倍数:如果一个数的各位数字之和能够被3整除,那么这个数也是3的倍数。
例如,624的各位数字之和是12,因为12能被3整除,所以624是3的倍数。
5.间隔为3的倍数:如果一个数的个位数和十位数的差能被3整除,那么这个数也是3的倍数。
例如,27的个位数为7,十位数为2,它们的差为5,5不能被3整除,所以27不是3的倍数;而30的个位数为0,十位数为3,它们的差为3,3能被3整除,所以30是3的倍数。
即个位数与十位数之差能被3整除。
6.整数规律:3的倍数的个位数如果是0、3、6、9,那么这个数还是3的倍数。
如果一个数的个位数是0、3、6、9,那么它一定能被3整除,并且这个规律也可以递归应用于数的每一位。
例如,231的个位数为1,因此它不是3的倍数;而234的个位数为4,因此可以通过判断234除以10后的结果是否是3的倍数来判断234是否是3的倍数。
这些都是3的倍数的特征,根据这些特征可以判断一个数是否是3的倍数。
同时,这些特征也可以用于解决一些与3的倍数有关的问题,例如编写算法求解3的倍数的个数或者求给定范围内3的倍数之和等。
《3的倍数特征》教学反思

《3的倍数特征》教学反思《3的倍数特征》教学反思《3的倍数特征》教学反思1【初次理论】课始,让学生任意报数,师生比赛谁先判断出这个数是不是3的倍数,正当我沉浸在游戏的情境之中,几个“不识时务者”打乱了课前的料想。
“老师,我知道其中的机密,只要把各个数位上的数加起来,看看是不是3的倍数就行了!”“对!在数学书上就有这句话。
”……又有几个学生偷偷地翻开了数学书。
“怎么办?”谜底都被学生揭开了。
面对这一生成,我没有死守教案,而是果断地调整了预设,变“探究”为“验证”,将结论板书在黑板上,让学生理解这句话的意思,然后组织学生将百数表中3的倍数圈出来,验证是不是具有这样的特征,最后进展一系列稳固练习……[反思]课堂上经常会出现类似上述案例中的“超前行为”,即有些学生提早把要探究的新知识和盘托出。
我们的习惯做法就是变“探究”为“验证”,当然有些知识的教学采用这种方式是有效的,然而本课中“验证”的过程真能取代“探究发现”的过程吗?仅仅举几个例子试一试,验证方法单一,思维含量低,学生充其量只能算是执行操作命令的“计算器”,又能获得哪些有益的开展?假如经常进展这样的教学,还容易使学生形成急躁浅薄,不求甚解,甚至只要结论的不良学习风气。
怎么办,置之不理吗?假如这样,不仅没有尊重学生已有的知识经历,而且在已经揭开“谜底”的情况下,再试图引导学生进展猜测、实验、发现,体验遭受挫折后获得成功的那种冲动,也只能是一种奢望。
那么又该如何激发学生探究的热情,促使学生进展深化探究呢?【再次理论】〔与第一次教学情况根本一样,有些学生可以正确地判断一个数是不是3的倍数,这时一些学生却仍然感到困惑,我设法将这一困惑激发出来。
〕师:同学们真能干,这么快就知道了3的倍数的特征,上节课我们学习了2、5的倍数的特征只和什么有关?生:只和一个数的个位有关。
师:与今天学习的知识比拟一下,你有什么疑问吗?生1:为什么判断一个数是不是3的倍数只看个位不行?生2:为什么判断一个数是不是2、5的倍数只看个位,而判断是不是3的倍数要看各位上数的和?……师:同学们考虑问题确实比拟深化,提出了非常有研究价值的问题。
3的倍数的特征

探索3的倍数的特征
3的倍数的数
1 2 3 4 5 6 7 ……
×3
3 6 9 12 15 18 21 ……
1+2=3 1+5=6 ……
12个位上的数不是3的倍数,但 1 + 2 = 3,3是3的倍数。 15个位上的数不是3的倍数, 但1 + 5 = 6,6是3的倍数。
3的倍数的数
1 2 3 4 5 6 7 ……
×3
3 6 9 12 15 18 21 ……
提示:
把3的倍数的各位上的数 相加,看看你有什么发现。
探索3的倍数的特征
我们把刚才得到的3的那些倍数各个数位上的数字加起来, 看看他们都是些什么数?
1+2=3 1+5=6 1+8=9 2+1=3
想一想
这些数有什么特点,你看出来了吗?
探索3的倍数的特征
刚才的那些数各数位上的数加起来的和还是3的倍数。 1+2=3 1+5=6 1+8=9 2+1=3 3,6,9都是3的倍数。 因此,一个数如果各个数位上的数字之和是3的倍数,这个 数就是3的倍数。 小精灵的话你听懂了吗?它说得对吗? 我们用小精灵讲的方法检验一下吧: 354是3的倍数吗? 3+5+4=12,12是3的倍数,因此354就是3的倍数。 检验一下:354÷3=118 同学们再试试看呢
探索3的倍数的特征
用刚刚的方法判断以下数是否是3的倍数: 789 93 527 1050
7+8+9=24, 24是3的倍数,所以789是3的倍数。 (789÷3=263) 9+3=12, 12是3的倍数,所以93是3的倍数。 (93÷3=31) 5+2+7=14,14不是3的倍数,所以527不是3的倍数。 (527÷3=175…2) 1+0+5+0=6,6是3的倍数,所以1050也是3的倍数。 (1050÷3=350) 用刚刚的方法判断出的结果正确吗? 你能用自己的话说一说3的倍数的特征了吗?
《3的倍数的特征》数学教案设计

《3的倍数的特征》數學教案設計
标题:《3的倍数的特征》數學教案設計
一、教学目标:
1. 知识与技能:学生能够理解和掌握3的倍数的特征,并能应用这些知识解决相关问题。
2. 过程与方法:通过观察、比较、归纳等数学活动,提高学生的逻辑思维能力和抽象概括能力。
3. 情感态度价值观:激发学生对数学的兴趣,培养他们的探索精神和实践能力。
二、教学内容:
1. 了解3的倍数的特征
2. 掌握判断一个数是否是3的倍数的方法
三、教学过程:
(一)导入新课
教师可以通过让学生列举一些3的倍数,然后引导他们观察这些数的特点,从而引入本节课的主题——3的倍数的特征。
(二)探究新知
1. 教师可以先让学生自己尝试总结3的倍数的特征,然后引导他们发现“一个数各个位上的数字之和是3的倍数,那么这个数就是3的倍数”这一规律。
2. 教师可以举出一些例子,让学生验证这个规律的正确性。
(三)实践应用
教师可以设计一些习题,让学生运用所学的知识去解决。
例如,判断一个数是否是3的倍数,找出在一定范围内所有的3的倍数等。
(四)课堂小结
教师可以让学生回顾本节课的学习内容,总结3的倍数的特征,并强调这个规律的应用。
(五)作业布置
教师可以布置一些相关的习题,让学生在课后进一步巩固和应用所学的知识。
四、教学反思:
在教学过程中,教师要注意观察学生的学习情况,及时调整教学策略。
同时,也要鼓励学生主动参与课堂活动,提高他们的学习积极性和主动性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
判断一个数是不是3 的倍数,只看个位行吗?
2、再次猜想验证,出示: 12、21; 24、42; 123、213、312、231、321
看来3的倍数的特征与这个数的各个数位上ቤተ መጻሕፍቲ ባይዱ数 字有关系。
到底有怎样的关系呢?请你再举几个例子来 验证一下你的猜想。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
3的倍数特征
从1、2、3和5这四个数字中,任 意选取3个数字,组成一个三位 数,再判断是否是3的倍数.
哪下些哪列数些哪既数些是是数25是的的2倍倍的数数倍,?也数是? 5的倍数?
24 35 67 90 99 15 60 75 106 130 521 180
在下面□里填上合适数,使它能成
为3的倍数。
5
23□2 5
8
246□0
3 6 9
68□1 0
4 7
你能很快判断下列数是否3的倍数? 1236936273
456932221232
既是2的倍数,又是5的倍数,也是3 的倍数的最小两位数是多少?最大 两位数?最小三位数呢?
3的倍数特征
用3、4、5这三个数字按要求组数
2的倍数 5的倍数 3的倍数
猜一猜:3的倍数的特征
合作交流,学习成果
找出100以内的所有3的倍数。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100