关于自然数方幂和的几个研究方向

关于自然数方幂和的几个研究方向
关于自然数方幂和的几个研究方向

幂的运算

幂的运算 第一部分:知识归纳,要点总结 (什么是——幂?) n a 1、 同底数幂的乘法(重点) 法则:同底数幂相乘,底数不变,指数相加。 公式表示:m n m n a a a += (m 、n 都是正整数)。 推导过程:()()m n m n a a a a a a a a a +== 。 关键:找准底数。 注意:①底数必须相同;②相乘时,底数没有变化;③指数相加的和作为最终结果幂的指数。 例:计算351010?= ,3m m ?= ,()()32 b b --= ,21n n b b += 。 推广及逆用(难点) 同底数幂的乘法可推广到三个或三个以上同底数幂的情况,即:m n p m n p a a a a ++= (m 、n 、p 都为正整数), m n p m n p a a a a +++= (m 、n ,…,p 都为正整数)。 反之,m n m n a a a += (m 、n 为正整数)亦成立。 2、 幂的乘方与积的乘方 ⑴幂的乘方 意义:指几个相同的幂相乘。如:()n m a 是n 个m a 相乘,读作a 的m 次幂的n 次方。 推导过程:。 法则(重点):()n m mn a a =(m 、n 都是正整数)。 ⑵积的乘方 意义:是指底数是乘积形式的乘方。如:()3ab ,()n ab 。 推导过程:()()()()()()n n n ab ab ab ab a a a b b b a b === 。

法则(重点):()n n n ab a b =(n 为正整数)。 3、 同底数幂的除法 法则:同底数幂相除,底数不变,指数相减。 公式表示:m n m n a a a -÷=(0a ≠,m 、n 为正整数,且m>n )。 例:62x x ÷= ,()5 3a a -÷= ,41n n a a ++÷= ,()()3211a a +÷+= 。 零指数幂与负整数指数幂的意义(重、难点) (1)零指数幂 ()010a a =≠, 即任何不等于0的数的0次幂都等于1。 (2)负整数指数幂 1p p a a -=(0a ≠,p 是正整数) 即任何不等于零的数的-p (p 是正整数)次幂,等于这个数的P 次幂的倒数。 第二部分:考点精析,方法指导 【典型例题1】已知23x =,求32 x +的值。 【典型例题2】计算3534x x x x x += 【典型例题3】若236m m x x x -= ,求2112m m -+的值。 【典型例题4】若2m =-,求()()3 24m m m --- 的值。

课题 整数指数幂的运算法则

课题 整数指数幂的运算法则 【学习目标】 1.理解整数指数幂的运算法则,并熟练实行运算. 2.熟练掌握整数指数幂的性质. 3.在学习过程中进一步培养学生的逻辑思维水平与计算水平. 【学习重点】 整数指数幂的运算法则. 【学习难点】 整数指数幂的各种运算. 行为提示:点燃激情,引发学生思考本节课学什么. 行为提示:教会学生看书,独学时对于书中的问题一定要认真探究,书写答案. 教会学生落实重点. 注意:1.指数为负数的数不一定是负数. 2.最后结果不能含有负指数,若有负指数,应化成分数或分式的形式.情景导入 生成问题 知识回顾:教材P 19说一说: 1.正整数指数幂的运算法则有哪些? a m ·a n =a m +n ;(a m )n =a nm ;(ab)n =a n b n ; a m a n =a m -n (a ≠0);????a b n =a n b n (b ≠0). 2.零指数幂与负整数指数幂: a 0=1(a ≠0);a -n =a 0-n =a 0 (a n ) =(1)a n ;a -1=1a (a ≠0). 自学互研 生成水平 知识模块 整数指数幂的运算法则及运算 (一)自主学习 阅读教材P 20例7、例8. (二)合作探究 学习例7、例8的计算,你发现了什么? 在前面我们已经把幂的指数从正整数推广到了整数,能够说明:当a ≠0,b ≠0时,正整数指数幂的运算法则对于整数指数幂也成立. 归纳:a m a n =a m ·1a n =a m ·a -n =a m +(-n)=a m -n ; ????a b n =(a·b -1)n =a n ·(b -1)n =a n ·b -n =a n b n . 我们能够把正整数指数幂的5个运算法则推广并归纳为整数指数幂的以下3个运算法则:

幂的运算知识要点归纳及答案解析

幂的运算知识要点归纳及答案解析 【要点概论】 要点一、同底数幂的乘法特点 +?=m n m n a a a (其中,m n 都是正整数).即同底数幂相乘,底数不变,指数相加. 要点诠释:(1)同底数幂是指底数相同的幂,底数可以是任意的实数,也可以是单项式、 多项式. (2)三个或三个以上同底数幂相乘时,也具有这一特点, 即m n p m n p a a a a ++??=(,,m n p 都是正整数). (3)逆用公式:把一个幂分解成两个或多个同底数幂的积,其中它们的底数 与原来的底数相同,它们的指数之和等于原来的幂的指数。即 m n m n a a a +=?(,m n 都是正整数). 要点二、幂的乘方法则 ()=m n mn a a (其中,m n 都是正整数).即幂的乘方,底数不变,指数相乘. 要点诠释:(1)公式的推广:(())=m n p mnp a a (0≠a ,,,m n p 均为正整数) (2)逆用公式: ()()n m mn m n a a a ==,根据题目的需要常常逆用幂的乘 方运算能将某些幂变形,从而解决问题. 要点三、积的乘方法则 ()=?n n n ab a b (其中n 是正整数).即积的乘方,等于把积的每一个因式分别乘方, 再把所得的幂相乘. 要点诠释:(1)公式的推广:()=??n n n n abc a b c (n 为正整数). (2)逆用公式:()n n n a b ab =逆用公式适当的变形可简化运算过程,尤其 是遇到底数互为倒数时,算法更简便.如:1010 101122 1.22???? ?=?= ? ????? 重点四、注意事项

最新自然数幂次方和公式

1 2 自然数幂次方和的另一组公式 3 摘要:一般的自然数幂次方和公式是用n 的p+1次方的多项式表示,考虑到任 4 一多项式均可用k n C 表示,本文给出了自然数幂次方和用k n C 表示的方法,并且给 5 出了相应的系数完整表达式。这比多项式表达方便得多,因为多项式表达的系数 6 至今仍是递推公式表达。 7 8 9 由笔者的文章(注【1】)知,自然数幂次方和可以用关于n 的多项式表达,而 10 每一个多项式均可用k n C 表示的,因此可猜想自然数幂次方和也可以用k n C 表达出 11 来。 12 假设自然数幂次方和可以写成以下形式 13 ∑∑=++===p k k n k n k p n C A k S 1 111 。。。。。。(1) 14 那么同理可应有: 15 ∑∑=++--=-==p k k n k n k p n C A k S 1 11)1(1 1 1 16 那么: 17 ∑∑=+=++--=-=p k k n k p k k n k n n p C A C A S S n 1 1 1 11 1 18

[ ]∑∑==+++=-=p k k n k p k k n k n k p C A C C A n 1 1 111 19 20 ∑== p k k n k p C A n 1 21 因为对于充分大的自然数n 均使得上述式子成立,所以上式对应的应该是一个22 关于n 的p 次多项式,其中: 23 )1).....(1(k n n n C k n -+-= 24 这仅仅是一个多项式的写法,与排列组合无关, n 可为任意的数。 25 分别令n=1,2,3, 。。。。p-1时就有: 26 01 1 1 1 +=+ ==∑∑∑∑=+===t k k t k p t k k t k t k k t k p k k t k p C A C A C A C A t 27 ∑==t k k t k p C A t 1 )1...3,2,1(-=p t 。。。。。。。。 28 (2) 29 ∑-=-=1 1t k k t k p t C A t A )1...3,2,1(-=p t 。。。。。。。。 30 (3) 31 这是一个递推的数列,其中A 1=1 , 很显然,通过它可以求出所有的系数t A ,32 仿照笔者的文章(注【1】)可证明,由(3)式求出的系数t A ,使得公式(1)33 成立,即自然数幂次方和的公式由(1)(3)给出了。 34 其中(3)式是递推公式,那么能不能直接写出系数A t 的表达式呢,下35 面给出这个结论。 36

整数指数幂的运算法则

整数指数幂的运算法则 教学目标:1、通过探索掌握整数指数幂的运算法则。 2、会熟练进行整数指数幂的运算。 3、让学生感受从特殊到一般的数学研究的一个重要方法。 重 点:整数指数幂的运算法则的推导和应用。 难 点:整数指数幂的运算法则的理解。 过 程: (一)课前检测 正整数指数幂运算法则: =?n m a a =n m a )( =?n b a )( =n m a a =n b a )( (二)新课预习 1、自主探究: 1)、阅读教材P41~42 2)、尝试完成下列练习,检查自学效果: 1、下列运算正确的是: A:632a a a =? B: 532a a --=)( C:22-a 412a --= D: 222a 3a a --=- 2、设a ≠0,b ≠0,计算下列各式: =?-25a a =-3-2a )( =-4-12b a b a )( =-33b 2a )( 3、计算下列各式: 23222x 3y x y -- 22 222 x 2()xy y x y --+- = = = = 3)、完成课后练习。 (三)、成果呈现 1)、抽查各小组预习答案,并请学生代表小组展示。 2)、其它小组质疑、辩论、点评。 3)、全班归纳总结本节知识。 (四):练习巩固:

A 1、计算 =?-38x x =--332y x )( =-3-24ab a )( =?-382-2)( =÷-2 35ab 2b -a )( =-+--2224x 4x 4x )( B 2、若27 13x =,则x= 3、一个分式含有x 的负整数指数幂,且当x=2时,分式没有意义,请你写出一个这样的分式 。 C 4、已知01132=++x x ,求1-+x x 与2 2-+x x 的值。 6、小结: 整数指数幂的运算法则: =?n m a a =n m a )( =?n b a )( =n m a a =n b a )( 错题更正:

幂的运算

幂的运算 1、什么是幂 幂指乘方运算的结果. m n 指将n 自乘m 次.把m n 看作乘方的结果,叫做n 的m 次幂。其中,n 称为底,m 称为指数(写成上标)。 由幂的定义可以看出幂是乘方运算的结果而不是运算的过程。 m n 的亦可视为1×n ×n ×n...×n (注共m 个n 相乘)即起始值1(乘法的单位元)乘底数的指数次幂。这样定义了后,很易想到如何一般指数为0和负数的情况︰ 除了0之外所有数的零次方都是1,即n 0=1(n ≠0); 指数为负数的幂定义为m n - = m n 1; 分数为指数的幂定义为n m a = n m a 。 2、幂的运算 2.1、幂的运算公式 同底数幂的乘法m a ×n a =)(n m a + 幂的乘方:n m a )(=mn a 同指数幂的乘法:m b a )(?=m a ×m b 同底数幂相除:m a ÷n a =)(n m a - (a ≠0) 这些公式也可以这样用: )(n m a += m a ×n a mn a =n m a )( m a ×m b =m b a )(? )(n m a -= m a ÷n a (a ≠0) 2.2幂的运算公式的运用 运用幂的运算公式前应先知道这些公式是怎么得来的,观察幂的运算公式有什么特点,这样才能更好的运用公式。 幂的运算公式都是由幂的定义推导而来,是为了方便特殊情况幂的运算。

2.2.1幂的运算公式推导 2.2.1.1同底数幂的乘法m a ×n a =)(n m a + 因为:m a 由幂的定义为a ×a ×a ×...a(m 个a 相乘); n a 由幂的定义为a ×a ×a ×...a(n 个a 相乘); m a ×n a 由幂的定义为{a ×a ×a ×...a(m 个a 相乘)}×{a ×a ×a ×...a(n 个a 相乘)}为m+n 个a 相乘即)(n m a +; 所以:m a ×n a =)(n m a + 2.2.1.2幂的乘方: n m a )(=mn a 因为:n m a )(由幂的定义为m a ×m a ×m a ...×m a (n 个m a 相乘) 其中m a 由幂的定义为a ×a ×a ×...a(m 个a 相乘) 即n m a )(由幂的定义也可以为{a ×a ×a ×...a(m 个a 相乘)}×{a ×a ×a ×...a(m 个a 相乘)}×{a ×a ×a ×...a(m 个a 相乘)}×...{a ×a ×a ×...a(m 个a 相乘)}(注:共n 个{a ×a ×a ×...a(m 个a 相乘)}) 所以:n m a )(=mn a 2.2.1.3同指数幂的乘法:m b a )(?=m a ×m b 因为:m b a )(?由幂的定义为(a ×b)×(a ×b)×(a ×b)×...×(a ×b)(共m 个a ×b 相乘)=a ×b ×a ×b ×a ×b ×...×a ×b(共m 个a ×b 相乘)=a ×a ×a ×...a(共m 各a 相乘)×b ×b ×b ×...b(共m 各a 相乘) 所以:m b a )(?=m a ×m b 2.2.1.4同底数幂相除:m a ÷n a =)(n m a - (a ≠0) 因为:当a=0时n a 意义; 当a ≠0时,m a ÷n a 由幂的定义为{a ×a ×a ×...a(m 个a 相乘)}÷{a ×a ×a ×...a(n 个a 相乘)} 所以:m a ÷n a =)(n m a - (a ≠0) 2.2.2幂的运算公式运用选择

底数是自然数的幂的速算法

底数是自然数,指数是2或3的幂的速算法 一、底数是自然数,指数是2的幂或者说一个自然数的平方的速算法 我们知道:自然数中数小的平方很好记,但是,我们的学习中不仅仅限于这些数。因而我在此讲授一些新方法,让大家共同探讨、研究。如下: 12=1 22=(4)=1(12中的底数1)+1(12的结果幂1)+2(22中的底数)即:22= 1+(1)+2 32=9 =2+(4)+3 42=16 =3+(9)+4 52=25 =4+ (16) +5 =4+3+(9)+ 4+5 =4+3+2+(4) +3+4+5 =4+3+2+1+(1)+2+3+4+5 n2=(n-1)+(n-2)+······+2+1+1+2+······+(n-1)+n =2[1+2+3+······+(n-1)]+n · · · 252=625 262=25+625+26

(n-1)2=······ n2=(n-1)+(n-1)2+n=(n-1)+(n-2)+··+2+1+1+2+··+(n-1)+n (n+1)2=n+ n2+(n+1)化简即为 n2+2n+1 完全平方公式 即 n项的幂 = n一1项的底数 + n一1项的幂 + n项的底数其中n为N(自然数)(n﹥2)。 对于1000以内的数我们也许能用笔很快的在纸张上算出来,但是对于10000及以上的数是不是就不方便了? 例如:3002,我们很明显地知道等于90000,那么我们是不是很快知道3012的幂呢?用以上我们学到的这个方法来算: 即 3012=300+90000+301=90601 我们平时是用301×301等于9061,如果是10000012呢?用以上的方法是不是很简单了? 我们从以上学到的这个方法是否能推出相差2的自然数3032等于多少呢?甚至相差3,10,13的数3032,3102,3132等于多少呢?甚而相差更大的自然数呢?下章再讲,谢谢谅解. 2013年8月1日于贵州兴仁

自然数幂求和公式的存在与规律探讨

本科毕业论文 自然数幂求和公式的存在与规律探讨 SUM FORMULA OF POWER OF NATURAL NUMBER'S EXISTENCE AND REGULARITY 学院(部):理学院 专业班级:08-2数学与应用数学 学生姓名:张兴刚 指导教师:范自强 2012年6 月1 日

自然数幂求和公式的存在与规律探讨 摘要 自然数幂求和是一个古老的数学问题,本文从线性空间入手,提出关于多项式的自然线性空间的概念,利用了线性空间的简单性质,证明了任意正整数的自然数幂求和公式的存在和简单规律;归纳出自然数幂求和公式中一条精彩的结论,系数定理,一劳永逸的解决并揭示了自然数幂求和问题的内涵;本文亦从线性空间的角度,提出自由空间概念,为自然数幂求和问题带来了一种新的视角。 关键字:自然数幂求和、自然线性空间、多项式、系数定理、自由线性空间

Sum formula of power of natural number 's existence and regularity Abstract Natural number power sum is an ancient mathematical problems, this article from the linear space sets out, put forward on polynomial natural linear space, linear space of the simple nature, it is proved that for any positive integer sum formula of power of natural number exists, and the simple rule; summarize sum formula of power of natural number in a wonderful conclusion coefficient theorem, put things right once and for all solutions and reveals the natural number power sum problem connotation; this paper also from linear spatial angle, put forward the concept of free space, is a natural number power sum problem brought a new perspective. Keywords: natural number power sum, natural linear space, polynomial coefficient theorem, free linear space

幂的运算以及乘法公式练习

1,下列各式中,填入a 3能使式子成立的是( ) A .a 6=( )2 B. a 6=( )4 C.a 3=( )0 D. a 5=( )2 2,下列各式计算正确的( ) A.x a ·x 3=(x 3) a B.x a ·x 3=(x a )3 C.(x a )4=(x 4) a D. x a · x a · x a =x a +3 3,如果(9n )2=38,则n 的值是( ) A.4 B.2 C.3 D.无法确定 4,已知P=(-ab 3)2,那么-P 2的正确结果是( ) A.a 4b 12 B.-a 2b 6 C.-a 4b 8 D.- a 4 b 12 5,计算(-4×103)2×(-2×103)3的正确结果是( ) A .1.08×1017 B.-1.28×1017 C.4.8×1016 D.-1.4×1016 6,下列各式中计算正确的是( ) A .(x 4)3=x 7 B.[(-a )2]5=-a 10 C.(a m )2=(a 2)m =a m 2 D.(-a 2)3=(-a 3)2=-a 6 7,计算(-a 2)3·(-a 3)2的结果是( ) A .a 12 B.-a 12 C.-a 10 D.-a 36 8,下列各式错误的是( ) A .[(a+b )2]3=(a+b )6 B.[(x+y )n 2]5=(x+y )52+n C. [(x+y )m ]n =(x+y )mn D. [(x+y )1+m ]n =[(x+y )n ]1+m 9,2)2(n m +-的运算结果是 ( ) A 、2244n mn m ++ B 、2244n mn m +-- C 、2244n mn m +- D 、2242n mn m +- 10,运算结果为42421x x +-的是 ( ) A 、22)1(x +- B 、22)1(x + C 、22)1(x -- D 、2)1(x - 11,已知2 264b Nab a +-是一个完全平方式,则N 等于 ( ) A 、8 B 、±8 C 、±16 D 、±32 12,如果22)()(y x M y x +=+-,那么M 等于 ( ) A 、 2xy B 、-2xy C 、4xy D 、-4xy

幂运算及相关公式

整数指数幂 教学目标: 1、 使学生掌握不等于零的零次幂的意义。 2、 使学生掌握n n a a 1= -(a ≠0,n 是正整数)并会运用它进行计算。 3、 通过探索,让学生体会到从特殊到一般的方法是研究数学的一个重要方法。 重点难点: 不等于零的数的零次幂的意义以及理解和应用负整数指数幂的性质是本节课的重点也是难点。 教学过程: 一、讲解零指数幂的有关知识 1、 问题1 同底数幂的除法公式a m ÷a n =a m-n 时,有一个附加条件:m >n ,即被除数的指数大于除 数的指数.当被除数的指数不大于除数的指数,即m =n 或m <n 时,情况怎样呢 2、探 索 先考察被除数的指数等于除数的指数的情况.例如考察下列算式: 52÷52,103÷103,a 5÷a 5(a ≠0). 一方面,如果仿照同底数幂的除法公式来计算,得 52÷52=52-2=50, 103÷103=103-3=100, a 5÷a 5=a 5-5=a 0(a ≠0). 另一方面,由于这几个式子的被除式等于除式,由除法的意义可知,所得的商都等于1. 3、概 括 我们规定: 50=1,100=1,a 0=1(a ≠0). 这就是说:任何不等于零的数的零次幂都等于1. 二、讲解负指数幂的有关知识 1、探 索 我们再来考察被除数的指数小于除数的指数的情况,例如考察下列算式: 52÷55, 103÷107, 一方面,如果仿照同底数幂的除法公式来计算,得 52÷55=52-5=5-3, 103÷107=103-7=10-4. 另一方面,我们可利用约分,直接算出这两个式子的结果为 52÷55=5255=322555?=351, 103÷107=731010=433101010?=4101. 2、概 括 由此启发,我们规定: 5-3=351, 10-4=4 101. 一般地,我们规定: n n a a 1=-(a ≠0,n 是正整数)

正整数指数幂运算的提高训练习题

正整数指数幂运算的训练习题 一、 基础强化 1、=?-32x x , 2210101000??n = _____, _____)(23=-a ,_____)2(32=-b a ,______)2(43=--xy 2、3322)3()4(xy y x ?-= , 3223])2[()3(x x --= . 3. 计算:2332)()(a a -+-= . 4. 当n 是正整数时,下列等式成立的有( ) (1)22)(m m a a = (2)m m a a )(22= (3)22)(m m a a -= (4)m m a a )(22-= A.4个 B.3个 C.2个 D.1个 5. 已知a <0,且-(a 3)n ·a 2n +3>0,则n 是( )A 、奇数 B 、偶数 C 、自然数 D 、整数 6. 已知x m =3,x n =5,x 2m+n = 7. 如果(9n )2=312,则n 的值是( ) A .4 B .3 C .2 D .1 8. 如果a≠b ,且(a p )3·b p+q =a 9b 5 成立,则p=______________,q=__________________。 9.若()()b a b a b a m n n m 5321221=-++,则m+n 的值为( ) A .1 B .2 C .3 D .-3 10.()23220032232312??? ??-?-???? ??--y x y x 的结果等于( ) A .y x 10103 B .y x 10103- C .y x 10109 D .y x 10109- 二、提高培优 1、已知32x+1·4x =1512-9x ·4x+1,求x 的值。 2、已知33x+5-27x+1=648,求x 的值。

斯特林数和自然数前m项n次方的求和公式

斯特林数和自然数前m 项n 次方的求和公式 将 n 个元素,分成 k 个非空子集,不同的分配方法种数,称为斯特林数(Stirling Number ),记为),(k n S ,n k ≤≤1。 例如,将4个物体d c b a ,,,分成3个非空子集,有下列6种方法: )}(),(),,{(d c b a ,)}(),(),,{(d b c a ,)}(),(),,{(c b d a , )}(),(),,{(d a c b ,)}(),(),,{(c a d b ,)}(),(),,{(b a d c 。 所以,6)3,4(=S 。 斯特林数),(k n S 的值列表如下: 容易看出,有 1),()1,(==n n S n S ,12)2,(1 -=-n n S ,2 )1,(2 = =-C n n S n 。定理1 当 n k ≤≤2 时,有 ),()1,(),1(k n kS k n S k n S +-=+ 。 证 把1+n 个元素分成k 个非空子集,有),1(k n S +种不同分法。 把1+n 个元素分成k 个非空子集,也可以这样考虑:或者将第1+n 个元素单独作为1个子集,其余n 个元素分成1-k 个非空子集,这种情况下有)1,(-k n S 种不同做法;或者先将前n 个元素分成k 个非空子集,有),(k n S 种分法,再将第1+n 个元素插入这k 个子集,有k 种选择,这种情况下有k ),(k n S 种不同做法。所以共有),()1,(k n kS k n S +-种分法。 两种考虑,结果应该是一样的,因此有 ),()1,(),1(k n kS k n S k n S +-=+ 。 如果规定当1时,0),(=k n S ,则公式 ),()1,(),1(k n kS k n S k n S +-=+对 任何正整数n 和任何整数k 都成立。

幂的运算及整体代入(讲义)

幂的运算及整体代入(讲义) ?课前预习 1.默写下面的法则、公式 幂的运算法则: (1)同底数幂相乘,_________,_________.即__________. (2)同底数幂相除,_________,_________.即__________. (3)幂的乘方,___________,_________.即___________. (4)积的乘方等于___________.即_____________. a0=_______(_________); a-p=______=______(___________________). 2.整体代入的思考方向 ①___________________,考虑整体代入; ②化简___________,对比确定________; ③_______________,化简. 3.若代数式2 238 a b ++的值为________. +的值是12,则代数式2 46 a b ?知识点睛 1.整体思想:整体思想就是通过研究问题的整体形式、结构、特征,从而对问 题进行整体处理的解题思想.如:整体代入、整体加减、整体代换、整体补

形等. 2. 幂的运算法则逆用 ①观察已知及所求,对比确定____________之间的关系; ②根据幂的运算法则对已知或所求进行等价变形,使之成为___________________________. 3. 降幂法整体代入 ①对比已知及所求,将已知中___________________当作整体; ②对所求进行变形,找到整体,进行代入; ③降幂化简,重复上述过程,直至最简. ? 精讲精练 1. 若35m =,32n =,则2313m n +-=____________. 2. 已知34x =,32y =,求2927x y x y --+的值.

幂级数求和函数方法概括与总结

幂级数求和函数方法概括与总结

常见幂级数求和函数方法综述 引言 级数是高等数学体系的重要组成部分,它是在生产实践和科学实验推动下逐步形成和发展起来的。中国魏晋时期的数学家刘徽早在公元263年创立了“割圆术”,其要旨是用圆内接正多边形去逐步逼近圆,从而求得圆的面积。这种“割圆术”就已经建立了级数的思想方法,即无限多个数的累加问题。而将一个函数展开成无穷级数的概念最早来自于14世纪印度的马徳哈瓦,他首先发展了幂级数的概念,对泰勒级数、麦克劳林级数、无穷级数的有理数逼近等做了研究。同时,他也开始讨论判断无穷级数的敛散性方法。到了19世纪,高斯、欧拉、柯西等各自给出了各种判别级数审敛法则,使级数理论全面发展起来。中国传统数学在幂级数理论研究上可谓一枝独秀,清代数学家董祐诚、坎各达等运用具有传统数学特色的方法对三角函数、对数函数等初等函数幂级数展开问题进行了深入的研究。而今,级数的理论已经发展的相当丰富和完整,在工程实践中有着广泛的应用,级数可以用来表示函数、研究函数的性质、也是进行数值计算的一种工具。它在自然科学、工程技术和数学本身方面都有广泛的作用。 幂级数是一类最简单的函数项级数,在幂级数理论中,对给定幂级数分析其收敛性,求收敛幂级数的和函数是重要内容之一。但很多人往往对这一内容感到困难。产生这一问题的一个重要原因是教材对这一问题讨论较少,仅有的一两个例题使得我们对幂级数求和中的诸多类型问题感到无从下手。事实上,求幂级数和函数的方法与技巧是多种多样的,一般要综合运用求导、拼凑、分解等来求解,因此它是一个难度较大、技巧较高的有趣的数学问题。 一、幂级数的基本概念 (一)、幂级数的定义 [1] 1、设()(1,2,3 )n u x n =是定义在数集E 上的一个函数列,则称 12()()(),n u x u x u x x E ++++ ∈ 为定义在E 上的函数项级数,简记为1 ()n n u x ∞=∑ 。 2、具有下列形式的函数项级数 2 00102000 ()()()()n n n n n a x x a a x x a x x a x x ∞ =-=+-+-+ +-+ ∑

初中数学《整数指数幂》

新课标人教版初中数学《整数指数幂(2)》精品教案 教学目标: 1、 能较熟练地运用零指数幂与负整指数幂的性质进行有关计算。 2、 会利用10的负整数次幂,用科学记数法表示一些绝对值较小的数。 重点难点: 重点:幂的性质(指数为全体整数)并会用于计算以及用科学记数法表示一些绝对值较小的数 难点:理解和应用整数指数幂的性质。 教学过程: 一、指数的范围扩大到了全体整数. 1、探 索 现在,我们已经引进了零指数幂和负整数幂,指数的范围已经扩大到了全体整数.那么, 以前所学的幂的性质是否还成立呢?与同学们讨论并交流..... 一下,判断下列式子是否成立. (1))3(232-+-=?a a a ; (2)(a ·b )-3=a -3b -3; (3)(a -3)2=a (-3)×2 2、概括:指数的范围已经扩大到了全体整数后,幂的运算法则仍然成立。 3、例1 计算(2mn 2)-3(mn -2)-5并且把结果化为只含有正整数指数幂的形式。 解:原式= 2-3m -3n -6×m -5n 10 = 81m -8n 4 = 848m n 4 练习:计算下列各式,并且把结果化为只含有正整数指数幂的形式: (1)(a -3)2(ab 2)-3; (2)(2mn 2)-2(m -2n -1)-3. 二、科学记数法 1、回忆: 我们曾用科学记数法表示一些绝对值较大的数,即利用10的正整数次幂,把一个绝对值大于10的数表示成 a ×10n 的形式,其中n 是正整数,1≤∣a ∣<10.例如,864000可以写成8.64×105. 2、 类似地,我们可以利用10的负整数次幂,用科学记数法表示一些绝对值较小的数,即将它们表示成a ×10-n 的形式,其中n .是正整数,.....1.≤∣..a .∣<..10.... 思考:对于一个小于1的正小数,如果小数点后至第一个非0数字前有8个0,用科学记数法表示这个数时,10的指数是多少?如果有m 个0呢? 3、探索: 10-1=0.1 10-2= 10-3= 10-4=

幂的运算方法总结

幂的运算方法总结 幂的运算的基本知识就四条性质,写作四个公式: ①a m×a n=a m+n ②(a m)n=a mn ③(ab)m=a m b m ④a m÷a n=a m-n 只要理解掌握公式的形状特点,熟悉其基本要义,直接应用一般都容易,即使运用公式求其中的未知指数难度也不大。 问题1、已知a7a m=a3a10,求m的值。 思路探索:用公式1计算等号左右两边,得到等底数的同幂形式,按指数也相等的规则即可得m的值。 方法思考:只要是符合公式形式的都可套用公式化简试一试。 方法原则:可用公式套一套。 但是,渗入幂的代换时,就有点难度了。 问题2、已知x n=2,y n=3,求(x2y)3n的值。 思路探索:(x2y)3n中没有x n和y n,但运用公式3就可将(x2y)3n化成含有x n 和y n的运算。 因此可简解为,(x2y)3n =x6n y3n=(x n)6(y n)3=26×33=1728 方法思考:已知幂和要求的代数式不一致,设法将代数式变形,变成已知幂的运算的形式即可代入求值。 方法原则:整体不同靠一靠。 然而,遇到求公式右边形式的代数式该怎么办呢? 问题3、已知a3=2,a m=3,a n=5,求a m+2n+6的值。 思路探索:试逆用公式,变形出与已知同形的幂即可代入了。 简解:a m+2n+6=a m a2n a6=a m(a n)2(a3)2=3×25×4=300

方法思考:遇到公式右边的代数式时,通常倒过来逆用公式,把代数式展开,然后代入。 方法原则:逆用公式倒一倒。 当底数是常数时,会有更多的变化,如何思考呢? 问题4、已知22x+3-22x+1=48,求x的值。 思路探索:方程中未知数出现在两项的指数上,所以必须统一成一项,即用公式把它们变成同类项进行合并。由此,可考虑逆用公式1,把其中常数的整数指数幂,化作常数作为该项的系数。 简解:22x+3-22x+1=22x×23-22x×21=8×22x-2×22x =6×22x=48 ∴22x=8 ∴2x=3 ∴x=1.5 方法思考:冪的底数是常数且指数中有常数也有未知数时,通常把常数的整数指数冪化成常数作为其它冪的系数,然后进行其它运算。 问题5、已知64m+1÷2n÷33m=81,求正整数m、n的值。 思路探索:幂的底数不一致使运算没法进行,怎样把它们变一致呢?把常数底数都变成质数底数就统一了。 简解:64m+1÷2n÷33m =24m+1×34m+1÷2n÷33m=24m+1-n×3m+1=81=34 ∵m、n是正整数∴m+1=4,4m+1-n=0 ∴m=3,n=13 方法思考:冪的底数是常数时,通常把它们分解质因数,然后按公式3展开,即可化成同底数冪了。 问题6、已知2a=3,2b=6,2c=12,求a、b、c的关系。 思路探索:求a、b、c的关系,关键看2a、2b、2c的关系,即3、6、12的关系。6是3的2倍,12是6的2倍,所以2c=2×2b=4×2a,由此可求。 简解:由题意知2c=2×2b=4×2a ∴2c=2b+1=2a+2 ∴c=b+1=a+2

(完整版)幂的运算总结及方法归纳

幂的运算 一、知识网络归纳 二、学习重难点 学习本章需关注的几个问题: ●在运用n m n m a a a +=?(m 、n 为正整数),n m n m a a a -=÷(0≠a ,m 、n 为正整数且m >n ),mn n m a a =)((m 、n 为正整数),n n n b a ab =)((n 为正整数),)0(10≠=a a ,n n a a 1 = -(0≠a ,n 为正整数)时,要特别注意各式子成立的条件。 ◆上述各式子中的底数字母不仅仅表示一个数、一个字母,它还可以表示一个单项式,甚至还可以表示一个多项式。换句话说,将底数看作是一个“整体”即可。 ◆注意上述各式的逆向应用。如计算20052004425.0?,可先逆用同底数幂的乘法法则将20054写成442004?,再逆用积的乘方法则计算 11)425.0(425.02004200420042004==?=?,由此不难得到结果为1。 ◆通过对式子的变形,进一步领会转化的数学思想方法。如同底数幂的乘法

就是将乘法运算转化为指数的加法运算,同底数幂的除法就是将除法运算转化为指数的减法运算,幂的乘方就是将乘方运算转化为指数的乘法运算等。 ◆在经历上述各个式子的推导过程中,进一步领悟“通过观察、猜想、验证与发现法则、规律”这一重要的数学研究的方法,学习并体会从特殊到一般的归纳推理的数学思想方法。 一、同底数幂的乘法 1、同底数幂的乘法 同底数幂相乘,底数不变,指数相加. 公式表示为:()m n m n a a a m n +?=、为正整数 2、同底数幂的乘法可推广到三个或三个以上的同底数幂相乘,即 () m n p m m p a a a a m n p ++??=、、为正整数 注意点: (1) 同底数幂的乘法中,首先要找出相同的底数,运算时,底数不变,直接把指数相加,所得的和作为积的指数. (2) 在进行同底数幂的乘法运算时,如果底数不同,先设法将其转化为相同的底数,再按法则进行计算. 例题: 例1:计算列下列各题 (1) 34a a ?; (2) 23b b b ?? ; (3) ()()()2 4 c c c -?-?- 简单练习: 一、选择题 1. 下列计算正确的是( ) A.a2+a3=a5 B.a2·a3=a5 C.3m +2m =5m D.a2+a2=2a4 2. 下列计算错误的是( ) A.5x2-x2=4x2 B.am +am =2am C.3m +2m =5m D.x·x2m-1= x2m 3. 下列四个算式中①a3·a3=2a3 ②x3+x3=x6 ③b3·b·b2=b 5 ④ p 2+p 2+p 2=3p 2 正确的有( ) A.1个 B.2个 C.3个 D.4个 4. 下列各题中,计算结果写成底数为10的幂的形式,其中正确的是( ) A.100×102=103 B.1000×1010=103 C.100×103=105 D.100×1000=104 二、填空题 1. a4·a4=_______;a4+a4=_______。 2、 b 2·b ·b 7 =________。 3、103·_______=1010 4、(-a)2·(-a)3·a5 =__________。 5、a5·a( )=a2·( ) 4=a18 6、(a+1)2·(1+a)·(a+1)5 =__________。 中等练习: 1、 (-10)3·10+100·(-102 )的运算结果是( ) A.108 B.-2×104 C.0 D.-104

指数与指数幂的运算练习题

1、有理数指数幂的分类 (1)正整数指数幂()n n a a a a a n N *=????∈64748L 个; (2)零指数幂)0(10 ≠=a a ; (3)负整数指数幂()10,n n a a n N a -*=≠∈ (4)0的正分数指数幂等于0, 0的负分数指数幂没有意义。 2、有理数指数幂的性质 (1)()0,,m n m n a a a a m n Q ==>∈ (2)()()0,,n m mn a a a m n Q =>∈ (3)()()0,0,m m m ab a b a b m Q =>>∈ 知能点2:无理数指数幂 若a >0,P 是一个无理数,则p a 表示一个确定的实数,上述有理指数幂的运算性质,对于无理数指数幂都适用。 知能点3:根式 1、根式的定义:一般地,如果a x n =,那么x 叫做a 的n 次方根,其中()* ∈>N n n ,1,n a 叫做根式,n 叫做根指数,a 叫被开方数。 2 (1)n N ∈,且 1n >; (2)当n 是奇数,则a a n n =;当n 是偶数,则 ?? ?<-≥==0 0a a a a a a n n ; (3)负数没有偶次方根; (4)零的任何次方根都是零。 3、我们规定: (1)) 0,,,1m n a a m n N n *=>∈>; (2))10,,,1m n m n a a m n N n a -*= = >∈> 一、填空

1、用根式的形式表示下列各式)0(>a (1)51 a = (2)34a = (3)35 a - = (4)32 a - = 2、用分数指数幂的形式表示下列各式: (1)3 4y x = (2))0(2 >= m m m (3 = ; (4)a a a = ; (5) =?a a 2 (6)=?3 2 3a a (7)=a a (8) =3 5 6q p 3、求下列各式的值 (1)2 38= ;(2)12 100- = ; (3)3 1()4 -= ; (4)3416()81- = ;(5)3227= ; (6)23 )49 36(= ; (7)23)4 25(-= ;(8)2325= ;(9 )1 2 2[(]-= ; (10)=3 264 4.化简 (1)=??12 74 33 1a a a (2)=÷?6 54 32 3a a a (3)=÷-?a a a 9)(34 32 3 (4) 3 2 2 a a a ?= (5)3 163)278(--b a = (6)??? ? ??---32 31312212x x x = (7)()0,053542 15 65 8 ≠≠÷???? ? ? ? - -b a b a b a = (8))3()6)(2(6 56 13 12 12 13 2b a b a b a -÷-= 5.计算 (1)43 512525÷- (2) (3)2 1031 9 )4 1 ()2(4)2 1(----+-?- (4)() 5 .02 1 2001.04122432-?? ? ???+? ?? ??- - 6.已知112 2 3a a -+=,求下列各式的值(1)1 a a -+= ;(2)2 2 a a -+=

相关文档
最新文档