八年级数学上册《14.1.2幂的乘方》同步练习含答案
人教版八年级数学上册 第十四章 整式的乘法与因式分解 14.1.2幂的乘方 课后练习

人教版八年级数学上册 第十四章整式的乘法与因式分解 14.1.2幂的乘方 课后练习一、选择题1.下列计算正确的是( )A .a 3﹣a 2=aB .a 3•a 2=a 6C .a 3÷a 2=aD .﹣a 3﹣2=a 52.下列各式中,计算结果不为14a 的是((A .77()aB .533()a a ⋅C .27()aD .72()a3.下列计算中,正确的是( ((A .325()x x =B .326()x x =C .1221()n n x x ++=D .326x x x ⋅=4.计算24()a 的结果是((A .28aB .4aC .6aD .8a5.若5x =125y ,3y =9z ,则x(y(z 等于( )A .1(2(3B .3(2(1C .1(3(6D .6(2(16.已知a ,b ,c ,d 均为正数,且a 2=2,b 3=3,c 4=4,d 5=5,那么a ,b ,c ,d 中最大的数是( ).A .aB .bC .cD .d7.计算(xy 3)2的结果是( )A .xy 6B .x 2y 3C .x 2y 6D .x 2y 58.下列计算中错误的是( )A .-5p·(-10p 4)2=-500p 9B .-3x m+n ·(4x m -n )=-12x 2mC .-3xy 2z·(x 2y)2=-3x 4y 3zD .(-1.25×108)×(4×105)×(3×109)=-1.5×1023 9.下列运算中,正确的是 ( )A .x 2007+x 2008=x 4015B .20090=0 C .22439-⎛⎫-= ⎪⎝⎭ D .(-a )·(-a )2=-a 3 10.下列计算正确的是( )A .a 3+a 2=a 5B .a 3•a 2=a 6C .(a 2)3=a 6D .(a 2)2=a 22 二、填空题11.若22x y +=,则39x y ⋅= ______ . 12.已知5m a =,6n a =,那么2m n a +=_________.13.3108与2144的大小关系是__________14.如果23a =,26b =,212c =,那么a 、b 、c 的关系是______.15.计算(1)()2354a a a ⋅+=______; (2)()()32322⎡⎤-⋅-=⎣⎦______. 三、解答题16.(1)已知a m =2,a n =3.求a m+n 的值;(2)已知n 为正整数,且x 2n =7.求7(x 3n )2﹣3(x 2)2n 的值.17.若21m x =+,34m y =+,试用含x 的代数式表示y .18.若2x+5y ﹣3=0,求4x •32y 的值.19.已知333,2,m n a b ==求()()332242•m n m n m n a b a b a b +-的值 .20.(1)已知4m =a ,8n =b ,用含a ,b 的式子表示下列代数式:①求:22m+3n 的值 ②求:24m ﹣6n 的值(2)已知2×8x ×16=223,求x 的值.21.已知552A =,443B =,334C =,你有办法比较这三个数的大小吗?22.若m n a a =(0a >且1a ≠,m 、n 是正整数),则m n =.你能利用上面的结论解决下面两个问题吗?(1)若228x ⨯=,求x 的值;(2)若()2893x =,求x 的值.23.已知16m =4×22n -2,27n =9×3m +3,求(n -m)2019的值【参考答案】1.C 2.A 3.B 4.D 5.D 6.B 7.C 8.C 9.D10.C 11.912.15013.3108>214414.2a c b +=15.82a 92-16.(1)6;(2)1894.17.y 224x x =-+18.8.19.-720.(1)22a b (2)x =621.B C A >>22.(1)2;(2)223.1.。
八年级数学上册《14.1.2幂的乘方》同步练习含答案

编号:000222217954555385825983331学校:玄国虎市冥中之镇肖家塞小学*教师:古因丰*班级:大力士参班*14.1.2幂的乘方课前预习要点感知(a m)n=________(m,n都是正整数).即幂的乘方,底数________,指数________.预习练习1-1(钦州中考)计算(a3)2的结果是( )A.a9B.a6C.a5D.a1-2在下列各式的括号内,应填入b4的是( )A.b12=()8B.b12=()6C.b12=()3D.b12=()2当堂训练知识点1直接运用幂的乘方计算1.计算:(1)(102)8; (2)(-a3)5;(3)(x m)2; (4)-(x2)m.知识点2幂的乘方法则的拓展2.已知:10m=3,10n=2,求103m,102n和103m+2n的值.课后作业3.如果(9n)2=312,那么n的值是( )A.4 B.3 C.2 D.14.如果1284×83=2n,那么n=________.5.计算:(1)5(a3)4-13(a6)2;(2)x4·x5·(-x)7+5(x4)4-(x8)2;(3)[(x+y)3]6+[(x+y)9]2.挑战自我6.在比较216和312的大小时,我们可以这样来处理:∵216=(24)4=164,312=(33)4=274,又∵16<27,∴164<274,即216<312.你能类似地比较下列各组数的大小吗?(1)2100与375;(2)3555,4444与5333.参考答案要点感知a mn不变相乘预习练习1-1B1-2 C当堂训练1.(1)原式=102×8=1016.(2)原式=(-a)3×5=(-a)15=-a15.(3)原式=x m×2=x2m.(4)原式=-x2×m=-x2m. 2.103m=(10m)3=33=27;102n=(10n)2=22=4;103m+2n=103m×102n=27×4=108.课后作业3.B 4.37 5.(1)原式=5a12-13a12=-8a12.(2)原式=-x16+5x16-x16=3x16.(3)原式=(x+y)18+(x+y)18=2(x +y)18.挑战自我6.(1)∵2100=(24)25=1625,375=(33)25=2725,又∵16<27,∴1625<2725,即2100<375.(2)∵3555=(35)111=243111,4444=(44)111=256111,5333=(53)111=125111,又∵125<243<256,∴125111<243111<256111.即5333<3555<4444.。
人教版八年级数学上册14.1.2幂的乘方同步练习.docx

初中数学试卷桑水出品14.1.2 幂的乘方要点感知(a m)n=____(m,n都是正整数).即幂的乘方,底数_____,指数____. 预习练习1-1 (自贡中考)(x4)2等于( )A.x6B.x8C.x16D.2x41-2 在下列各式的括号内,应填入b4的是( )A.b12=( )8B.b12=( )6C.b12=( )3D.b12=( )2知识点1 直接运用幂的乘方计算1.计算:(1)(102)8;(2)(-a3)5;(3)(x m)2;(4)-(x2)m.知识点2 幂的乘方法则的拓展2.已知:10m=3,10n=2,求(1)103m;(2)102n;(3)103m+2n的值.3.如果(9n)2=312,那么n的值是( )A.4B.3C.2D.14.如果1284×83=2n,那么n=____.5.计算:(1)5(a3)4-13(a6)2;(2)7x4.x5.(-x)7+5(x4)4-(x8)2;(3)[(x+y)3]6+[(x+y)9]2.6.求值:(1)已知x2n=3,求(x3n)4的值;(2)已知2x+5y-3=0,求4x·32y的值.挑战自我7.在比较216和312的大小时,我们可以这样来处理:∵216=(24)4=164,312=(33)4=274,又∵16<27,∴164<274,即216<312.你能类似地比较下列各组数的大小吗?(1)2100与375;(2)3555,4444与5333.参考答案课前预习要点感知a mn不变相乘预习练习1-1 B 1-2 C当堂训练1.(1)原式=102×8=1016.(2)原式=(-a)3×5=(-a)15=-a15.(3)原式=x m×2=x2m.(4)原式=-x2×m=-x2m.2.(1)103m=(10m)3=33=27;(2)102n=(10n)2=22=4;(3)103m+2n=103m×102n=27×4=108.课后作业3.B4.375.(1)原式=-8a12.(2)原式=-3x16.(3)原式=2(x+y)18.6.(1)(x3n)4=x12n=(x2n)6=36=729.(2)∵2x+5y-3=0,∴2x+5y=3.∴4x·32y=(22)x·(25)y=22x·25y=22x+5y=23=8.7.(1)∵2100=(24)25=1625,375=(33)25=2725,又∵16<27,∴1625<2725,即2100<375.(2)∵3555=(35)111=243111,4444=(44)111=256111,5333=(53)111=125111,又∵125<243<256,∴125111<243111<256111.即5333<3555<4444.。
八年级数学上册14.1.2幂的乘方同步训练(含解析)(新版)新人教版

C. (a4)2=a4×2=a8,故 C 正确; D.பைடு நூலகம்6÷a2=a6﹣2=a4,故 D 错误. 故选:C. 点评: 本题主要考查的是数与式的运算,掌握同类项的定义、负整数指数幂、幂的乘方的 运算法则是解题的关键. 4. (2015•哈尔滨)下列运算正确的是( ) A. (a2)5=a7 B.a2•a4=a6 C.3a2b﹣3ab2=0 D. ( )2=
考点: 幂的乘方;合并同类项;同底数幂的乘法;负整数指数幂. 分析: 结合选项分别进行幂的乘方和积的乘方、合并同类项、同底数幂的乘法等运算,然 后选择正确选项. 解答: 解:A、3x﹣2x=x,原式计算错误,故本选项错误; B、﹣2x﹣2=﹣ ,原式计算错误,故本选项错误;
C、 (﹣a)2•a3=a5,原式计算错误,故本选项错误; D、 (﹣a2)3=﹣a6,原式计算正确,故本选项正确. 故选 D. 点评: 本题考查了幂的乘方和积的乘方、合并同类项、同底数幂的乘法等知识,解答本题 的关键是掌握各知识点的运算法则. 6. (2015•湖北模拟)已知 10x=m,10y=n,则 102x+3y 等于( ) A.2m+3n B.m2+n2 C.6mn D.m2n3 考点: 幂的乘方;同底数幂的乘法. 分析: 根据同底数幂相乘,底数不变指数相加,幂的乘方,底数不变指数相乘的性质的逆 用,计算后直接选取答案. 解答: 解:102x+3y=102x•103y=(10x)2•(10y)3=m2n3. 故选 D. 点评: 本题主要考查同底数幂的乘法,幂的乘方的性质,熟练掌握性质并灵活运用是解题 的关键. 7. (2015 春•无锡期中)已知 9m= ,3n= ;则下列结论正确的是( ) A.2m﹣n=1 B.2m﹣n=3 C.2m+n=3 D. =3
八年级上册数学人教版课时练《 幂的乘方》 试题试卷 含答案解析(2)

A. 2 + 3
B. 2 + 3
)
C. 6mn
D. 2 3
5. 已知3 = 5,3 = 10,则3 +2 的值为( )
A. −50
B. 50
C. 500
D. −500
6. 3 +1可写成( )
A. ( 3) +1
B. ( )3+1
C. ⋅ 3
D. ( ) +1
7. ( ) ⋅ ( )2不等于( )
请把数 25600000 用科学记数法表示为____________. 14. 数学讲究记忆方法.如计算( 5)2时若忘记了法则,可以借助( 5)2 = 5 × 5 = 5+5 =
10,得到正确答案.你计算( 2)5 − 3 × 7的结果是______. 三、解答题
15. 已知 = 2, =− 1,求 3 +2 的值. 16. 已知 3 + 5 − 1 = 0,求8 ⋅ 32 的值. 17. 已知 3 +1 = −1 4 ⋅ 3 2,求 − 2 3的值.
参考答案
1.A 2.B 3.A 4.D 5.C 6.C 7.C 8.A 10.6 11. 2 12.8 13. 2.56 × 107 14.0 15.解:∵ = 2, =− 1,
∴ 3 +2 = 3 ⋅ 2 = ( )3 ⋅ ( )2 = 23 × ( − 1)2 = 8 × 1 = 8.
9.A
16.解:∵ 3 + 5 − 1 = 0,
∴ 3 + 5 = 1, ∴原式= 23 ·25 = 23 +5 = 21 = 2.
17.解:∵ 3 +3 = 4 −4 ⋅ 6,
人教版八年级数学上册 14.1.2 幂的乘方 练习(含答案)

人教版八年级数学上册14.1.2幂的乘方练习(含答案)知识要点:1.幂的乘方的意义:幂的乘方是指几个相同的幂相乘,如(a 5)3是三个a 5相乘,读作a 的五次幂的三次方,(a m )n 是n 个a m 相乘,读作a 的m 次幂的n 次方.2.幂的乘方法则:一般地,对于任意底数a 与任意正整数m ,n ,()=mn m m n m m m m m m mn n a a a a a aa +++=⋅⋅⋅= 个个.语言叙述:幂的乘方,底数不变,指数相乘.3.拓展:(1)幂的乘方的法则可推广为[()]m n p mnp a a =(m ,n ,p 都是正整数).(2)幂的乘方法则的逆用:()()mn m n n m a a a ==(m ,n 都是正整数).一、单选题1.下列各式计算正确的是()A .()325a a =B .428a a a ⋅=C .632a a a ÷=D .333()ab a b =【答案】D2.2()n n a 等于().A .3n a ;B .2n a ;C .24n a ;D .22n a .【答案】D3.a 3m+1可写成()A .(a 3)m+1B .(a m )3+1C .a ·a 3mD .(a m )2m+1【答案】C4.下列计算中,正确的是()A .2a 3b 5ab +=B .()222ab a b -=C .65a b a-=D .33a a a ∙=【答案】B5.棱长为63的正方体,其表面积是()A .66B .67C .68D .69【答案】B6.计算()32a -的结果是()A .6aB .6a -C .5a -D .5a 【答案】B7.已知2m a =,12n a =,则23m n a +的值为()A .6B .12C .2D .112【答案】B8.已知23,26,212a b c ===,则下列各式正确的().A .2a b c =+B .2b a c =+C .2c a b=+D .a b c=+【答案】B9.计算a 5·a 3的结果是()A .a 8B .a 15C .8aD .a 2【答案】A10.下列计算正确的是()A .x 2+x 2=x 4B .2x 3﹣x 3=x 3C .x 2•x 3=x 6D .(x 2)3=x 5【答案】B11.已知:2m =a ,2n =b ,则22m +2n 用a ,b 可以表示为()A .a 2+b 3B .2a +3bC .a 2b 2D .6ab 【答案】C12.下列式子正确的是()A=2B 3C .a 2·a 3=a 6D .(a 3)2=a 9【答案】A二、填空题13.已知3m a =,2n a =,则2m n a +=________.【答案】1214.()323y y -= __________.【答案】53y -15.若25n a =,则624n a -=____________.【答案】246.16.已知2m+1×8m =32,则m=______.【答案】117.已知25x =,23y =,则22x y +=________.【答案】7518.若3m •9n =27(m ,n 为正整数),则m+2n 的值是____________.【答案】319.计算(a 2)3=________.【答案】a 6.三、解答题20.计算:2323323()5()x x x x x ⋅⋅++-【答案】69x 21.已知3m =2,3n =5求:(1)32m ;(2)33m+2n .【答案】(1)4;(2)200.22.计算:(1)()()2224435a a a -⨯--(2)3432113426143⎛⎫⎛⎫⎛⎫⨯⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭【答案】(1)-16a 8;(2)131423.图中是小明完成的一道作业题,请你参考小明的解答方法解答下面的问题:小明的作业计算:(-4)7×0.257解:(-4)7×0.257=(-4×0.25)7=(-1)7=-1(1)计算①82018×(-0.125)2018②1113121251562⎛⎫⎛⎫⎛⎫⨯-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(2)看2·4n ·16n =219,求n 的值【答案】(1)①1;②-2572;(2)n=324.(1)已知10m=3,10n=2,求103m+2n+3的值;(2)已知2x+5y-3=0,求4x·32y的值.【答案】(1)108000;(2)8.。
人教版数学八年级上册:14.1--14.3练习题含答案

人教版数学八年级上册:14.1--14.3练习题含答案)14.1整式的乘法14.1.1同底数幂的乘法1.下列各项中,两个幂是同底数幂的是( )A.x2与a2B.(-a)5与a3C.(x-y)2与(y-x)3 D.-x2与x2.计算x2·x3的结果是( )A.2x5B.x5C.x6D.x8 3.计算:103×104×10=.4.计算:(1)a·a9;(2)(-12)2×(-12)3;(3)(-a)·(-a)3(4)x3n·x2n-2;5.若27=24·2x,则x=.6.已知a m=2,a n=5,求a m+n的值.7.请分析以下解答是否正确,若不正确,请写出正确的解答.(1)计算:x5·x2=x5×2=x10;(2)若a m=3,a n=5,则a m+n=a m+a n=3+5=8.8.式子a2m+3不能写成( )A.a2m·a3B.a m·a m+3C.a2m+3D.a m+1·a m+29.若a+b-2=0,则3a·3b=.10.若8×23×32×(-2)8=2x,则x=.11.计算:(1)-x2·(-x)4·(-x)3;(2)(m-n)·(n-m)3·(n-m)4;12.已知4x=8,4y=32,求x+y的值.14.1.2幂的乘方1.计算(a4)2的结果是( )A.a6B.a8C.a16D.2a4 2.计算(-b2)3的结果正确的是( )A.-b6B.b6C.b5D.-b53.计算a3·(a3)2的结果是( )A.a8B.a9C.a11D.a184.下列运算正确的是( )A.3x+2y=5(x+y) B.x+x3=x4 C.x2·x3=x6D.(x2)3=x65.在下列各式的括号内,应填入b4的是( )A.b12=()8B.b12=()6 C.b12=()3 D.b12=()26.已知:10m=3,10n=2,求(1)103m;(2)102n;(3)103m+2n的值.7.下列四个算式中正确的有( )①(a4)4=a4+4=a8;②[(b2)2]2=b2×2×2=b8;③[(-x)3]2=(-x)6=x6;④(-y2)3=y6.A.0个B.1个C.2个D.3个8.计算(a2)3-5a3·a3的结果是( )A.a5-5a6B.a6-5a9C.-4a6D.4a69.如果(9n)2=312,那么n的值是( )A.4 B.3 C.2 D.1 10.若(a3)2·a x=a24,则x=.11.计算:(1)5(a3)4-13(a6)2;(2)x4·x5·(-x)7+5(x4)4-(x8)2;(3)[(x +y)3]6+[(x+y)9]2.12.在比较216和312的大小时,我们可以这样来处理:∵216=(24)4=164,312=(33)4=274,又∵16<27,∴164<274,即216<312.你能类似地比较下列各组数的大小吗?(1)2100与375;(2)3555,4444与5333.14.1.3 积的乘方1.计算(ab 2)3的结果是( )A .3ab 2B .ab 6C .a 3b 5D .a 3b 6 2.计算(-2a 3)2的结果是( )A .-4a 5B .4a 5C .-4a 6D .4a 6 3.下列运算正确的是( )A .(-a 2)3=-a 5B .a 3·a 5=a 15C .(-a 2b 3)2=a 4b 6D .3a 2-2a 2=14.计算:(1)(3x)4; (2)-(12a 2b)3; (3)(x m y n )2; (4)(-3×102)4.5.已知|a -2|+(b +12)2=0,则a 2 018b 2 018的值为 .6.如果5n =a ,4n =b ,那么20n = .7.指出下列的计算哪些是对的,哪些是错的,并将错误的改正.(1)(ab 2)2=ab 4;(2)(3cd)3=9c 3d 3;(3)(-3a 3)2=-9a 6;(4)(-x 3y)3=-x 6y 3.8.如果(a m b n )3=a 9b 12,那么m ,n 的值分别为( )A .9,4B .3,4C .4,3D .9,69.若2x +1·3x +1=62x -1,则x 的值为 .10.计算:(1)(-32ab 2c 4)3; (2)(-2xy 2)6+(-3x 2y 4)3; (3)(-14)2 018×161 009.11.已知n 是正整数,且x 3n =2,求(3x 3n )3+(-2x 2n )3的值.参考答案:14.1 整式的乘法14.1.1 同底数幂的乘法1.D2.B3.108.4.(1)解:原式=a 1+9=a 10.(2)解:原式=(-12)2+3=(-12)5=-125.(3)解:原式=a 4.(4)解:原式=x 3n +2n -2=x 5n -2.5.3.6.解:a m +n =a m ·a n =2×5=10.7.解:(1)(2)解答均不正确,正确的解答如下:(1)x 5·x 2=x 5+2=x 7.(2)a m +n =a m ·a n =3×5=15.8.C9.9.10.19.11.(1)解:原式=-x2·x4·(-x3)=x2·x4·x3=x9.(2)解:原式=-(n-m)·(n-m)3·(n-m)4=-(n-m)1+3+4=-(n-m)8.12.解:4x·4y=8×32=256=44,而4x·4y=4x+y,∴x+y=4.14.1.2幂的乘方1.B2.A3.B4.D5.C6.已知:10m=3,10n=2,求(1)103m;(2)102n;(3)103m+2n的值.解:(1)103m=(10m)3=33=27.(2)102n=(10n)2=22=4.(3)103m+2n=103m×102n=27×4=108.7.C8.C9.B10.18.11.(1)解:原式=5a12-13a12=-8a12.(2)解:原式=-x16+5x16-x16=3x16.(3)解:原式=(x+y)18+(x+y)18=2(x+y)18. 12.解:(1)∵2100=(24)25=1625,375=(33)25=2725,又∵16<27,∴1625<2725,即2100<375.(2)∵3555=(35)111=243111,4444=(44)111=256111,5333=(53)111=125111,又∵125<243<256,∴125111<243111<256111.即5333<3555<4444.14.1.3 积的乘方1.D2.D3.C4.(1)解:原式=34·x 4=81x 4.(2)解:原式=-18a 6b 3.(3)解:原式=(x m )2·(y n )2=x 2m y 2n .(4)解:原式=(-3)4×(102)4=81×108=8.1×109.5.1.6.ab .7.解:(1)(2)(3)(4)都是错的.改正如下:(1)(ab 2)2=a 2b 4;(2)(3cd)3=27c 3d 3;(3)(-3a 3)2=9a 6;(4)(-x 3y)3=-x 9y 3. 8.B 9.2.10.(1)解:原式=-278a 3b 6c 12.(2)解:原式=64x 6y 12-27x 6y 12 =37x 6y 12.(3)解:原式=(-14)2 018×42 018 =(-14×4)2 018 =1.11.解:(3x 3n )3+(-2x 2n )3=33×(x 3n )3+(-2)3×(x 3n )2 =27×8+(-8)×4 =184.14.2 乘法公式一.选择题1.如果x2+(m﹣1)x+9是一个完全平方式,那么m的值是()A.7B.﹣7C.﹣5或7D.﹣5或5 2.如果x2﹣(m+1)x+1是完全平方式,则m的值为()A.﹣1B.1C.1或﹣1D.1或﹣3 3.不论x、y为什么实数,代数式x2+y2+2x﹣4y+7的值()A.总不小于2B.总不小于7C.可为任何实数D.可能为负数4.已知a=2005x+2004,b=2005x+2005,c=2005x+2006,则多项式a2+b2+c2﹣ab﹣bc﹣ac的值为()A.0B.1C.2D.35.已知a+b=3,ab=2,则a2+b2的值为()A.3B.4C.5D.66.如果x2+2mx+9是一个完全平方式,则m的值是()A.3B.±3C.6D.±67.已知x2+mx+25是完全平方式,则m的值为()A.10B.±10C.20D.±208.已知x+y=﹣5,xy=3,则x2+y2=()A.25B.﹣25C.19D.﹣199.若a+b=1,则a2﹣b2+2b的值为()A.4B.3C.1D.010.已知(x﹣2015)2+(x﹣2017)2=34,则(x﹣2016)2的值是()A.4B.8C.12D.1611.如图的图形面积由以下哪个公式表示()A.a2﹣b2=a(a﹣b)+b(a﹣b)B.(a﹣b)2=a2﹣2ab+b2C.(a+b)2=a2+2ab+b2D.a2﹣b2=(a+b)(a﹣b)二.填空题12.已知a﹣b=b﹣c=,a2+b2+c2=1,则ab+bc+ca的值等于.13.已知(2008﹣a)2+(2007﹣a)2=1,则(2008﹣a)•(2007﹣a)=.14.若m为正实数,且m﹣=3,则m2﹣=.15.x2+kx+9是完全平方式,则k=.16.已知a+=3,则a2+的值是.17.如图,边长为m+4的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为.18.已知x+=2,则=.19.若x2+2(m﹣3)x+16是关于x的完全平方式,则m=.20.已知:(a﹣b)2=4,ab=,则(a+b)2=.21.已知a+b=8,a2b2=4,则﹣ab=.三.解答题22.若x+y=3,且(x+2)(y+2)=12.(1)求xy的值;(2)求x2+3xy+y2的值.23.(1)已知a+的值;(2)已知xy=9,x﹣y=3,求x2+3xy+y2的值.参考答案一.选择题1.解:∵x2+(m﹣1)x+9是一个完全平方式,∴(m﹣1)x=±2•x•3,∴m﹣1=±6,∴m=﹣5或7,故选:C.2.解:∵x2﹣(m+1)x+1是完全平方式,∴﹣(m+1)x=±2×1•x,解得:m=1或m=﹣3.故选:D.3.解:x2+y2+2x﹣4y+7=(x2+2x+1)+(y2﹣4y+4)+2=(x+1)2+(y﹣2)2+2,∵(x+1)2≥0,(y﹣2)2≥0,∴(x+1)2+(y﹣2)2+2≥2,∴x2+y2+2x﹣4y+7≥2.故选:A.4.解:由题意可知a﹣b=﹣1,b﹣c=﹣1,a﹣c=﹣2,所求式=(2a2+2b2+2c2﹣2ab﹣2bc﹣2ca),=[(a2﹣2ab+b2)+(b2﹣2bc+c2)+(a2﹣2ac+c2)],=[(a﹣b)2+(b﹣c)2+(a﹣c)2],=[(﹣1)2+(﹣1)2+(﹣2)2],=3.故选:D.5.解:∵a+b=3,ab=2,∴a2+b2=(a+b)2﹣2ab=32﹣2×2=5,故选:C.6.解:∵x2+2mx+9是一个完全平方式,∴2m=±6,∴m=±3,故选:B.7.解:∵x2+mx+25是完全平方式,∴m=±10,故选:B.8.解:∵x+y=﹣5,xy=3,∴x2+y2=(x+y)2﹣2xy=25﹣6=19.故选:C.9.解:∵a+b=1,∴a2﹣b2+2b=(a+b)(a﹣b)+2b=a﹣b+2b=a+b=1.故选:C.10.解:∵(x﹣2015)2+(x﹣2017)2=34,∴(x﹣2016+1)2+(x﹣2016﹣1)2=34,(x﹣2016)2+2(x﹣2016)+1+(x﹣2016)2﹣2(x﹣2016)+1=34,2(x﹣2016)2+2=34,2(x﹣2016)2=32,(x﹣2016)2=16.故选:D.11.解:根据图形可得出:大正方形面积为:(a+b)2,大正方形面积=4个小图形的面积和=a2+b2+ab+ab,∴可以得到公式:(a+b)2=a2+2ab+b2.故选:C.二.填空题12.解:∵a﹣b=b﹣c=,∴(a﹣b)2=,(b﹣c)2=,a﹣c=,∴a2+b2﹣2ab=,b2+c2﹣2bc=,a2+c2﹣2ac=,∴2(a2+b2+c2)﹣2(ab+bc+ca)=++=,∴2﹣2(ab+bc+ca)=,∴1﹣(ab+bc+ca)=,∴ab+bc+ca=﹣=﹣.故答案为:﹣.13.解:∵(2008﹣a)2+(2007﹣a)2=1,∴(2008﹣a)2﹣2(2008﹣a)(2007﹣a)+(2007﹣a)2=1﹣2(2008﹣a)(2007﹣a),即(2008﹣a﹣2007+a)2=1﹣2(2008﹣a)(2007﹣a),整理得﹣2(2008﹣a)(2007﹣a)=0,∴(2008﹣a)(2007﹣a)=0.14.解:法一:由得,得m2﹣3m﹣1=0,即=,∴m1=,m2=,因为m为正实数,∴m=,∴=()()=3×(),=3×,=;法二:由平方得:m2+﹣2=9,m2++2=13,即(m+)2=13,又m为正实数,∴m+=,则=(m+)(m﹣)=3.故答案为:.15.解:中间一项为加上或减去x和3的积的2倍,故k=±6.16.解:∵a+=3,∴a2+2+=9,∴a2+=9﹣2=7.故答案为:7.17.解:设拼成的矩形的另一边长为x,则4x=(m+4)2﹣m2=(m+4+m)(m+4﹣m),解得x=2m+4.故答案为:2m+4.18.解:∵x+=2,∴(x+)2=4,即x2+2+=4,解得x2+=2.故答案为:2.19.解:∵x2+2(m﹣3)x+16是关于x的完全平方式,∴2(m﹣3)=±8,解得:m=﹣1或7,故答案为:﹣1或7.20.解:∵(a﹣b)2=4,ab=,∴(a﹣b)2=a2+b2﹣2ab,=a2+b2﹣1=4,∴a2+b2=5,∴(a+b)2=a2+b2+2ab=5+1=6.21.解:﹣ab=﹣ab=﹣ab﹣ab=﹣2ab∵a2b2=4,∴ab=±2,①当a+b=8,ab=2时,﹣ab=﹣2ab=﹣2×2=28,②当a+b=8,ab=﹣2时,﹣ab=﹣2ab=﹣2×(﹣2)=36,故答案为28或36.三.解答题22.解:(1)∵x+y=3,(x+2)(y+2)=12,∴xy+2x+2y+4=12,∴xy+2(x+y)=8,∴xy+2×3=8,∴xy=2;(2)∵x+y=3,xy=2,∴x2+3xy+y2=(x+y)2+xy=32+2=11.23.解:(1)将a+=3两边同时平方得:,∴=9.∴=7;(2)将x﹣y=3两边同时平方得:x2﹣2xy+y2=9,∴x2+y2=9+2xy=9+2×9=27.∴x2+3xy+y2=27+3×9=54.14.3因式分解一.选择题1.下列因式分解正确的是()A.x2﹣1=(x﹣1)2B.x2﹣9y2=(x﹣9y)(x+9y)C.a2﹣a=a(a﹣1)D.a2+2a+1=a(a+2)+1 2.下列各式从左边到右边的变形是因式分解的是()A.﹣18x4y3=﹣6x2y23x2y B.=a2﹣4C.x2+2x+1=x(x+2)+1D.a2﹣8a+16=(a﹣4)2 3.若关于x的二次三项式x2+kx+b因式分解为(x﹣1)(x﹣3),则k+b的值为()4.把多项式4x﹣4x3因式分解正确的是()A.﹣x(x+2)(x﹣2)B.x(x+2)(2﹣x)C.﹣4x(x+1)(1﹣x)D.4x(x+1)(1﹣x)5.若mn=﹣2,m﹣n=3,则代数式m2n﹣mn2的值是()A.﹣6B.﹣5C.1D.66.把多项式a2﹣a分解因式,结果正确的是()A.a(a﹣1)B.C.a D.﹣a(a﹣1)7.下列从左到右的变形中是因式分解的有()①(p﹣2)(p+2)=p2﹣4,②4x2﹣4x+1=(2x﹣1)2,③a2+2ab+b2﹣1=a(a+2b)+(b+1)(b﹣1),④(a+b)(a﹣b)+(b﹣a)=(a﹣b)(a+b﹣1).A.1个B.2个C.3个D.4个8.已知多项式x2+ax﹣6因式分解的结果为(x+2)(x+b),则a+b的值为()9.下列因式分解正确的是()A.m2﹣4n2=(m﹣2n)2B.﹣3x﹣6x2=﹣3x(1﹣2x)C.a2+2a+1=a(a+2)D.﹣2x2+2y2=﹣2(x+y)(x﹣y)10.如果一个正整数可以表示为两个连续奇数的立方差,则称这个正整数为“和谐数”.如:2=13﹣(﹣1)3,26=33﹣13,2和26均为“和谐数”.那么,不超过2016的正整数中,所有的“和谐数”之和为()A.6858B.6860C.9260D.9262二.填空题11.若m3+m﹣1=0,则m4+m3+m2﹣2=.12.若a+b=﹣1,ab=﹣6,则代数式a3b+2a2b2+ab3的值为.13.分解因式:(a+2b)2﹣8ab的结果是.14.分解因式4m3﹣mn2的结果是.15.因式分解:3a3b﹣12a2b2+12ab3的结果是.三.解答题16.分解因式:(1)(a﹣2b)2﹣3a+6b;(2)x2﹣4y(x﹣y).17.因式分解:(1)4x2y﹣2xy2;(2)x2(y﹣4)+9(4﹣y).18.对任意一个两位数m,如果m等于两个正整数的平方和,那么称这个两位数m为“平方和数”,若m=a2+b2(a、b为正整数),记A(m)=ab.例如:29=22+52,29就是一个“平方和数”,则A(29)=2×5=10.(1)判断25是否是“平方和数”,若是,请计算A(25)的值;若不是,请说明理由;(2)若k是一个“平方和数”,且A(k)=,求k的值.19.【类比学习】小明同学类比除法240÷16=15的竖式计算,想到对二次三项式x2+3x+2进行因式分解的方法:即(x2+3x+2)÷(x+1)=x+2,所以x2+3x+2=(x+1)(x+2).【初步应用】小明看到了这样一道被墨水污染的因式分解题:x2+□x+6=(x+2)(x+☆),(其中□、☆代表两个被污染的系数),他列出了下列竖式:得出□=,☆=.【深入研究】小明用这种方法对多项式x3+2x2﹣x﹣2进行因式分解,进行到了:x3+2x2﹣x﹣2=(x+2)(*)(*代表一个多项式),请你利用前面的方法,列出竖式,将多项式x3+2x2﹣x﹣2因式分解.参考答案与试题解析一.选择题1.【解答】解:A、x2﹣1=(x+1)(x﹣1),原题分解错误,故此选项不合题意;B、x2﹣9y2=(x﹣3y)(x+3y),原题分解错误,故此选项不合题意;C、a2﹣a=a(a﹣1),原题分解正确,故此选项符合题意;D、a2+2a+1=(a+1)2,原题分解错误,故此选项不合题意;故选:C.2.【解答】解:A、从左边到右边的变形不属于因式分解,故本选项不符合题意;B、从左边到右边的变形不属于因式分解,故本选项不符合题意;C、从左边到右边的变形不属于因式分解,故本选项不符合题意;D、从左边到右边的变形属于因式分解,故本选项符合题意;故选:D.3.【解答】解:由题意得:x2+kx+b=(x﹣1)(x﹣3)=x2﹣4x+3,∴k=﹣4,b=3,则k+b=﹣4+3=﹣1.故选:A.4.【解答】解:原式=4x(1﹣x2)=4x(x+1)(1﹣x),故选:D.5.【解答】解:∵mn=﹣2,m﹣n=3,∴m2n﹣mn2=mn(m﹣n)=﹣2×3=﹣6.故选:A.6.【解答】解:原式=a(a﹣1),故选:A.7.【解答】解:①(p﹣2)(p+2)=p2﹣4,从左到右的变形是整式乘法,不合题意;②4x2﹣4x+1=(2x﹣1)2,从左到右的变形是因式分解,符合题意;③a2+2ab+b2﹣1=a(a+2b)+(b+1)(b﹣1),从左到右的变形不符合因式分解的定义,不合题意④(a+b)(a﹣b)+(b﹣a)=(a﹣b)(a+b﹣1),从左到右的变形是因式分解,符合题意;故选:B.8.【解答】解:根据题意得:x2+ax﹣6=(x+2)(x+b)=x2+(b+2)x+2b,∴a=b+2,2b=﹣6,解得:a=﹣1,b=﹣3,则a+b=﹣1﹣3=﹣4,故选:A.9.【解答】解:A、m2﹣4n2=(m+2n)(m﹣2n),故此选项错误;B、﹣3x﹣6x2=﹣3x(1+2x),故此选项错误;C、a2+2a+1=(a+1)2,故此选项错误;D、﹣2x2+2y2=﹣2(x2﹣y2)=﹣2(x+y)(x﹣y),正确.故选:D.10.【解答】解:(2k+1)3﹣(2k﹣1)3=[(2k+1)﹣(2k﹣1)][(2k+1)2+(2k+1)(2k﹣1)+(2k﹣1)2]=2(12k2+1)(其中k为非负整数),由2(12k2+1)≤2016得,k≤9∴k=0,1,2,…,8,9,即得所有不超过2016的“和谐数”,它们的和为[13﹣(﹣1)3]+(33﹣13)+(53﹣33)+…+(173﹣153)+(193﹣173)=193+1=6860.故选:B.二.填空题(共5小题)11.【解答】解:∵m3+m﹣1=0,∴m3+m=1,∴m4+m3+m2﹣2=m4+m2+m3﹣2=m(m3+m)+m3﹣2=m×1+m3﹣2=m+m3﹣2=1﹣2=﹣1.故答案为:﹣1.12.【解答】解:∵a+b=﹣1,ab=﹣6,∴a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2=(﹣6)×(﹣1)2=(﹣6)×1=﹣6,故答案为:﹣6.13.【解答】解:原式=a2+4ab+4b2﹣8ab=a2﹣4ab+4b2=(a﹣2b)2.故答案为:(a﹣2b)2.14.【解答】解:原式=m(4m2﹣n2)=m(2m+n)(2m﹣n).故答案为:m(2m+n)(2m﹣n).15.【解答】解:原式=3ab(a2﹣4ab+4b2)=3ab(a﹣2b)2.故答案为:3ab(a﹣2b)2.三.解答题(共4小题)16.【解答】解:(1)原式=(a﹣2b)2﹣3(a﹣2b)=(a﹣2b)(a﹣2b﹣3);(2)原式=x2﹣4xy+4y2=(x﹣2y)2.17.【解答】解:(1)原式=2xy(2x﹣y);(2)原式=x2(y﹣4)﹣9(y﹣4)=(y﹣4)(x2﹣9)=(y﹣4)(x﹣3)(x+3).18.【解答】解:(1)25是“平方和数”.∵25=32+42,∴A(25)=3×4=12;(2)设k=a2+b2,则A(k)=ab,∵A(k)=,∴ab=,∴2ab=a2+b2﹣4,∴a2﹣2ab+b2=4,∴(a﹣b)2=4,∴a﹣b=±2,即a=b+2或b=a+2,∵a、b为正整数,k为两位数,∴当a=1,b=3或a=3,b=1时,k=10;当a=2,b=4或a=4,b=2时,k=20;当a=3,b=5或a=5,b=3时,k=34;当a=4,b=6或a=6,b=4时,k=52;当a=5,b=7或a=7,b=5时,k=74;综上,k的值为:10或20或34或52或74.19.【解答】解:【初步应用】□=5,☆=3;故答案为5,3。
14.1.2《幂的乘方》随堂练习

15.1.2 幂的乘方一、自主学习1、回顾同底数幂的乘法a m·a n=a m+n(m、n都是正整数)2、自主探索,感知新知64表示_______个___________相乘.(62)4表示_________个__________相乘.a3表示_________个___________相乘.(a2)3表示_________个________相乘.3、推广形式,得到结论.(a m)n表示_______个________相乘=________×________×…×_______×_______=__________即(a m)n= ______________(其中m、n都是正整数).通过上面的探索活动,发现了什么?幂的乘方,底数_______ ,指数__________.二、运用新知例:计算:(1)(103)5(2)-(a2)7(3)[(-6)3]4三、巩固新知【基础练习】1.下面各式中正确的是().A.(22)3=25B.m7+m7=2m7C.x5·x=x5D.x4·x2=x82.(x4)5=().A.x9B.x45C.x20D.以上答案都不对3.(a+b)m+1·(a+b)n=().A.(a+b)m(m+1)B.(a+b)2m+1 C.(a+b)(m+1)m D.以上答案都不对4.-a2·a+2a·a2=().A.a3B.-2a6C.3a3D.-a65、判断题,错误的予以改正。
(1)a5+a5=2a10 ()(2)(s3)3=x6 ()(3)(-3)2·(-3)4=(-3)6=-36 ()(4)[(m-n)3]4-[(m-n)2]6=0 ()【提高练习】1、计算.(1)[(x2)3]7 (2)[(a-b)m] n(3)(x3)4·x2(4)(a4)3-(a3)4(5)2(x2)n-(x n)22、若(x2)n=x8,则m=_________.3、若[(x3)m]2=x12,则m=_________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
作品编号:15635478925896743
学校:山黄市鹤仙镇那年小学*
教师:戒悟空*
班级:蝶舞伍班*
14.1.2幂的乘方
课前预习
要点感知(a m)n=________(m,n都是正整数).即幂的乘方,底数________,指数________.预习练习1-1(钦州中考)计算(a3)2的结果是( )
A.a9B.a6C.a5D.a
1-2在下列各式的括号内,应填入b4的是( )
A.b12=()8B.b12=()6
C.b12=()3D.b12=()2
当堂训练
知识点1直接运用幂的乘方计算
1.计算:
(1)(102)8; (2)(-a3)5;
(3)(x m)2; (4)-(x2)m.
知识点2幂的乘方法则的拓展
2.已知:10m=3,10n=2,求103m,102n和103m+2n的值.
课后作业
3.如果(9n)2=312,那么n的值是( )
A.4 B.3 C.2 D.1
4.如果1284×83=2n,那么n=________.
5.计算:
(1)5(a3)4-13(a6)2;
(2)x4·x5·(-x)7+5(x4)4-(x8)2;
(3)[(x+y)3]6+[(x+y)9]2.
挑战自我
6.在比较216和312的大小时,我们可以这样来处理:
∵216=(24)4=164,312=(33)4=274,
又∵16<27,∴164<274,即216<312.
你能类似地比较下列各组数的大小吗?
(1)2100与375;
(2)3555,4444与5333.
参考答案
要点感知a mn不变相乘
预习练习1-1B1-2 C
当堂训练
1.(1)原式=102×8=1016.(2)原式=(-a)3×5=(-a)15=-a15.
(3)原式=x m×2=x2m.(4)原式=-x2×m=-x2m. 2.103m=(10m)3=33=27;102n=(10n)2=22=4;103m+2n=103m×102n =27×4=108.
课后作业
3.B 4.37 5.(1)原式=5a12-13a12=-8a12.(2)原式=-x16+5x16-x16=3x16.(3)原式=(x+y)18+(x+y)18=2(x +y)18.
挑战自我
6.(1)∵2100=(24)25=1625,375=(33)25=2725,又∵16<27,∴1625<2725,即2100<375.(2)∵3555=(35)111=243111,4444=(44)111=256111,5333=(53)111=125111,又∵125<243<256,∴125111<243111<256111.即5333<3555<4444.。