第一章磁学基础知识

合集下载

(完整word版)磁学基础与磁性材料+严密第一章、三章以及第七章答案

(完整word版)磁学基础与磁性材料+严密第一章、三章以及第七章答案

磁性材料的分类第一章磁学基础知识答案:1、磁矩2、磁化强度3、磁场强度H4、磁感应强度 B磁感应感度,用B表示,又称为磁通密度,用来描述空间中的磁场的物理量。

其定义公式为中磁场的强弱使用磁感强度(也叫磁感应强度)来表示,磁感强度大表示磁感强;磁感强度小,表示磁感弱。

5、磁化曲线6、磁滞回线()(6 磁滞回线 (hysteresis loop):在磁场中,铁磁体的磁感应强度与磁场强度的关系可用曲线来表示,当磁化磁场作周期性变化时,铁磁体中的磁感应强度与磁场强度的关系是一条闭合线,这条闭合线叫做磁滞回线。

)7、磁化率磁化率,表征磁介质属性的物理量。

常用符号x表示,等于磁化强度M与磁场强度H之比。

对于各向同性磁介质,x是标量;对于各向异性磁介质,磁化率是一个二阶张量。

8、磁导率磁导率(permeability):又称导磁系数,是衡量物质的导磁性能的一个物理量,可通过测取同一点的B、H值确定。

二矫顽力----内禀矫顽力和磁感矫顽力的区别与联系矫顽力分为磁感矫顽力(Hcb)和内禀矫顽力(Hcj)。

磁体在反向充磁时,使磁感应强度B降为零所需反向磁场强度的值称之为磁感矫顽力。

但此时磁体的磁化强度并不为零,只是所加的反向磁场与磁体的磁化强度作用相互抵消。

(对外磁感应强度表现为零)此时若撤消外磁场,磁体仍具有一定的磁性能。

使磁体的磁化强度M降为零所需施加的反向磁场强度,我们称之为内禀矫顽力。

内禀矫顽力是衡量磁体抗退磁能力的一个物理量,是表示材料中的磁化强度M退到零的矫顽力。

在磁体使用中,磁体矫顽力越高,温度稳定性越好。

(2)退磁场是怎样产生的?能克服吗?对于实测的材料磁化特性曲线如何进行退磁校正?产生:能否克服:因为退磁场只与材料的尺寸有关,短而粗的样品,退磁场就很大,因此可以将样品做成长而细的形状,退磁场就将会减小。

然而实际工作中,材料的尺寸收到限制,因此不可避免的受到退磁场的影响。

校正:由于受到退磁场的影响,作用在材料中的有效磁场Heff比外加磁场Hex要小。

磁学的基础知识与应用

磁学的基础知识与应用

磁学的基础知识与应用磁学是研究磁场与磁性物质相互作用的科学,对于我们的生活和工作有着广泛的应用。

本文将介绍磁学的基础知识和一些常见的应用领域。

一、磁场的基本特性磁场是指周围有磁性物质时产生的一种特殊物理场。

它的主要特性有以下几个方面:1. 磁场线:磁场通过磁感线来表示,磁感线由北极指向南极,呈现出一定的形状。

在磁场比较强的地方,磁感线比较密集,而在磁场较弱的地方,磁感线则相对稀疏。

2. 磁力线:磁感线上的每一点都表示了该点上的磁力的大小和方向。

磁力线越密集,说明磁力越大。

磁感线的方向表示了磁力的方向,磁力线之间不能相交。

3. 磁极:磁场是由磁极产生的,磁极又分为南极和北极。

同性相斥,异性相吸。

磁极具有吸引磁性物质、指向南北方向等特点。

二、磁性物质和磁性现象磁性物质是指具有磁性的物质,根据其性质可以分为铁、镍、钴等常见的铁磁性物质,以及由铁磁性物质施加外部磁场后才表现出磁性的顺磁性物质和抗磁性物质。

在磁性物质中,最典型的是铁磁性物质。

当外部施加磁场时,铁磁性物质内部的微小磁偶极子将会被磁场所排列,导致整个物质获得磁性。

而顺磁性物质会受到磁场的作用,但磁化强度相对较弱;抗磁性物质受到磁场的作用时,磁极短暂发生变化。

三、磁学的应用领域磁学在科技和生活中都有重要的应用,下面我们将介绍一些常见的应用领域:1. 电机与发电机:电动机与发电机是利用磁力与电流的相互作用实现能量转化的设备。

电动机将电能转化为机械能,实现物体的运动;发电机则将机械能转化为电能,供电使用。

2. 磁存储:磁学在计算机和存储器领域有着重要的应用。

硬盘存储使用的就是磁性材料,通过改变磁场中的磁位,实现信息的存储和读取。

3. 医学成像:核磁共振成像(MRI)是一种医学成像技术,通过调整磁场和放射频波的作用,获取人体内部器官的影像。

这种方法能够在不使用X射线这样的有害辐射的情况下获得高质量的影像,并在临床上广泛应用。

4. 磁悬浮列车:磁悬浮列车利用超导磁体产生强大的磁场,通过磁力与磁铁相互作用,使列车悬浮起来并运行在导向轨道上,实现高速运输。

大一电磁学知识点第一章

大一电磁学知识点第一章

大一电磁学知识点第一章第一章电磁学基础知识电磁学是物理学的一个分支,研究电荷与电流所产生的电场和磁场现象以及它们之间的相互作用。

在大一的学习中,我们首先需要了解一些电磁学的基础知识。

本文将为大家介绍第一章中的几个关键知识点。

一、电荷与电场电荷是物质所具有的基本属性之一,分为正电荷和负电荷。

同性电荷相互排斥,异性电荷相互吸引。

电场是电荷周围的一种物理场,具有方向和强度的特点。

我们可以通过电场线来描述电场的性质,电场线由正电荷沿着电场方向指向负电荷。

二、库仑定律库仑定律是描述静电相互作用力的数学关系,它表明两个点电荷之间的力与它们之间的距离成反比,与它们之间的电荷量平方成正比。

库仑定律的公式为:F = k * (|q1| * |q2|) / r^2其中,F代表两个电荷之间的力,k是比例常数,q1和q2分别代表两个电荷的电荷量,r是两个电荷之间的距离。

三、电场强度电场强度是电场对单位正电荷的作用力大小,用E表示。

在电场中,可以通过电场强度来计算电荷所受的力。

电场强度的计算公式为:E =F / q其中,E表示电场强度,F表示电荷所受的力,q表示电荷量。

四、高斯定理高斯定理是描述电场的一个重要定律,它通过电场线的通量来描述电荷的分布情况。

高斯定理的公式为:∮E·dA = Q / ε0其中,∮E·dA表示电场线在闭合曲面上的通量,Q表示闭合曲面内的电荷量,ε0是真空介电常数。

五、电势差在电磁学中,电势差是描述电场能量转化的一个重要概念。

电势差是指电场中从一点移到另一点所需的功,单位为伏特(V)。

电势差的计算公式为:ΔV = W / q其中,ΔV表示电势差,W表示电场对电荷所做的功,q表示电荷量。

六、电容和电容器电容是描述电路元件存储电荷能力的物理量,单位为法拉(F)。

电容器是一种用于存储电荷的装置,由两个导体之间的绝缘介质隔开。

电容的计算公式为:C = Q / ΔV其中,C表示电容,Q表示存储的电荷量,ΔV表示电势差。

磁学基础知识退磁场!

磁学基础知识退磁场!

1. 基本磁学量 H,B,M,J,,,0
B 0H J 0 (H M ), 0 4 107 N A2
B H 4M
SI制 Gauss制。相互换算
2. 电子的轨道角动量和轨道磁距,自旋角动量和自旋磁距;原子磁距; 朗德因子;确定自由原子(离子)磁距的洪德法则。
磁性的综合考虑。
5. 传导电子的磁性理论(属于固体物理课程内容)
§3 自发磁化理论
3.1 铁磁性的分子场理论 3.2 Heisenberg 直接交换作用模型 3.3 自旋波理论 3.4 金属铁磁性的能带模型(巡游电子模型) 3.5 反铁磁性的分子场理论 3.6 亚铁磁性的分子场理论 3.7 间接交换作用模型 3.8 稀土金属的自发磁化模型:RKKY理论
0 N
M2
Fd 0.8525 107 M S2d
2. 立方晶系、六方晶系磁晶各向异性的特征。磁晶各向异性等效场
HK

1
0M S sin
(FK

)
0
3. 布洛赫(Bloch)型畴壁和奈尔(Neel)型畴壁的 畴壁厚度和畴壁能的估算。
传导电子的磁性理论属于固体物理课程内容31铁磁性的分子场理论32heisenberg直接交换作用模型33自旋波理论34金属铁磁性的能带模型巡游电子模型35反铁磁性的分子场理论36亚铁磁性的分子场理论37间接交换作用模型38稀土金属的自发磁化模型
磁性物理
复习提纲2010
§1 磁学基础知识
1.1 磁性、磁场和基本磁学量 1.2 原子磁矩 1.3 宏观物质的磁性 1.4 磁性体的热力学基础
5. 片形磁畴和封闭磁畴磁畴宽度的估算。
6. 单畴粒子临界尺寸的估算。
§5 技术磁化理论

08.磁学基础知识

08.磁学基础知识
H 0
6、复数磁导率
~ 'i ' '
原因是在交变场作用下,B、H间有相位差。 所有磁导率的值都是H的函数:

diff
max
rev
o
H
1.1.5
退磁能
1、退磁场 有限几何尺寸的磁体在外磁场中被磁化后,表面将产生磁极, 从而使磁体内部存在与磁化强度M方向相反的一种磁场,起减退磁化 的作用,称为退磁场Hd。 Hd 的大小与磁体形状及磁极强度有关。若磁化均匀,则Hd 也均 匀,且与M成正比:
我国磁性材料的生产在国际上占有重要的地位.其中,永磁铁氧体的产量达
1.1×105t,居世界首位;软磁铁氧体产量4×104t,居世界前列;稀土永磁产 量4300t,居世界第二.
根据中国工程院的专项调查和预测,我国2008年磁性材料的需求量:永磁铁
氧体15×104t,软磁铁氧体6×104t,稀土永磁8000—10000t.但是,目前我 国生产的磁性材料基本上是低性能水平的材料,与世界先进水平存在较大的
o 4 10-7 H m 1
b.方向:右手螺旋法则决定 c.电子的轨道运动相当于一个恒定的电流回 路,必有一个磁矩,但自旋不能用电流回路 解释,因此,最好将自旋磁矩视为基本粒子 的固有磁矩。
1.1.2 磁化强度 M
磁极化强度
J
jm V
(Wb m 2 )
磁化强度
3、退磁场能量 指磁体在它自身的Hd 中所具有的能量
Fd 0 H d dM
0
M
0 NM dM 0 1 0 NM 2 2
M
对椭球体:
H d N x M xi N y M y j N z M z k 2 2 Fd 1 / 2 0 N x M x N y M y N z M z2 N x N y N z 1

第一章磁学基础知识

第一章磁学基础知识

向量微分算子,Nabla算子
f ( pM )B
=[(PMxi
PMy
j
PMz
k)(
x
i
y
j
z
k )](Bxi
By
j
Bzk )
=(PMx =(PMx
x
PMy
y
PMz
z
)(Bxi
By
j
Bzk )
Bx x
PMy
Bx y
PMz
Bx z
)i
H
j
D , t
(PMx
By x
PMy
By y
PMz
PJ 和 PM JM
分别描写同一个物理量,单位不同。引进 两种单位的量是因为在不同场合选用其中 一种单位的量更方便。
磁单极子学说由诺贝尔物理学奖获得者英国物理学家狄拉克于1931年提出以 来,到现在一直受到实验观测和理论研究的重视。这是因为磁单极子问题不 仅涉及物质磁性的一种来源,电磁现象的对称性,而且还同宇宙早期演化理 论及微观粒子结构理论等有关,故成为科学界关注的一个重要问题。但目前
nm
n
n 为每mol 物质的量
在文献中还常使用比磁化强度σ的概念:[A﹒m2﹒kg-1]
M
绝对磁导率 相对磁导率
B [H m] H
r
B 0 H
r
0
r
B
0 H
0 (M H ) 0 H
M H
1
1
表征材料对 磁场的响应
磁化率和磁导率 以不同方式表述了材料对外磁场的响应,反映了
材料最重要的性质。因为是两个矢量之间的关系,所以一般情况下它们都 是张量。
By z
)j
(PMx

磁学基础知识

磁学基础知识
第一部分:磁学基础知识
磁现象及磁学物理量
pm


0 m
pe ql


pm qm l
m

iS
电偶极矩 磁偶极矩 磁矩
0 : 真空磁导率
4 107 H / m (SI )
1 (CGS)
磁化强度M 磁极化强度J
M


m
V
J


p
V

J 0M
(ESU)
kC kA c2
(EMU) 电流的定义式
CGS单位制(cm, g, s):高斯和韦伯发展起来
磁矩:emu(electric magnetic unit)
1emu 1Biot1cm2 10 A 1cm2 103 Am2
磁化强度M:高斯(G)
1G
1emu 1cm3

原子磁矩的来源: 电子自旋和电子运动
0
抗磁性
交换作用 拉莫尔进动
交换作用
交换作用是一种量子力学效应,
Eij 2Ji j Si S j
Ji j 称为交换积分
我们把这种交换作用等价为磁场Hm,称之为外斯分子场。
分子场的数量级大约在1000T左右! 交换作用是一种短程相互作用。
Ji j 0 铁磁性
(1 sin2 )
2
K sin2 c
一维纳米线:
K


0
M
2 s
2
Em

0
M
2 s
4
sin2
感生各向异性 磁场感生各向异性
应力感生各向异性
Ku

3 2

磁学基础知识

磁学基础知识

磁学基础知识一、磁性材料1.磁性:物体吸引铁、镍、钴等物质的性质。

2.磁体:具有磁性的物体。

3.磁极:磁体上磁性最强的部分,分为南极和北极。

4.磁性材料:具有磁性的物质,如铁、镍、钴及其合金。

5.硬磁材料:一经磁化,磁性不易消失的材料,如铁磁性材料。

6.软磁材料:磁化后,磁性容易消失的材料,如软铁、硅钢等。

7.磁场:磁体周围存在的一种特殊的物质,它影响着磁体和铁磁性物质。

8.磁场线:用来描述磁场分布的假想线条,从磁南极指向磁北极。

9.磁感线:用来表示磁场强度和方向的线条,从磁南极出发,回到磁北极。

10.磁通量:磁场穿过某一面积的总量,用Φ表示,单位为韦伯(Wb)。

11.磁通密度:单位面积上磁通量的大小,用B表示,单位为特斯拉(T)。

三、磁场强度1.磁场强度:磁场对单位长度导线所产生的力,用H表示,单位为安培/米(A/m)。

2.磁感应强度:磁场对放入其中的导线所产生的磁力,用B表示,单位为特斯拉(T)。

3.磁化强度:磁性材料内部磁畴的磁化程度,用M表示,单位为安培/米(A/m)。

4.磁化:磁性材料在外磁场作用下,内部磁畴的排列发生变化,产生磁性的过程。

5.顺磁性:磁化后,磁畴的排列与外磁场方向相同的现象。

6.抗磁性:磁化后,磁畴的排列与外磁场方向相反的现象。

7.铁磁性:磁化后,磁畴的排列在外磁场作用下,相互一致的现象。

8.磁路:磁场从磁体出发,经过空气或其他磁性材料,到达另一磁体的路径。

9.磁阻:磁场在传播过程中遇到的阻力,类似于电学中的电阻。

10.磁导率:材料对磁场的导磁能力,用μ表示,单位为亨利/米(H/m)。

11.磁芯:具有高磁导率的材料,用于集中和引导磁场。

六、磁现象的应用1.电动机:利用电流在磁场中受力的原理,将电能转化为机械能。

2.发电机:利用磁场的变化在导体中产生电流的原理,将机械能转化为电能。

3.变压器:利用电磁感应原理,改变交流电压。

4.磁记录:利用磁性材料记录和存储信息,如硬盘、磁带等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

在理论推导和测量中,常常使用另外两种定义:
质量磁化率:
m


d
d 是材料的密度(kg﹒m-3) m3/kg
摩尔磁化率:
mol
nm
n
d
n 为mol质量(kg﹒mol-1) m3/mol
在查阅文献资料时要注意到几种磁化率的不同使用。
在文献中常使用比磁化强度σ的概念:单位:A﹒m2﹒kg-1
纲量,为简便起见,也称它为(介质)磁导率。
磁化率和磁导率 以不同方式表述了材料对外磁场的响
应,反映了材料最重要的性质。因为是两个矢量之间的关系, 所以一般情况下它们都是张量。
单位制问题:
电磁学的单位由于历史的原因曾有过多种,有静电制 (CGSE),电磁制(CGSM) ,高斯制,以及目前规定通用的国 际单位制(MKSA),加之历史上对磁性起源有过不同的认识, 至目前为止,磁学量单位的使用上仍存在着一些混乱,现虽 建议采用国际单位制,但高斯单位制仍相当常见。因此必须 熟悉两种单位制之间的换算:
没有磁介质存在(M = 0)只有传导电流产生的磁场时,
表述磁场的两个物理量之间才存在着简单关系:B 0H
磁场强度的单位是:A·m-1。
介质方程:给出磁化状态和 磁场的关系
M H
是物质的磁化率,一般是温度和磁场的函数,或是常数。
磁性:
磁性是物质的一种基本属性,正像物质具有质量一样,它 的特征是:物质在非均匀磁场中要受到磁力的作用。在具有梯
第一章 磁学基础知识
1.1 磁场、磁性和基本磁学量 1.2 孤立原子的磁性 1.3 宏观物质的磁性质 1.4 磁性体的热力学基础
姜理》等基础课 程中的磁性知识,明确和统一相关物理量的定义、符号、 单位及公式,建立起深入学习的平台;归纳和总结物质 磁性的宏观表现,明确本课程要解决的问题。这些内容 都是最基础的,最常用的,也是大家必须掌握和熟悉的。
磁性被定义为物质在不均匀磁场中会受到磁力作用的一种属 性,显然不能再定义磁场就是使物质受到磁力作用的场,这样相 互定义是不科学的,因此磁场是由在场内运动着的带电粒子所受 到的力来确定的,这种力称作洛伦兹(Lorentz)力,它的作用 是使带电粒子的路径发生弯曲,洛伦兹力的大小正比于电荷量 q, 电荷运动速度 v 和磁通密度 B 的乘积,其方向则垂直于 v 和 B 所形成的平面,它和磁性物质在不均匀磁场中受到的磁力相比, 性质上是完全不相同的,这就避免了又用磁性定义磁场所产生的 问题。


M d

mH
d 是物质的密度,σ实际是单位质
量物质的磁矩矢量和。
有磁介质时上述物理量之间的关系:

B 0(H M ) 0 H J



B 0(1 )H 0H

M H
0称作绝对磁导率, =1+ 称作相对磁导率,是一个无量
历史上曾用磁荷受力来定义磁场,所以先有了磁场强度的 定义,在确定用运动电荷受力确定磁场后,就只能选用磁通密 度(磁感应强度)来表述磁场了。
磁化强度 M 和磁极化强度 J :都是表述物质磁化状态的量。
磁化强度 M 定义为物质单位体积的磁矩:(Sommerfeld)

m
m 是一个面积为 s 的电流为 i 的环形电流的磁矩。
M
单位是 A﹒m2,因此磁化强度的单位是 A﹒m-1, 它
V
和磁场强度 H 的单位是一样的。
磁极化强度 J 定义为物质单位体积的磁偶极矩:(Kennelly)

jm
jm 是一个长度为 l , 磁荷为±qm的磁偶极子,
J
其单位是:Wb﹒m,因此磁极化强度的单位是:
V
Wb﹒m-2 (和磁感应强度 B 单位 T 一致)
物质的磁化状态:磁化强度矢量
M

i
V
(A·m-1)
空间总磁场是传导电流和磁化电流产生的磁感应强度之矢量和。
上述磁场定义下,磁场强度 H 是一个辅助矢量。
H
B
M
0
M:物质的磁化强度;
0 :真空磁导率:
0 4 107 N A2(H m-1)
两个物理量之间的关系为:

J 0 M
有些文献中两个量的名称不加区别,但我们可以从它 使用的单位中加以区分。
磁化强度 M 和磁场强度 H 之间的关系是:

M H
该关系中,磁化强度和磁场强度是同量纲的,所以这里的磁 化率是无量纲的,是一个纯粹的数字,但应注意到由于磁化强度 定义为单位体积的磁矩,所以公式中的磁化率暗含着单位体积磁 化率的意义。
1. 高斯单位制中,因为0=1,磁偶极矩和磁矩是没有区别的,
磁化强度和磁极化强度也是没有区别的,都称作磁化强度,
单位是:高斯(Gs),但在国际单位制里,两者是不同的,
所以换算关系不同:
M: 1 Gs=103 A·m-1
1 CGSM (q)=10 C31010 CGSE (q)
国际单位制(SI)
高斯单位制(EMU)
B=0(H+M) M=H =1+ B=0H
(Gs) B=H+4M
(Gs) M=1H(Oe) =1+41 B=H
没有0!
CGSE、CGSM间电流单位的转换
提示:
1 CGSM (q)=10 C31010 CGSE (q)
1.1 磁场、磁性和基本磁学量
磁场:在场内运动的电荷会受到作用力的物理场。
电磁学给出的定义:(见胡有秋等电磁学p202)
F qv B
F:运动电荷 q 受到的力; q:电荷量;
v:电荷运动速度;
B 称作磁通密度或磁感应强度,是表征磁场方向和大小的物 理量。其SI单位是 :特斯拉(T = N·A-1m-1 = Wb·m-2)。
度的磁场中,物质受力F的大小V和方向HB反 映着物质磁性的特征。
磁化率的正负和大小反映出物质磁性的特征。大体可以 分为:(通常人们习惯说有磁物质和无磁物质是不科学的)
强磁性物质:>1,例:铁,Fe3O4 弱磁性物质:
顺磁性物质: 0<<<1,例:氧气,铝
抗磁性物质: <0 ,| |<<1,例:水,铜
相关文档
最新文档