2017-2018年甘肃省白银市景泰四中八年级上学期数学期中试卷与答案(1)

合集下载

甘肃省 八年级(上)期中数学试卷(含答案)

甘肃省  八年级(上)期中数学试卷(含答案)

八年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.下列长度的各组线段中,能组成三角形的是()A. 6,6,11B. 8,8,16C. 4,5,10D. 6,7,142.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()A. 带去B. 带去C. 带去D. 带和去3.下列图形中有稳定性的是()A. 正方形B. 长方形C. 直角三角形D. 平行四边形4.一个正多边形每个外角都是30°,则这个多边形边数为()A. 10B. 11C. 12D. 135.下列命题中:(1)形状相同的两个三角形是全等形;(2)在两个全等三角形中,相等的角是对应角,相等的边是对应边;(3)全等三角形对应边上的高、中线及对应角平分线分别相等,其中真命题的个数有()A. 3个B. 2个C. 1个D. 0个6.如图,△ABC≌△DEC,则结论 BC=EC,∠DCA=∠ACE,CD=AC,④∠DCA=∠ECB,其中结论正确的个数是()A. 1个B. 2个C. 3个D. 4个7.如图,在∠AOB的两边上截取AO=BO,OC=OD,连接AD、BC交于点P,连接OP,则图中全等三角形共有()对.A. 2B. 3C. 4D. 58.如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中和△ABC全等的图形是()A. 甲和乙B. 乙和丙C. 只有乙D. 只有丙9.一个多边形的内角和比它的外角的和的2倍还大180°,这个多边形的边数是()A. 5B. 6C. 7D. 810.如图,△ABN≌△ACM,AB=AC,BN=CM,∠B=50°,∠ANC=120°,则∠MAC的度数等于()A. B. C. D.二、填空题(本大题共10小题,共30.0分)11.角平分线上的点到______的距离相等.12.已知三角形两边长分别为4和9,则第三边的取值范围是______ .13.如图所示,AC,BD相交于点O,△AOB≌△COD,∠A=∠C,则其它对应角分别为______ ,对应边分别为______ .14.如图示,△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是______.15.图示,点B在AE上,∠CBE=∠DBE,要使△ABC≌△ABD,还需添加一个条件是______(填上适当的一个条件即可)16.如图,AC⊥BD于O,BO=OD,图中共有全等三角形______对.17.已知△ABC≌△A′B′C′,△ABC的周长为12cm,AB=3cm,BC=4cm,则A′C′=______cm.18.三角形三边的比为3:4:5,周长为48,则三角形三边的长分别为______ .19.一个多边形的每一个外角都等于36°,则该多边形的内角和等于______度.20.如图,E点为△ABC的边AC中点,CN∥AB,过E点作直线交AB与M点,交CN于N点,若MB=6cm,CN=4cm,则AB= ______ cm.三、解答题(本大题共7小题,共60.0分)21.尺规作图已知∠AOB,求作∠A′O′B′.使∠AOB=∠A′O′B′.(保留作图痕迹,不写作法)22.已知等腰三角形的周长为13,其中一边长为3,求另外两边长.23.如图,点E、F在BC上,BE=FC,AB=DC,∠B=∠C.求证:∠A=∠D.24.如图,已知AC⊥AB,DB⊥AB,AC=BE,AE=BD,试猜想线段CE与DE的大小与位置关系,并证明你的结论.25.如图,△ABC的∠ABC的外角的平分线BD与∠ACB的外角的平分线CE相交于P.求证:点P到三边AB,BC,CA所在的直线的距离相等.26.如图,CE=CB,CD=CA,∠DCA=∠ECB,求证:DE=AB.27.如图,在△ABC中,AD是△ABC中的角平分线,BD=CD,DE⊥AB,DF⊥AC,请你在图中找出三对全等的三角形,并任选一对进行证明.__________________.答案和解析1.【答案】A【解析】解:A、6,6,11满足三角形三边关系,任意两边之和大于第三边,故此选项正确;B、8,8,16不满足三角形三边关系,8+8=16,故此选项错误;C、4,5,10不满足三角形三边关系,5+4<10,故此选项错误;D、6,7,14不满足三角形三边关系,6+7<14,故此选项错误;故选:A.根据三角形的三边关系进行判断,两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.本题主要考查了三角形的三边关系的运用,三角形两边之和大于第三边,三角形的两边差小于第三边.2.【答案】C【解析】解:A、带①去,仅保留了原三角形的一个角和部分边,不能得到与原来一样的三角形,故A选项错误;B、带②去,仅保留了原三角形的一部分边,也是不能得到与原来一样的三角形,故B选项错误;C、带③去,不但保留了原三角形的两个角还保留了其中一个边,符合ASA 判定,故C选项正确;D、带①和②去,仅保留了原三角形的一个角和部分边,同样不能得到与原来一样的三角形,故D选项错误.故选:C.此题可以采用全等三角形的判定方法以及排除法进行分析,从而确定最后的答案.主要考查学生对全等三角形的判定方法的灵活运用,要求对常用的几种方法熟练掌握.3.【答案】C【解析】解:根据三角形具有稳定性,可得四个选项中只有直角三角形具有稳定性.故选:C.稳定性是三角形的特性.稳定性是三角形的特性,这一点需要记忆.4.【答案】C【解析】解:多边形的外角的个数是360÷30=12,所以多边形的边数是12.故选C.利用任何多边形的外角和是360°即可求出答案.本题主要考查了多边形的外角和定理,已知外角求边数的这种方法是需要熟记的内容.5.【答案】C【解析】解:(1)形状相同、大小相等的两个三角形是全等形,而原说法没有指出大小相等这一点,故(1)错误;(2)在两个全等三角形中,对应角相等,对应边相等,而非相等的角是对应角,相等的边是对应边,故(2)错误;(3)全等三角形对应边上的高、中线及对应角平分线分别相等,故(3)正确.综上可得只有(3)正确.故选:C.根据全等三角形的概念:能够完全重合的图形是全等图形,及全等图形性质:全等图形的对应边、对应角分别相等,分别对每一项进行分析即可得出正确的命题个数.本题考查了全等三角形的概念和全等三角形的性质,在解题时要注意灵活应用全等三角形的性质和定义是本题的关键.6.【答案】C【解析】解:∵△ABC≌△DEC,∴BC=EC,CD=AC,∠DCE=∠ACB,∴∠DCE-∠ACE=∠ACB-∠ACE,即∠DCA=∠BCE,正确的结论有①③④,共3个,故选:C.根据全等三角形对应边相等可得BC=EC,CD=AC,根据全等三角形对应角相等可得∠DCE=∠ACB,再利用等式的性质可得∠DCA=∠ECB.此题主要考查了全等三角形的性质,关键是掌握全等三角形的对应边相等,全等三角形的对应角相等.7.【答案】C【解析】解:∵AO=BO,OC=OD,∠AOB=∠BOA,∴△AOD≌△BOC∴AD=BC,∠A=∠B,AC=BD,∠ACP=∠BDP∴△ACP≌△BDP从而可得CP=DP,∴可得△OCP≌△ODP同理可证得△APO≌△BPO故选C.根据所给条件证明三角形的全等,然后可得出共有几对.本题主要考查全等三角形的证明,属基础题,从已知条件入手,结合全等的判定方法,通过分析推理,对选项一个个进行验证,做到由易到难,不重不漏.8.【答案】B【解析】解:图甲不符合三角形全等的判定定理,即图甲和△ABC不全等;图乙符合SAS定理,即图乙和△ABC全等;图丙符合AAS定理,即图丙和△ABC全等;故选B.全等三角形的判定定理有SAS,ASA,AAS,SSS,根据定理逐个判断即可.本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.9.【答案】C【解析】解:多边形的内角和是2×360+180=900度,设这个多边形的边数是n,根据题意得:(n-2)180°=900°,解得n=7,即这个多边形的边数是7.故选C.多边形的外角和是360度,多边形的内角和比它的外角和的2倍还大180°,则多边形的内角和是2×360+180=900度;n边形的内角和是(n-2)180°,则可以设这个多边形的边数是n,这样就可以列出方程(n-2)180°=900°,解之即可.本题考查了多边形的内角和公式和外角和定理.10.【答案】B【解析】解:∵∠ANC=120°,∴∠ANB=180°-120°=60°,∵∠B=50°,∴∠BAN=180°-60°-50°=70°,∵△ABN≌△ACM,∴∠BAN=∠MAC=70°.故选:B.利用三角形内角和定理得出∠BAN的度数,再利用全等三角形的性质得出∠MAC的度数.此题主要考查了全等三角形的性质,得出∠BAN的度数是解题关键.11.【答案】角的两边【解析】解:角平分线上的点到角的两边的距离相等.故答案为:角的两边.根据角平分线的性质解答即可.本题考查了角平分线的性质,是基础题,熟记性质是解题的关键.12.【答案】5<第三边<13【解析】解:根据三角形的三边关系,得第三边大于9-4=5,而小于9+4=13.即:5<第三边<13,故答案为:5<第三边<13.根据三角形的第三边大于两边之差,而小于两边之和求得第三边的取值范围.本题考查了三角形的三边关系,即三角形的第三边大于两边之差,而小于两边之和,此题基础题,比较简单.13.【答案】∠B和∠D,∠AOB和∠COD;OA和OC,OB和OD,AB和CD【解析】解:∵△AOB≌△COD,∠A=∠C,∴A和C、B和D、O和O,分别为对应点,∴对应角为∠B和∠D,∠AOB和∠COD,对应边分别为:OA和OC,OB和OD,AB和CD,故答案为:∠B和∠D,∠AOB和∠COD;OA和OC,OB和OD,AB和CD.由全等且点A和点C对应,可得出答案.本题主要考查全等三角形的对应关系,掌握相等的角为对应角,相等的边为对应边是解题的关键.14.【答案】5【解析】解:作DE⊥AB于E,∵AD平分∠BAC,∠C=90°,DE⊥AB,∴DE=DC=2,∴△ABD的面积=×AB×DE=5,故答案为:5.根据角平分线的性质求出DE,根据三角形的面积公式计算即可.本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.15.【答案】BC=BD【解析】解:BC=BD,理由是:∵∠CBE=∠DBE,∠CBE+∠ABC=180°,∠DBE+∠ABD=180°,∴∠ABC=∠ABD,在△ABC和△ABD中∴△ABC≌△ABD,故答案为:BC=BD.求出∠ABC=∠ABD,根据全等三角形的判定定理SAS推出即可.本题考查了全等三角形的判定和性质的应用,全等三角形的判定定理有SAS,ASA,AAS,SSS,主要考查学生的推理能力.16.【答案】3【解析】解:①∵AC⊥BD,∴∠AOB=∠AOD=∠BOC=∠DOC,在△AOB和△AOD中,,∴△AOB≌△AOD(SAS),∴AB=AD;②∵在△BOC和△DOC中,,∴△BOC≌△DOC(SAS),∴BC=DC;③∵在△ABC和△ADC中,,∴△ABC≌△ADC(SSS),∴图中共有全等三角形3对.故答案为3.根据三角形全等的性质来判定,在△AOB和△AOD中,AC⊥BD,BO=DO,AO 为公共边,∴△AOB≌△AOD.同样的道理推出△BOC≌△DOC.再由AB=AD,BC=DC,AC为公共边,推出△ABC≌△ADC,故得出有三对全等三角形.本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,本题考查了后两个定理的应用.17.【答案】5【解析】解:∵△ABC的周长为12cm,AB=3cm,BC=4cm,∴AC=12-3-4=5(cm),∵△ABC≌△A′B′C′,∴A′C′=AC=5cm,故答案为:5.由三角形的周长可求得AC=5cm,再利用全等三角形的性质可求得A′C′=AC=5cm.本题主要考查全等三角形的性质,掌握全等三角形的对应边相等、对应角相等是解题的关键.18.【答案】12、16、20【解析】解:∵三角形三边的比为3:4:5,∴可设三角形的三边分别为3x,4x和5x,由题意可知3x+4x+5x=48,解得x=4,∴三角形三边的长分别为12、16、20,故答案为:12、16、20.可设三角形的三边分别为3x,4x和5x,利用周长可求得x的值,则可求得三角形的三边长.本题主要考查三角形的周长,利用三角形的三边之比设出边长,利用三角形的周长得到方程是解题的关键.19.【答案】1440【解析】解:∵任何多边形的外角和等于360°,∴多边形的边数为360°÷36°=10,∴多边形的内角和为(10-2)•180°=1440°.故答案为:1440.任何多边形的外角和等于360°,可求得这个多边形的边数.再根据多边形的内角和等于(n-2)•180°即可求得内角和.本题需仔细分析题意,利用多边形的外角和求出边数,从而解决问题.20.【答案】10【解析】解:∵CN∥AB,∴∠NCE=∠MAE,又∵E是AC中点,∴AE=CE,而∠AEM=∠CEN,△CHE≌△MAE,∴AM=CN,∴AB=AM+BM=CN+BM=4+6=10.先证△CNE≌△AME,得出AM=CN,那么就可求AB的长.本题利用了三角形全等的判定和性质.21.【答案】解:如图所示,∠A′O′B′就是所要求作的角..【解析】先作射线O′B′,然后以点O为圆心,以任意长为半径,画弧分别与OA、OB相交于点E、F,以O′为圆心,以相同的长度为半径画弧与OB′相交于点E′,再以点E′为圆心,以EF的长度为半径画弧,与前弧相交于点F′,过点O′、F′作射OA′,则∠A′O′B′即为所求.本题主要考查了作一个角等于已知角,是基本作图,需熟练掌握.22.【答案】解:当腰为3时,另一腰也为3,则底为13-2×3=7,∵3+3=6<7,∴这样的三边不能构成三角形.当底为3时,腰为(13-3)÷2=5,∴以3,5,5为边能构成三角形.故另外两边长为5,5.【解析】由于长为3的边可能为腰,也可能为底边,故应分两种情况讨论.本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键23.【答案】证明:∵BE=FC,∴BE+EF=CF+EF,即BF=CE;又∵AB=DC,∠B=∠C,∴△ABF≌△DCE(SAS),∴∠A=∠D.【解析】可通过证△ABF≌△DCE,来得出∠A=∠D的结论.此题考查简单的角相等,可以通过全等三角形来证明,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.24.【答案】解:CE=DE,CE⊥DE,理由如下:∵AC⊥AB,DB⊥AB,AC=BE,AE=BD,∴△CAE≌△EBD.∴∠CEA=∠D.∵∠D+∠DEB=90°,∴∠CEA+∠DEB=90°.即线段CE与DE的大小与位置关系为相等且垂直.【解析】先利用HL判定△CAE≌△EBD,从而得出全等三角形的对应角相等,再利用角与角之间的关系,可以得到线段CE与DE的大小与位置关系为相等且垂直.此题主要考查学生对全等三角形的性质及全等三角形的判定方法的掌握情况.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意做题格式.25.【答案】证明:如图,过点P作PF⊥BC于F,PG⊥AB于G,PH⊥AC于H,∵△ABC的∠ABC的外角的平分线BD与∠ACB的外角的平分线CE相交于P,∴PF=PG,PG=PH,∴PF=PG=PH,∴点P到三边AB、BC、CA所在直线的距离相等.【解析】过点P作PF⊥BC于F,PG⊥AB于G,PH⊥AC于H,然后根据角平分线上的点到角的两边的距离相等可得PF=PG=PH.本题考查了角平分线的性质,掌握角平分线上的点到角的两边的距离相等的性质熟记性质是解题的关键.26.【答案】证明:∵∠DCA=∠ECB,∴∠DCA+∠ACE=∠BCE+∠ACE,∴∠DCE=∠ACB,∵在△DCE和△ACB中,∴△DCE≌△ACB,∴DE=AB.【解析】求出∠DCE=∠ACB,根据SAS证△DCE≌△ACB,根据全等三角形的性质即可推出答案.本题考查了全等三角形的性质和判定的应用,主要考查学生能否运用全等三角形的性质和判定进行推理,题目比较典型,难度适中.27.【答案】△ABD≌△ACD;△BDE≌△CDF;△ADE≌△ADF【解析】解:①△ABD≌△ACD,②△BDE≌△CDF,③△ADE≌△ADF;故答案为:△ABD≌△ACD,△BDE≌△CDF,△ADE≌△ADF;∵AD是△ABC中的角平分线,DE⊥AB,DF⊥AC,∴∠AED=∠AFD=90°,DE=DF,在Rt△AED与Rt△AFD中,,∴Rt△AED≌Rt△AFD.根据角平分线的性质得到DE=DF,然后根据全等三角形的判定定理即可得到结论.本题考查了全等三角形的判定、角平分线的性质,解题的关键是:(1)结合已知找出3对全等的三角形;(2)找出满足SAS的相等的边角.本题属于基础题,难度不大,解决该题型题目时,根据等腰三角形的性质找出相等的边角关系是关键.。

甘肃省白银市八年级上学期数学期中考试试卷

甘肃省白银市八年级上学期数学期中考试试卷

甘肃省白银市八年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)下面有4个汽车标志图案,其中是轴对称图形的是()A . ①②③B . ①③④C . ①②④D . ②③④2. (2分)若三角形的两边长分别为2和6,则第三边的长可能是()A . 3B . 4C . 5D . 83. (2分)(2017·武汉模拟) 点A(﹣1,4)关于x轴对称的点的坐标为()A . (1,4)B . (﹣1,﹣4)C . (1,﹣4)D . (4,﹣1)4. (2分) (2019八上·萧山期末) 如图,在中,于点E,于点D;点F是AB的中点,连结DF,EF,设,,则A .B .C .D .5. (2分)如图,△ABD≌△CDB,且AB,CD是对应边.下面四个结论中不正确的是()A . △ABD和△CDB的面积相等B . △ABD和△CDB的周长相等C . ∠A+∠ABD=∠C+∠CBDD . AD∥BC,且AD=BC6. (2分)(2019·宁波模拟) 勾股定理是人类最伟大的十个科学发现之一,西方国家称之为毕达哥拉斯定理,但远在毕达哥拉斯出生之前,这一定理早已被人们所利用,世界上各个文明古国都对勾股定理的发现和研究作出过贡献(希腊、中国、埃及、巴比伦、印度等),特别是定理的证明,据说有400余种方法.其中在《几何原本》中有一种证明勾股定理的方法:如图所示,作CC⊥FH,垂足为G,交AB于点P,延长FA交DE于点S,然后将正方形ACED、正方形BCNM作等面积变形,得S正方形ACED=S▱ACQS , S正方形BCNM=S▱BCQT ,这样就可以完成勾股定理的证明.对于该证明过程,下列结论错误的是()A . △ADS≌△ACBB . S▱ACQS=S矩形APGFC . S▱CBTQ=S矩形PBHGD . SE=BC7. (2分) (2020八上·甘州期末) 如图,直线l1∥l2 ,被直线l3、l4所截,并且l3⊥l4 ,∠1=44°,则∠2等于()A . 56°C . 44°D . 46°8. (2分)(2019·宁洱模拟) 如图,在矩形ABCD中,AB=5,AD=3,动点P满足S△PAB= S矩形ABCD ,则点P到A、B两点距离之和PA+PB的最小值为()A .B .C . 5D .9. (2分)如图,如果将其中的甲图变成乙图,那么经过的变换正确的是()A . 旋转、平移B . 对称、平移C . 旋转、对称D . 旋转、旋转10. (2分)(2019·黄冈模拟) 如图,将三角尺的直角顶点放在直线a上,a∥b,∠1=50°,∠2=60°,则∠3的度数为()A . 50°B . 60°C . 70°二、填空题 (共6题;共7分)11. (1分)(2019·福州模拟) 正n边形的一个内角为120°,则n的值为________.12. (2分)工人师傅砌墙的时候,常在长方形门框上斜定一根木条,他利用的原理是________ .13. (1分) (2019八上·宁都期中) 已知有两个三角形全等,若一个三角形三边的长分别为3、5、7,另一个三角形三边的长分别为3、3a﹣2b、a+2b ,则a+b=________.14. (1分)(2020·柘城模拟) 如图,等腰中,,,点是边上不与点,重合的一个动点,直线垂直平分,垂足为,当是直角三角形时,的长为________.15. (1分) (2019八上·南昌月考) 如图,△ABC 的两条高AD,BE 相交于点F,若要用“ASA”证明△ADC≌△BEC(不添加其他字母及辅助线),你添加的条件是________.16. (1分) (2019八上·广丰月考) 如图所示,已知△AB C的周长是18,OB , OC分别平分∠ABC和∠ACB ,OD⊥BC于D ,且OD=4,则△ABC的面积是________.三、解答题 (共7题;共34分)17. (5分)(2020·泉州模拟) 如图,AB为半圆O的直径,C为半圆上一点,AC<BC .(1)请用直尺(不含刻度)与圆规在BC上作一点D ,使得直线OD平分ABC的周长;(不要求写作法,但要保留作图痕迹)(2)在(1)的条件下,若AB=10,OD=,求△ABC的面积.18. (5分) (2020八上·余姚期末) 如图,已知,,,求证: .19. (5分) (2018九上·杭州期中) 如图,在△ABC中,∠ACB=90°,∠B=25°,CA=3,以点C为圆心,CA 长为半径的圆交AB于点D,求弧AD的长。

甘肃省白银市八年级上学期期中数学试卷

甘肃省白银市八年级上学期期中数学试卷

甘肃省白银市八年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2017八下·邵东期中) 下列图形中,是轴对称图形,但不是中心对称图形的是()A .B .C .D .2. (2分)做一个三角形的木架,以下四组木棒中,符合条件的是()A . 3cm,2cm,1cmB . 3cm,4cm,5cmC . 5cm,12cm,6cmD . 6cm,6cm,12cm3. (2分) (2018八上·定安期末) 下列运算中,正确的是()A .B .C .D .4. (2分)下列运算正确的是()A . 3﹣a2=3B . ()3=a5C . •=a9D . a(a﹣2)=﹣25. (2分)下列函数中,y随x的增大而减小的是()A . y=x-1B . y=xD . y=-2x+36. (2分)正比例函数y=kx的图象是经过原点的一条()A . 射线B . 双曲线C . 线段D . 直线7. (2分) (2015八下·开平期中) 如图,函数y=k(x+1)与(k<0)在同一坐标系中,图像只能是下图中的()A .B .C .D .8. (2分)如图,在△ABC中,∠C=90°,EF∥AB,∠CEF=50°,则∠B的度数为()A . 50°B . 60°C . 30°9. (2分)(2017·保定模拟) 如图,△AOB缩小后得到△COD,△AOB与△COD的相似比是3,若C(1,2),则点A的坐标为()A . (2,4)B . (2,6)C . (3,6)D . (3,4)10. (2分)小明一家自驾去永川“乐和乐都”主题公园游玩,汽车匀速行驶一段路程,进入服务区加油.休息了一段时间后,他们为了尽快赶到目的地,便提高了行车速度,很快到达了公园.下面能反映小明一家离公园的距离y(千米)与时间x(小时)之间的函数关系的大致图象是()A .B .C .D .二、填空题 (共5题;共5分)11. (1分)如图,点B、E、F、C在同一直线上.已知∠A=∠D,∠B=∠C,要使△ABF≌△DCE,需要补充的一个条件是________(写出一个即可).12. (1分)(2020·南宁模拟) 如图,点,点,…点在函数的图象上,都是等腰直角三角形,斜边都在轴上(n是大于或等于2的正数数),则 ________.(用含的式子表示)13. (1分) (2019七上·宽城期中) 如图,是上一点,是的中点,交的延长线于 .若,,则的长为________.14. (1分) (2016八上·东港期中) 如图,边长为4的等边△AOB在平面直角坐标系中的位置如图所示,则点A的坐标为________.15. (1分)(2019·呼和浩特模拟) 如图,BD是⊙O的弦,点C在BD上,以BC为边作等边三角形△ABC ,点A在圆内,且AC恰好经过点O ,其中BC=12,OA=8,则BD的长为________.三、解答题 (共7题;共65分)16. (15分) (2018八上·抚顺期末) 已知:如图,△ABC.(1)分别画出与△ABC关于x轴、y轴对称的图形△A1B1C1和△A2B2C2;(2)写出△A1B1C1和△A2B2C2各顶点的坐标;(3)直接写出△ABC的面积,17. (10分) (2017七下·兴化期中) 综合题(1)如图,已知△ABC ,试画出AB边上的中线和AC边上的高;(2)有没有这样的多边形,它的内角和是它的外角和的3倍?如果有,请求出它的边数.18. (5分) (2019八上·江门期中) 如图所示,已知AB∥CD,AB=CD,BF=CE,求证:△ABE≌△DCF.19. (5分) (2019八上·盐津月考) 如图,在中,平分,且,求的度数.21. (5分)如图:△ABC中,DE是BC边的垂直平分线,垂足为E,AD平分∠BAC且MD⊥AB,DN⊥AC延长线于N.求证:BM=CN.22. (10分) (2020八上·龙岩期末) 如图,射线的端点是线段的中点,请根据下列要求作答:(1)尺规作图:在射线上作点,连接,使>;(2)利用(1)中你所作的图,求证:.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共5分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共7题;共65分)16-1、16-2、16-3、17-1、17-2、18-1、19-1、21-1、22-1、22-2、。

甘肃省白银市八年级上学期数学期中试卷

甘肃省白银市八年级上学期数学期中试卷

甘肃省白银市八年级上学期数学期中试卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分)如图,观察下列图形,既是轴对称图形又是中心对称图形的个数是()A . 1个B . 2个C . 3个D . 4个2. (2分) (2016八上·靖远期中) 以下列长度的线段为边不能构成直角三角形的是()A . 3,4,5B . 6,8,10C . 5,12,13D . 6,24,253. (2分)(2018·邵阳) 用计算器依次按键,得到的结果最接近的是()A . 1.5B . 1.6C . 1.7D . 1.84. (2分)如图,中,,,直接使用“SSS”可判定()A . ≌B . ≌C . ≌D . ≌5. (2分)等腰三角形的两边长分别是2和7,则它的周长是()A . 9B . 11C . 16D . 11或166. (2分)如图①是3×3正方形方格,现要将其中两个小方格涂黑,并且使得涂黑后的整个图案是轴对称图形(约定:绕正方形ABCD的中心旋转能重合的图案视为同一种,如图②中设计的四幅图只算一种图案),那么不同的图案共有()A . 4种B . 5种C . 6种D . 7种二、填空题 (共6题;共7分)7. (1分) (2018八上·防城港期中) 电线杆的支架做成三角形的,是利用三角形的________.8. (1分) (2019八下·江门期末) a、b、c是△ABC三边的长,化简 +|c-a-b|=________.9. (2分) (2019七下·蔡甸期末) 如图,已知,,,,则 ________.10. (1分) (2019八上·海口期中) 如图,∠A=∠D=90°,AC=DB,欲使OB=OC,可以先利用“HL”说明Rt_△________≌Rt_△________得到AB=DC,再利用________证明△AOB≌△DOC得到OB=OC.11. (1分) (2018九上·紫金期中) 如图,在矩形ABCD中,对角线AC、BD相交于点0,若∠A0B=60°,AC=12,则AB=________.12. (1分) (2019八上·合肥月考) 如图,已知∠DCE=∠A=90°,BE⊥AC于B ,且DC=EC , BE=8cm ,则AD+AB=________ .三、解答题 (共11题;共68分)13. (10分) (2017八下·广东期中) 综合题。

甘肃省白银市八年级上学期数学期中考试试卷

甘肃省白银市八年级上学期数学期中考试试卷

甘肃省白银市八年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、选择题(共10小题) (共10题;共10分)1. (1分)下列图形中,是轴对称图形的是()A .B .C .D .2. (1分) (2020八上·长丰期末) 下列每组数分别是三根木棒的长度,能用它们摆成三角形的是()A . 2cm,3cm,6cmB . 1cm,2cm,3cmC . 3cm,3cm,7cmD . 3cm,4cm,5cm3. (1分)(2012·资阳) 如图,△ABC是等腰三角形,点D是底边BC上异于BC中点的一个点,∠ADE=∠DAC,DE=AC.运用这个图(不添加辅助线)可以说明下列哪一个命题是假命题?()A . 一组对边平行,另一组对边相等的四边形是平行四边形B . 有一组对边平行的四边形是梯形C . 一组对边相等,一组对角相等的四边形是平行四边形D . 对角线相等的平行四边形是矩形4. (1分)下列命题中正确的是()A . 三角形的高线都在三角形内部B . 直角三角形的高只有一条C . 钝角三角形的高都在三角形外D . 三角形至少有一条高在三角形内5. (1分)能将一个三角形分成面积相等的两个三角形的一条线段是()A . 三角形的角平分线B . 一个内角的平分线C . 三角形的高线D . 三角形的中线6. (1分)如图,点C,D在AB同侧,∠CAB=∠DBA,下列条件中不能判定△ABD≌△BAC的是()A . ∠D=∠CB . BD=ACC . ∠CAD=∠DBCD . AD=BC7. (1分) (2019九上·道里期末) 如图,⊙ 的直径为10,弦的长为8,且,垂足为,则的长为()A . 1B . 2C . 3D . 48. (1分)已知下列命题:①若a>0,b>0,则a+b>0;②正方形的对角线互相垂直平分;③直角三角形斜边上的中线等于斜边的一半;④菱形的四条边相等.其中原命题与逆命题均为真命题的个数是()A . 1个B . 2个C . 3个D . 4个9. (1分)如图,已知是的角平分线,是的垂直平分线,,,则的长为()A . 6B . 5C . 4D .10. (1分)在直线l上依次摆放着七个正方形(如图所示)。

甘肃省白银市八年级上学期数学期中考试试卷

甘肃省白银市八年级上学期数学期中考试试卷

甘肃省白银市八年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共9题;共9分)1. (1分)(2012·朝阳) 下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .2. (1分) (2017八下·南江期末) 函数y= 中,自变量的取值范围是().A .B .C . 且D .3. (1分)若,则的值为()A . 1B . -1C . 7D . -74. (1分)(2018·防城港模拟) 下列运算正确的是()A . (a﹣3)2=a2﹣9B . =2C . x+y=xyD . x6÷x2=x35. (1分)化简(﹣2)2015+22016 ,结果为()A . ﹣2B . 0C . ﹣22015D . 220156. (1分) (2019九上·湖北月考) 不论x、y为什么实数,代数式x2+y2+2x-4y+9的值()A . 总不小于4B . 总不小于9C . 可为任何实数D . 可能为负数7. (1分)(2017·广州模拟) 如图,AB是⊙O的直径,AC是⊙O的切线,连接OC交⊙O于点D,连接BD,∠C=40°.则∠ABD的度数是()A . 30°B . 25°C . 20°D . 15°8. (1分)如图,△ABC是等边三角形,AD是角平分线,△ADE是等边三角形,下列结论:①AD⊥BC;②EF=FD;③BE=BD.其中正确结论的个数为()A . 3B . 2C . 1D . 09. (1分) (2020八下·武川期末) 满足下列条件△ABC,不是直角三角形的是()A . ∠A=∠B+∠CB . ∠A:∠B:∠C=1:1:2C . =D . a:b:c=1:1:2二、填空题 (共6题;共6分)10. (1分) (2018九上·港南期中) 已知m,n是方程2x2-3x+1=0的两根,则 + =________.11. (1分)已知a2+a+1=0,则a4+2a3﹣3a2﹣4a+3的值是________.12. (1分)(2020·岳阳) 已知,则代数式的值为________.13. (1分) (2018八上·宽城月考) 在边长为的正方形中剪掉一个边长为的小正方形,再沿虚线剪开,如图①,然后拼成一个梯形,如图②.根据这两个图形的面积关系,用等式表示是________.14. (1分)已知a=199,b=198,则a2+b2﹣2ab+2016b﹣2016a的值为________.15. (1分) (2019九下·河南月考) 如图,在菱形中,为边的中点,为边上一动点(不与重合),将沿直线折叠,使点落在点处,连接,,当为等腰三角形时,的长为________.三、解答题 (共9题;共19分)16. (2分)计算:(1)(﹣a)2•a3(2)(﹣8)2013•()2014(3)xn•xn+1+x2n•x(n是正整数)(4)(a2•a3)417. (3分) (2020七下·青岛期中) 计算:(1)(2) (2x+1)(2x-1)-(2x+1)2(3) (a+3b-2c)(a-3b-2c)(4)103´97(运用公式简算)18. (2分) (2019八上·天河期末)(1)分解因式:3x3﹣27x(2)19. (3分)在平面直角坐标系中,点A关于y轴的对称点为点B,点A关于原点O的对称点为点C.(1)若A点的坐标为(1,2),请你在给出的坐标系中画出△ABC.设AB与y轴的交点为D,则=________;(2)若点A的坐标为(a,b)(ab≠0),则△ABC的形状为________.20. (1分)(2019·呼和浩特) 计算(1)计算(2)先化简,再求值:,其中,.21. (2分) (2019七上·普宁月考) 已知点O是直线AB上的一点,∠COE=90°,OF是∠AOE的平分线.(1)当点C.E.F在直线AB的同侧(如图1所示)①若∠COF=25°,求∠BOE的度数②若∠COF=α°,则∠BOE是多少度.(2)当点C与点E.F在直线AB的两旁(如图2所示)时,(1)中第②式的结论是否仍然成立?请给出你的结论并说明理由.22. (1分)如图,已知正方形ABCD在直线MN的上方,BC在直线MN上,E是BC上一点,以AE为边在直线MN的上方作正方形AEFG .(1)连接GD ,求证:△ADG≌△ABE;(2)连接FC ,观察并猜测∠FCN的度数是否总保持不变,若∠FCN的大小保持不变,请说明理由;若∠FCN的大小发生改变,请举例说明;23. (2分) (2019八上·武汉月考) △ABC是等边三角形,点E、F分别为射线AC、射线CB上两点,CE=BF,直线EB、AF交于点D.(1)当E、F在边AC、BC上时如图,求证:△ABF≌△BCE.(2)当E在AC延长线上时,如图,AC=10,S△AB C=25 ,EG⊥BC于G,EH⊥AB于H,HE=8 ,求EG(3) E、F分别在AC、CB延长线上时,如图,BE上有一点P,CP=BD,∠CPB是锐角,求证:BP=AD.24. (3分) (2019八下·成都期末) (如图①,将边长为4cm的正方形纸片ABCD沿EF折叠(点E、F分别在边AB、CD上),使点B落在AD边上的点 M处,点C落在点N处,MN与CD交于点P,连接EP.(1)如图②,若M为AD边的中点,①求△AEM的周长;②求证:EP=AE+DP;(2)随着落点M在AD边上取遍所有的位置(点M不与A、D重合),△PDM的周长是否发生变化?请说明理由.参考答案一、单选题 (共9题;共9分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、二、填空题 (共6题;共6分)10-1、11-1、12-1、13-1、14-1、15-1、三、解答题 (共9题;共19分)16-1、16-2、16-3、16-4、17-1、17-2、17-3、17-4、18-1、18-2、19-1、19-2、20-1、20-2、21-1、21-2、22-1、23-1、23-2、23-3、24-1、24-2、。

2017-2018年甘肃省白银市平川四中八年级上学期数学期中试卷与答案

2017-2018年甘肃省白银市平川四中八年级上学期数学期中试卷与答案

赠送初中数学几何模型【模型三】双垂型:图形特征:60°运用举例:1.在Rt△ABC中,∠ACB=90°,以斜边AB为底边向外作等腰三角形PAB,连接PC. (1)如图,当∠APB=90°时,若AC=5,PC=62,求BC的长;(2)当∠APB=90°时,若AB=45APBC的面积是36,求△ACB的周长.P 2.已知:如图,B、C、E三点在一条直线上,AB=AD,BC=CD.(1)若∠B=90°,AB=6,BC=23,求∠A的值;(2)若∠BAD+∠BCD=180°,cos∠DCE=35,求ABBC的值.3.如图,在四边形ABCD中,AB=AD,∠DAB=∠BCD=90°,(1)若AB=3,BC+CD=5,求四边形ABCD的面积(2)若p= BC+CD,四边形ABCD的面积为S,试探究S与p之间的关系。

DBC2017-2018学年甘肃省白银市平川四中八年级(上)期中数学试卷一.选择题(每小题3分,共36分)1.(3分)在﹣1.414,,π,2+,3.212212221…,3.14这些数中,无理数的个数为()A.5 B.2 C.3 D.42.(3分)下列说法错误的是()A.在x轴上的点的坐标特别是纵坐标都是0,横坐标为任意数B.坐标原点的横,纵坐标都是0C.在y轴上的点的坐标的特点是横坐标都是0,纵坐标都大于0D.坐标轴上的点不属于任何象限3.(3分)已知a>0,b<0,那么点P(a,b)在()A.第一象限B.第二象限C.第三象限D.第四象限4.(3分)下列说法正确的是()A.若a、b、c是△ABC的三边,则a2+b2=c2B.若a、b、c是Rt△ABC的三边,则a2+b2=c2C.若a、b、c是Rt△ABC的三边,∠A=90°,则a2+b2=c2D.若a,b,c是Rt△ABC的三边,∠C=90°,则a2+b2=c25.(3分)下列结论:①在数轴上只能表示无理数;②任何一个无理数都能用数轴上的点表示;③实数与数轴上的点一一对应;④有理数有无限个,无理数有有限个.其中正确的是()A.①②B.②③C.③④D.②③④6.(3分)一次函数y=6x+1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限7.(3分)点P(﹣3,5)关于x轴的对称点P′的坐标是()A.(3,5) B.(5,﹣3)C.(3,﹣5)D.(﹣3,﹣5)8.(3分)下列一次函数中,y随x值的增大而减小的是()A.y=2x+1 B.y=3﹣4x C.y=x+2 D.y=(﹣2)x9.(3分)下列各组数中,不能构成直角三角形的一组是()A.1,2,B.1,2,C.3,4,5 D.6,8,1210.(3分)已知一次函数y=kx+k,其在直角坐标系中的图象大体是()A.B.C. D.11.(3分)下列计算正确的是()A.=2B.•=C.﹣= D.=﹣312.(3分)下列说法中,不正确的是()A.3是(﹣3)2的算术平方根B.±3是(﹣3)2的平方根C.﹣3是(﹣3)2的算术平方根D.﹣3是(﹣3)3的立方根二.填空(每题3分,共24分)13.(3分)的算术平方根是.14.(3分)斜边的边长为17cm,一条直角边长为8cm的直角三角形的面积是cm2.15.(3分)一个三角形三边之比是10:8:6,则按角分类它是三角形.16.(3分)关于x的函数y=(m﹣1)x是正比例函数,则m.17.(3分)直角三角形两直角边长分别为3和4,则它斜边上的高为.18.(3分)已知x轴上点P到y轴的距离是3,则点P坐标是.19.(3分)直线y=3﹣9x与x轴的交点坐标为,与y轴的交点坐标为.20.(3分)函数y=kx﹣4的图象平行于直线y=﹣2x,求函数若直线y=kx﹣4的解析式为.三.解答题(共36分)21.(6分)已知a=+2,b=﹣2,求a2+b2+7的平方根.22.(16分)计算下列各题(1)×﹣5(2)(3)|﹣2|﹣(﹣)0+(4)3+﹣4.23.(6分)若实数a、b满足(a﹣2)2+=0,求代数式b+2a的立方根.24.(8分)如图所示,△ABC在正方形网格中,若点A的坐标为(0,3),按要求解答下列问题:(1)在图中建立正确的平面直角坐标系;(2)根据所建立的坐标系,写出点B和点C的坐标;(3)作出△ABC关于x轴的对称图形△A′B′C′.(不要求写作法)四、应用题(共24分)25.(8分)如图,已知AB⊥BC,AB=3,BC=4,CD=12,AD=13,求四边形ABCD 的面积.26.(8分)如图:有一个圆柱,底面圆的直径AB=,高BC=12cm,P为BC的中点,求蚂蚁从A点爬到P点的最短距离.27.(8分)直线l是一次函数y=kx+b的图象,看图回答问题.(1)求k,b;(2)当x=5时,y的值;(3)当y=5时,x的值.2017-2018学年甘肃省白银市平川四中八年级(上)期中数学试卷参考答案与试题解析一.选择题(每小题3分,共36分)1.(3分)在﹣1.414,,π,2+,3.212212221…,3.14这些数中,无理数的个数为()A.5 B.2 C.3 D.4【解答】解:所给数据中无理数有:,π,2+,3.212212221…,共4个.故选:D.2.(3分)下列说法错误的是()A.在x轴上的点的坐标特别是纵坐标都是0,横坐标为任意数B.坐标原点的横,纵坐标都是0C.在y轴上的点的坐标的特点是横坐标都是0,纵坐标都大于0D.坐标轴上的点不属于任何象限【解答】解:A、点在x轴上,纵坐标均为0,故原说法错误;B、点在y轴上,横坐标均为0,故原说法错误;C、正确;D、坐标原点的横纵坐标均为0;并且坐标轴上的点不属于任何象限,故原说法错误.故选:C.3.(3分)已知a>0,b<0,那么点P(a,b)在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵a>0,b<0,∴点P(a,b)在第四象限.故选:D.4.(3分)下列说法正确的是()A.若a、b、c是△ABC的三边,则a2+b2=c2B.若a、b、c是Rt△ABC的三边,则a2+b2=c2C.若a、b、c是Rt△ABC的三边,∠A=90°,则a2+b2=c2D.若a,b,c是Rt△ABC的三边,∠C=90°,则a2+b2=c2【解答】解:A、勾股定理只限于在直角三角形里应用,故A可排除;B、虽然给出的是直角三角形,但没有给出哪一个是直角,故B可排除;C、在Rt△ABC中,直角所对的边是斜边,C中的斜边应为a,得出的表达式应为b2+c2=a2,故C也排除;D、符合勾股定理,正确.故选:D.5.(3分)下列结论:①在数轴上只能表示无理数;②任何一个无理数都能用数轴上的点表示;③实数与数轴上的点一一对应;④有理数有无限个,无理数有有限个.其中正确的是()A.①②B.②③C.③④D.②③④【解答】解:①任何一个无理数都能用数轴上的点表示,故说法错误;②任何一个无理数都能用数轴上的点表示,故说法正确;③实数与数轴上的点一一对应,故说法正确;④有理数有无限个,无理数也有无限个,故说法错误.所以只有②③正确,故选:B.6.(3分)一次函数y=6x+1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵一次函数y=6x+1中k=6>0,b=1>0,∴此函数经过一、二、三象限,故选:D.7.(3分)点P(﹣3,5)关于x轴的对称点P′的坐标是()A.(3,5) B.(5,﹣3)C.(3,﹣5)D.(﹣3,﹣5)【解答】解:P(﹣3,5)关于x轴的对称点P′的坐标是(﹣3,﹣5),故选:D.8.(3分)下列一次函数中,y随x值的增大而减小的是()A.y=2x+1 B.y=3﹣4x C.y=x+2 D.y=(﹣2)x【解答】解:A、∵k=2>0,∴y随x的增大而增大,故本选项错误;B、∵k=﹣4<0,∴y随x的增大而减小,故本选项正确;C、∵k=>0,∴y随x的增大而增大,故本选项错误;D、∵k=﹣2>0,∴y随x的增大而增大,故本选项错误.故选:B.9.(3分)下列各组数中,不能构成直角三角形的一组是()A.1,2,B.1,2,C.3,4,5 D.6,8,12【解答】解:根据勾股定理的逆定理知,三角形三边满足c2=a2+b2,三角形就为直角三角形,四个选项,只有D中不满足,故选D.10.(3分)已知一次函数y=kx+k,其在直角坐标系中的图象大体是()A.B.C. D.【解答】解:函数的解析式可化为y=K(x+1),即函数图象与x轴的交点为(﹣1,0),分析可得,A符合,故选:A.11.(3分)下列计算正确的是()A.=2B.•=C.﹣= D.=﹣3【解答】解:A、=2,故A错误;B、二次根式相乘除,等于把它们的被开方数相乘除,故B正确;C、﹣=2﹣,故C错误;D、=|﹣3|=3,故D错误.故选:B.12.(3分)下列说法中,不正确的是()A.3是(﹣3)2的算术平方根B.±3是(﹣3)2的平方根C.﹣3是(﹣3)2的算术平方根D.﹣3是(﹣3)3的立方根【解答】解:∵3是(﹣3)2的算术平方根,∴选项A正确;∵±3是(﹣3)2的平方根,∴选项B正确;∵3是(﹣3)2的算术平方根,∴选项C不正确;∵﹣3是(﹣3)3的立方根,∴选项D正确.故选:C.二.填空(每题3分,共24分)13.(3分)的算术平方根是2.【解答】解:∵=4,∴的算术平方根是=2.故答案为:2.14.(3分)斜边的边长为17cm,一条直角边长为8cm的直角三角形的面积是60cm2.【解答】解:设另一条直角边为x,由勾股定理得x===15,直角三角形的面积是×8×15=60,故直角三角形的面积是60cm2.15.(3分)一个三角形三边之比是10:8:6,则按角分类它是直角三角形.【解答】解:设三角形三边分别为10x,8x,6x,则有(6x)2+(8x)2=(10x)2,所以三角形为直角三角形.16.(3分)关于x的函数y=(m﹣1)x是正比例函数,则m≠1.【解答】解:根据题意,m﹣1≠0,解得:m≠1.故答案为:≠1.17.(3分)直角三角形两直角边长分别为3和4,则它斜边上的高为.【解答】解:设斜边长为c,高为h.由勾股定理可得:c2=32+42,则c=5,直角三角形面积S=×3×4=×c×h可得h=,故答案为:.18.(3分)已知x轴上点P到y轴的距离是3,则点P坐标是(3,0)或(﹣3,0).【解答】解:∵P在x轴上,∴P的纵坐标为0,∵P到y轴的距离是3,∴P的横坐标为3或﹣3,∴点P坐标是(3,0)或(﹣3,0).故答案填:(3,0)或(﹣3,0).19.(3分)直线y=3﹣9x与x轴的交点坐标为(,0),与y轴的交点坐标为(0,3).【解答】解:令y=0,则3﹣9x=0,解得x=,故此直线与x轴的交点坐标为(,0);令x=0,则y=3,故此直线与y轴的交点坐标为(0,3).故填(,0)、(0,3).20.(3分)函数y=kx﹣4的图象平行于直线y=﹣2x,求函数若直线y=kx﹣4的解析式为y=﹣2x﹣4.【解答】解:∵函数y=kx﹣4的图象平行于直线y=﹣2x,∴k=﹣2,∴直线的解析式为y=﹣2x﹣4,故答案为y=﹣2x﹣4三.解答题(共36分)21.(6分)已知a=+2,b=﹣2,求a2+b2+7的平方根.【解答】解:a2+b2+7=+7=25,=±5,∴a2+b2+7的平方根为±5.22.(16分)计算下列各题(1)×﹣5(2)(3)|﹣2|﹣(﹣)0+(4)3+﹣4.【解答】解:(1)×﹣5=6﹣5=1;(2)==3;(3)|﹣2|﹣(﹣)0+=2﹣1+=3﹣1;(4)3+﹣4=9+﹣2=8.23.(6分)若实数a、b满足(a﹣2)2+=0,求代数式b+2a的立方根.【解答】解:(a﹣2)2+=0,a﹣2=0,b﹣2a=0,解得:a=2,b=4,b+2a=8,所以代数式b+2a的立方根是=2.24.(8分)如图所示,△ABC在正方形网格中,若点A的坐标为(0,3),按要求解答下列问题:(1)在图中建立正确的平面直角坐标系;(2)根据所建立的坐标系,写出点B和点C的坐标;(3)作出△ABC关于x轴的对称图形△A′B′C′.(不要求写作法)【解答】解:(1)如图,(2)B(﹣3,﹣1),C(1,1);(3)如图,△A′B′C′为所作.四、应用题(共24分)25.(8分)如图,已知AB⊥BC,AB=3,BC=4,CD=12,AD=13,求四边形ABCD 的面积.【解答】解:如图,连接AC.在Rt△ADC中,AC===5,又∵52+122=169=132,∴AC2+CD2=AD2.∴△ACD是直角三角形.=×3×4+×12×5=36.∴S四边形ABCD26.(8分)如图:有一个圆柱,底面圆的直径AB=,高BC=12cm,P为BC的中点,求蚂蚁从A点爬到P点的最短距离.【解答】解:已知如图:∵圆柱底面直径AB=cm、母线BC=12cm,P为BC的中点,∴圆柱底面圆的半径是cm,BP=6cm,∴AB=×2×=8cm,在Rt△ABP中,AP==10cm,∴蚂蚁从A点爬到P点的最短距离为10cm.27.(8分)直线l是一次函数y=kx+b的图象,看图回答问题.(1)求k,b;(2)当x=5时,y的值;(3)当y=5时,x的值.【解答】解:(1)当x=0,y=﹣1时,x=2,y=0,得,解得k=,b=﹣1;(2)当x=5时,y=×5﹣1=(3)当y=5时,x﹣1=5,解得x=12.。

甘肃省八年级(上)期中数学试卷(含答案)(可编辑修改word版)

甘肃省八年级(上)期中数学试卷(含答案)(可编辑修改word版)

八年级(上)期中数学试卷题号一二三总分得分一、选择题(本大题共10 小题,共30.0 分)1.下列长度的各组线段中,能组成三角形的是()A. 6,6,11B. 8,8,16C. 4,5,10D. 6,7,142.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()A.带①去B. 带②去C. 带③去D. 带①和②去3.下列图形中有稳定性的是()A.正方形B. 长方形C. 直角三角形D. 平行四边形4.一个正多边形每个外角都是30°,则这个多边形边数为()A. 10B. 11C. 12D. 135.下列命题中:(1)形状相同的两个三角形是全等形;(2)在两个全等三角形中,相等的角是对应角,相等的边是对应边;(3)全等三角形对应边上的高、中线及对应角平分线分别相等,其中真命题的个数有()A. 3 个B. 2 个C. 1 个D. 0 个6.如图,△ABC➴△DEC,则结论①BC=EC,②∠DCA=∠ACE,③CD=AC,④∠DCA=∠ECB,其中结论正确的个数是()A.1 个B. 2 个C. 3 个D. 4 个7.如图,在∠AOB 的两边上截取AO=BO,OC=OD,连接AD、BC交于点P,连接OP,则图中全等三角形共有()对.A.2B.3C.4D.58.如图,已知△ABC 的六个元素,则下面甲、乙、丙三个三角形中和△ABC 全等的图形是()A.甲和乙B. 乙和丙C. 只有乙D. 只有丙9.一个多边形的内角和比它的外角的和的2 倍还大180°,这个多边形的边数是()A. 5B. 6C. 7D. 810. 如图,△ABN➴△ACM,AB=AC,BN=CM,∠B=50°,∠ANC=120°,则∠MAC 的度数等于()A. 120 ∘B. 70 ∘C. 60 ∘D. 50 ∘二、填空题(本大题共10 小题,共30.0 分)11.角平分线上的点到的距离相等.12.已知三角形两边长分别为4 和9,则第三边的取值范围是.13.如图所示,AC,BD 相交于点O,△AOB➴△COD,∠A=∠C,则其它对应角分别为,对应边分别为.14.如图示,△ABC 中,∠C=90°,AD 平分∠BAC,AB=5,CD=2,则△ABD的面积是.15.图示,点B 在AE 上,∠CBE=∠DBE,要使△ABC➴△ABD,还需添加一个条件是(填上适当的一个条件即可)16.如图,AC⊥BD 于O,BO=OD,图中共有全等三角形对.17.已知△ABC➴△A′B′C′,△ABC 的周长为12cm,AB=3cm,BC=4cm,则A′C′= cm.18.三角形三边的比为3:4:5,周长为48,则三角形三边的长分别为.19.一个多边形的每一个外角都等于36°,则该多边形的内角和等于度.20.如图,E 点为△ABC 的边AC 中点,CN∥AB,过E 点作直线交AB 与M 点,交CN于N 点,若MB=6cm,CN=4cm,则AB= cm.三、解答题(本大题共7 小题,共60.0 分)21.尺规作图已知∠AOB,求作∠A′O′B′.使∠AOB=∠A′O′B′.(保留作图痕迹,不写作法)22.已知等腰三角形的周长为13,其中一边长为3,求另外两边长.23.如图,点E、F 在BC 上,BE=FC,AB=DC,∠B=∠C.求证:∠A=∠D.24.如图,已知AC⊥AB,DB⊥AB,AC=BE,AE=BD,试猜想线段CE 与DE 的大小与位置关系,并证明你的结论.25.如图,△ABC 的∠ABC 的外角的平分线BD 与∠ACB 的外角的平分线CE 相交于P.求证:点P 到三边AB,BC,CA 所在的直线的距离相等.26.如图,CE=CB,CD=CA,∠DCA=∠ECB,求证:DE=AB.27.如图,在△ABC 中,AD 是△ABC 中的角平分线,BD=CD,DE⊥AB,DF⊥AC,请你在图中找出三对全等的三角形,并任选一对进行证明.①②③.答案和解析1.【答案】A【解析】解:A、6,6,11 满足三角形三边关系,任意两边之和大于第三边,故此选项正确;B、8,8,16 不满足三角形三边关系,8+8=16,故此选项错误;C、4,5,10 不满足三角形三边关系,5+4<10,故此选项错误;D、6,7,14 不满足三角形三边关系,6+7<14,故此选项错误;故选:A.根据三角形的三边关系进行判断,两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.本题主要考查了三角形的三边关系的运用,三角形两边之和大于第三边,三角形的两边差小于第三边.2.【答案】C【解析】解:A、带①去,仅保留了原三角形的一个角和部分边,不能得到与原来一样的三角形,故A 选项错误;B、带②去,仅保留了原三角形的一部分边,也是不能得到与原来一样的三角形,故B 选项错误;C、带③去,不但保留了原三角形的两个角还保留了其中一个边,符合ASA 判定,故C 选项正确;D、带①和②去,仅保留了原三角形的一个角和部分边,同样不能得到与原来一样的三角形,故D 选项错误.故选:C.此题可以采用全等三角形的判定方法以及排除法进行分析,从而确定最后的答案.主要考查学生对全等三角形的判定方法的灵活运用,要求对常用的几种方法熟练掌握.3.【答案】C【解析】解:根据三角形具有稳定性,可得四个选项中只有直角三角形具有稳定性.故选:C.稳定性是三角形的特性.稳定性是三角形的特性,这一点需要记忆.4.【答案】C【解析】解:多边形的外角的个数是360÷30=12,所以多边形的边数是12.故选C.利用任何多边形的外角和是360°即可求出答案.本题主要考查了多边形的外角和定理,已知外角求边数的这种方法是需要熟记的内容.5.【答案】C【解析】解:(1)形状相同、大小相等的两个三角形是全等形,而原说法没有指出大小相等这一点,故(1)错误;(2)在两个全等三角形中,对应角相等,对应边相等,而非相等的角是对应角,相等的边是对应边,故(2)错误;(3)全等三角形对应边上的高、中线及对应角平分线分别相等,故(3)正确.综上可得只有(3)正确.故选:C.根据全等三角形的概念:能够完全重合的图形是全等图形,及全等图形性质:全等图形的对应边、对应角分别相等,分别对每一项进行分析即可得出正确的命题个数.本题考查了全等三角形的概念和全等三角形的性质,在解题时要注意灵活应用全等三角形的性质和定义是本题的关键.6.【答案】C【解析】解:∵△ABC➴△DEC,∴BC=EC,CD=AC,∠DCE=∠ACB,∴∠DCE-∠ACE=∠ACB-∠ACE,即∠DCA=∠BCE,正确的结论有①③④,共3 个,故选:C.根据全等三角形对应边相等可得BC=EC,CD=AC,根据全等三角形对应角相等可得∠DCE=∠ACB,再利用等式的性质可得∠DCA=∠ECB.此题主要考查了全等三角形的性质,关键是掌握全等三角形的对应边相等,全等三角形的对应角相等.7.【答案】C【解析】解:∵AO=BO,OC=OD,∠AOB=∠BOA,∴△AOD➴△BOC∴AD=BC,∠A=∠B,AC=BD,∠ACP=∠BDP∴△ACP➴△BDP从而可得CP=DP,∴可得△OCP➴△ODP同理可证得△APO➴△BPO故选C.根据所给条件证明三角形的全等,然后可得出共有几对.本题主要考查全等三角形的证明,属基础题,从已知条件入手,结合全等的判定方法,通过分析推理,对选项一个个进行验证,做到由易到难,不重不漏.8.【答案】B【解析】解:图甲不符合三角形全等的判定定理,即图甲和△ABC 不全等;图乙符合SAS 定理,即图乙和△ABC 全等;图丙符合AAS 定理,即图丙和△ABC 全等;故选B.全等三角形的判定定理有SAS,ASA,AAS,SSS,根据定理逐个判断即可.本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.9.【答案】C【解析】解:多边形的内角和是2×360+180=900 度,设这个多边形的边数是n,根据题意得:(n-2)180°=900°,解得n=7,即这个多边形的边数是7.故选C.多边形的外角和是360 度,多边形的内角和比它的外角和的2 倍还大180°,则多边形的内角和是2×360+180=900 度;n 边形的内角和是(n-2)180°,则可以设这个多边形的边数是n,这样就可以列出方程(n-2)180°=900°,解之即可.本题考查了多边形的内角和公式和外角和定理.10.【答案】B【解析】解:∵∠ANC=120°,∴∠ANB=180°-120°=60°,∵∠B=50°,∴∠BAN=180°-60°-50°=70°,∵△ABN➴△ACM,∴∠BAN=∠MAC=70°.故选:B.利用三角形内角和定理得出∠BAN 的度数,再利用全等三角形的性质得出∠MAC 的度数.此题主要考查了全等三角形的性质,得出∠BAN 的度数是解题关键.11.【答案】角的两边【解析】解:角平分线上的点到角的两边的距离相等.故答案为:角的两边.根据角平分线的性质解答即可.本题考查了角平分线的性质,是基础题,熟记性质是解题的关键.12.【答案】5<第三边<13【解析】解:根据三角形的三边关系,得第三边大于9-4=5,而小于9+4=13.即:5<第三边<13,故答案为:5<第三边<13.根据三角形的第三边大于两边之差,而小于两边之和求得第三边的取值范围.本题考查了三角形的三边关系,即三角形的第三边大于两边之差,而小于两边之和,此题基础题,比较简单.13.【答案】∠B 和∠D,∠AOB 和∠COD;OA 和OC,OB 和OD,AB 和CD【解析】解:∵△AOB➴△COD,∠A=∠C,∴A 和C、B 和D、O 和O,分别为对应点,∴对应角为∠B 和∠D,∠AOB 和∠COD,对应边分别为:OA 和OC,OB 和OD,AB 和CD,故答案为:∠B 和∠D,∠AOB 和∠COD;OA 和OC,OB 和OD,AB 和CD.由全等且点A 和点C 对应,可得出答案.本题主要考查全等三角形的对应关系,掌握相等的角为对应角,相等的边为对应边是解题的关键.14.【答案】5【解析】解:作DE⊥AB 于E,∵AD 平分∠BAC,∠C=90°,DE⊥AB,∴DE=DC=2,∴△ABD 的面积= ×AB×DE=5,故答案为:5.根据角平分线的性质求出DE,根据三角形的面积公式计算即可.本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.15.【答案】BC=BD【解析】解:BC=BD,理由是:∵∠CBE=∠DBE,∠CBE+∠ABC=180°,∠DBE+∠ABD=180°,∴∠ABC=∠ABD,在△ABC 和△ABD 中∴△ABC➴△ABD,故答案为:BC=BD.求出∠ABC=∠ABD,根据全等三角形的判定定理SAS 推出即可.本题考查了全等三角形的判定和性质的应用,全等三角形的判定定理有SAS,ASA,AAS,SSS,主要考查学生的推理能力.16.【答案】3【解析】解:①∵AC⊥BD,∴∠AOB=∠AOD=∠BOC=∠DOC,在△AOB 和△AOD 中,,∴△AOB➴△AOD(SAS),∴AB=AD;②∵在△BOC 和△DOC 中,,∴△BOC➴△DOC(SAS),∴BC=DC;③∵在△ABC 和△ADC 中,,∴△ABC➴△ADC(SSS),∴图中共有全等三角形3对.故答案为3.根据三角形全等的性质来判定,在△AOB 和△AOD 中,AC⊥BD,BO=DO,AO 为公共边,∴△AOB➴△AOD.同样的道理推出△BOC➴△DOC.再由AB=AD,BC=DC,AC 为公共边,推出△ABC➴△ADC,故得出有三对全等三角形.本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,本题考查了后两个定理的应用.17.【答案】5【解析】解:∵△ABC 的周长为12cm,AB=3cm,BC=4cm,∴AC=12-3-4=5(cm),∵△ABC➴△A′B′C′,∴A′C′=AC=5cm,故答案为:5.由三角形的周长可求得AC=5cm,再利用全等三角形的性质可求得A′C′=AC=5cm.本题主要考查全等三角形的性质,掌握全等三角形的对应边相等、对应角相等是解题的关键.18.【答案】12、16、20【解析】解:∵三角形三边的比为3:4:5,∴可设三角形的三边分别为3x,4x 和5x,由题意可知3x+4x+5x=48,解得x=4,∴三角形三边的长分别为12、16、20,故答案为:12、16、20.可设三角形的三边分别为3x,4x 和5x,利用周长可求得x 的值,则可求得三角形的三边长.本题主要考查三角形的周长,利用三角形的三边之比设出边长,利用三角形的周长得到方程是解题的关键.19.【答案】1440【解析】解:∵任何多边形的外角和等于360°,∴多边形的边数为360°÷36°=10,∴多边形的内角和为(10-2)•180°=1440°.故答案为:1440.任何多边形的外角和等于360°,可求得这个多边形的边数.再根据多边形的内角和等于(n-2)•180°即可求得内角和.本题需仔细分析题意,利用多边形的外角和求出边数,从而解决问题.20.【答案】10【解析】解:∵CN∥AB,∴∠NCE=∠MAE,又∵E 是AC 中点,∴AE=CE,而∠AEM=∠CEN,△CHE➴△MAE,∴AM=CN,∴AB=AM+BM=CN+BM=4+6=10.先证△CNE➴△AME,得出AM=CN,✲么就可求AB 的长.本题利用了三角形全等的判定和性质.21.【答案】解:如图所示,∠A′O′B′就是所要求作的角..【解析】先作射线O′B′,然后以点O 为圆心,以任意长为半径,画弧分别与OA、OB 相交于点E、F,以O′为圆心,以相同的长度为半径画弧与OB′相交于点E′,再以点E′为圆心,以EF 的长度为半径画弧,与前弧相交于点F′,过点O′、F′作射OA′,则∠A′O′B′即为所求.本题主要考查了作一个角等于已知角,是基本作图,需熟练掌握.22.【答案】解:当腰为3 时,另一腰也为3,则底为13-2×3=7,∵3+3=6<7,∴这样的三边不能构成三角形.当底为3 时,腰为(13-3)÷2=5,∴以3,5,5 为边能构成三角形.故另外两边长为5,5.【解析】由于长为3 的边可能为腰,也可能为底边,故应分两种情况讨论.本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键23.【答案】证明:∵BE=FC,∴BE+EF=CF+EF,即BF=CE;又∵AB=DC,∠B=∠C,∴△ABF➴△DCE(SAS),∴∠A=∠D.【解析】可通过证△ABF➴△DCE,来得出∠A=∠D 的结论.此题考查简单的角相等,可以通过全等三角形来证明,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.24.【答案】解:CE=DE,CE⊥DE,理由如下:∵AC⊥AB,DB⊥AB,AC=BE,AE=BD,∴△CAE ➴△EBD .∴∠CEA =∠D .∵∠D +∠DEB =90°,∴∠CEA +∠DEB =90°.即线段 CE 与 DE 的大小与位置关系为相等且垂直.【解析】先利用 HL 判定△CAE ➴△EBD ,从而得出全等三角形的对应角相等,再利用角与角之间的关系,可以得到线段CE 与DE 的大小与位置关系为相等且垂直. 此题主要考查学生对全等三角形的性质及全等三角形的判定方法的掌握情况.判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意做 题格式.25. 【答案】证明:如图,过点 P 作 PF ⊥BC 于 F ,PG ⊥AB 于 G ,PH ⊥AC 于 H ,∵△ABC 的∠ABC 的外角的平分线 BD 与∠ACB 的外角的平分线 CE 相交于 P , ∴PF =PG ,PG =PH ,∴PF =PG =PH ,∴点 P 到三边 AB 、BC 、CA 所在直线的距离相等.【解析】过点 P 作 PF ⊥BC 于 F ,PG ⊥AB 于 G ,PH ⊥AC 于 H ,然后根据角平分线上的点到角的两边的距离相等可得 PF=PG=PH .本题考查了角平分线的性质,掌握角平分线上的点到角的两边的距离相等的性质熟记性质是解题的关键.26. 【答案】证明:∵∠DCA =∠ECB ,∴∠DCA +∠ACE =∠BCE +∠ACE ,∴∠DCE =∠ACB ,∵在△DCE 和△ACB 中DC = AC ∠DCE = ∠ACB , C E = CB∴△DCE ➴△ACB , ∴DE =AB . 【解析】求出∠DCE=∠ACB ,根据 SAS 证△DCE ➴△ACB ,根据全等三角形的性质即可推出答案.{本题考查了全等三角形的性质和判定的应用,主要考查学生能否运用全等三角形的性质和判定进行推理,题目比较典型,难度适中.27.【答案】△ABD➴△ACD;△BDE➴△CDF;△ADE➴△ADF【解析】解:①△ABD➴△ACD,②△BDE➴△CDF,③△ADE➴△ADF;故答案为:△ABD➴△ACD,△BDE➴△CDF,△ADE➴△ADF;∵AD 是△ABC 中的角平分线,DE⊥AB,DF⊥AC,∴∠AED=∠AFD=90°,DE=DF,在Rt△AED 与Rt△AFD 中,,∴Rt△AED➴Rt△AFD.根据角平分线的性质得到DE=DF,然后根据全等三角形的判定定理即可得到结论.本题考查了全等三角形的判定、角平分线的性质,解题的关键是:(1)结合已知找出3 对全等的三角形;(2)找出满足SAS 的相等的边角.本题属于基础题,难度不大,解决该题型题目时,根据等腰三角形的性质找出相等的边角关系是关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

赠送初中数学几何模型【模型三】双垂型:图形特征:60°运用举例:1.在Rt△ABC中,∠ACB=90°,以斜边AB为底边向外作等腰三角形PAB,连接PC. (1)如图,当∠APB=90°时,若AC=5,PC=62,求BC的长;(2)当∠APB=90°时,若AB=45APBC的面积是36,求△ACB的周长.P 2.已知:如图,B、C、E三点在一条直线上,AB=AD,BC=CD.(1)若∠B=90°,AB=6,BC=23,求∠A的值;(2)若∠BAD+∠BCD=180°,cos∠DCE=35,求ABBC的值.3.如图,在四边形ABCD中,AB=AD,∠DAB=∠BCD=90°,(1)若AB=3,BC+CD=5,求四边形ABCD的面积(2)若p= BC+CD,四边形ABCD的面积为S,试探究S与p之间的关系。

DBC2017-2018学年甘肃省白银市景泰四中八年级(上)期中数学试卷(1)一、选择题(本大题有10小题,每小题3分,满分30分.每小题只有一个正确的选项)1.(3分)以下列长度的线段为边不能构成直角三角形的是()A.3,4,5 B.6,8,10 C.5,12,13 D.6,24,252.(3分)点P(﹣2,1)在平面直角坐标系中所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.(3分)下列各数:﹣,,0,﹣2π,﹣5.121121112…(相邻两个2之间的1逐次加1)中,无理数的个数是()A.2个 B.3个 C.4个 D.5个4.(3分)估算+1的值在()A.5和6之间B.3和4之间C.4和5之间D.2和3之间5.(3分)若点A(x,3)与点B(2,y)关于x轴对称,则()A.x=﹣2,y=﹣3 B.x=2,y=3 C.x=﹣2,y=3 D.x=2,y=﹣36.(3分)如图,直角三角形三边向形外作了三个正方形,其中数字表示该正方形的面积,那么正方形A的面积是()A.360 B.164 C.400 D.607.(3分)如果一个数的立方根是这个数本身,那么这个数是()A.1 B.﹣1 C.±1 D.±1,08.(3分)已知一直角三角形的木版,三边的平方和为1800cm2,则斜边长为()A.80cm B.30cm C.90cm D.120cm9.(3分)有一个数值转换器,原理如图所示:当输入的x=81时,输出的y等于()A.2 B.8 C.D.10.(3分)在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A.B.C.D.二、填空题(本大题共10小题,每小题3分,共30分)11.(3分)﹣8的立方根是,的算术平方根是.12.(3分)的相反数是,绝对值是,倒数是.13.(3分)比较大小:3(填写“<”或“>”).14.(3分)要使二次根式有意义,字母x必须满足的条件是.15.(3分)的小数部分是.16.(3分)点A(﹣3,4)到y轴的距离为,到x轴的距离为,到原点的距离为.17.(3分)若25x2=100,则x=.18.(3分)一个直角三角形的两条边的长度分别为3和4,则它的斜边长为.19.(3分)如图,矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴的正半轴于M,则点M的表示的数为.20.(3分)如图是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形.如果AB=10,EF=2,那么AH等于.三、解答题(本大题有8小题,共90分.)21.(30分)计算:(1)2+﹣(2)(+)(﹣)﹣(3)(1﹣)2+2.(4)﹣9+×(5)(6)()﹣1﹣|﹣|﹣+(﹣1﹣)0.22.(8分)一个数的两个平方根分别是a+3与2a﹣15,求a与这个数的值.23.(8分)如图:在△ABC中,CD是AB边上的高,AC=20,BC=15,DB=9.(1)求CD的长;(2)△ABC是直角三角形吗?为什么?24.(8分)已知0<x<2,化简+|x﹣3|.25.(9分)如图,长方体盒子(无盖)的长、宽、高分别是12cm,8cm,30cm,在AB中点C处有一滴蜜糖,一只小虫从D处爬到C处去吃,有无数种走法,则最短路程是多少?26.(8分)如图,已知∠C=90°,BC=3cm,BD=12cm,AD=13cm.△ABC的面积是6cm2.(1)求AB的长度.(2)求△ABD的面积.27.(9分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(﹣4,5),(﹣1,3).(1)请在如图所示的网格平面内作出平面直角坐标系;(2)请作出△ABC关于y轴对称的△A′B′C′;(3)写出点B′的坐标.28.(10分)观察下列一组式的变形过程,然后回答问题:例1:,例2:,,(1)=;=(2)请你用含n(n为正整数)的关系式表示上述各式子的变形规律.(3)利用上面的结论,求下列式子的值..2017-2018学年甘肃省白银市景泰四中八年级(上)期中数学试卷(1)参考答案与试题解析一、选择题(本大题有10小题,每小题3分,满分30分.每小题只有一个正确的选项)1.(3分)以下列长度的线段为边不能构成直角三角形的是()A.3,4,5 B.6,8,10 C.5,12,13 D.6,24,25【解答】解:A、32+42=25=52,能构成直角三角形,故本选项错误;B、62+82=100=102,能构成直角三角形,故本选项错误;C、52+122=169=132,能构成直角三角形,故本选项错误;D、62+242≠252,不能构成直角三角形,故本选项正确;故选:D.2.(3分)点P(﹣2,1)在平面直角坐标系中所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:点P(﹣2,1)在第二象限.故选:B.3.(3分)下列各数:﹣,,0,﹣2π,﹣5.121121112…(相邻两个2之间的1逐次加1)中,无理数的个数是()A.2个 B.3个 C.4个 D.5个【解答】解:,﹣2π,﹣5.121121112…(相邻两个2之间的1逐次加1)是无理数,故选:B.4.(3分)估算+1的值在()A.5和6之间B.3和4之间C.4和5之间D.2和3之间【解答】解:∵16<17<25,∴4<<5,∴5<+1<6.故选:A.5.(3分)若点A(x,3)与点B(2,y)关于x轴对称,则()A.x=﹣2,y=﹣3 B.x=2,y=3 C.x=﹣2,y=3 D.x=2,y=﹣3【解答】解:根据轴对称的性质,得x=2,y=﹣3.故选D.6.(3分)如图,直角三角形三边向形外作了三个正方形,其中数字表示该正方形的面积,那么正方形A的面积是()A.360 B.164 C.400 D.60【解答】解:根据正方形的面积与边长的平方的关系得,图中直角三角形得A 正方形的面积是1000﹣640=360,故选:A.7.(3分)如果一个数的立方根是这个数本身,那么这个数是()A.1 B.﹣1 C.±1 D.±1,0【解答】解:∵1,﹣1,0的立方等于它本身,∴立方根是它本身的数是±1,0.故选:D.8.(3分)已知一直角三角形的木版,三边的平方和为1800cm2,则斜边长为()A.80cm B.30cm C.90cm D.120cm【解答】解:设此直角三角形的斜边是c,根据勾股定理知,两条直角边的平方和等于斜边的平方.所以三边的平方和即2c2=1800,c=±30(负值舍去),取c=30.故选:B.9.(3分)有一个数值转换器,原理如图所示:当输入的x=81时,输出的y等于()A.2 B.8 C.D.【解答】解:∵=9,=3,∴输出的y等于,故选:C.10.(3分)在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A.B.C.D.【解答】解:根据题意画出相应的图形,如图所示:在Rt△ABC中,AC=9,BC=12,根据勾股定理得:AB==15,过C作CD⊥AB,交AB于点D,=AC•BC=AB•CD,又S△ABC∴CD===,则点C到AB的距离是.故选:A.二、填空题(本大题共10小题,每小题3分,共30分)11.(3分)﹣8的立方根是﹣2,的算术平方根是2.【解答】解:﹣8的立方根为﹣2=8,8的算术平方根为2故答案为:﹣2,212.(3分)的相反数是,绝对值是,倒数是﹣.【解答】解:的相反数是,绝对值是,倒数是﹣.故本题的答案是,,﹣.13.(3分)比较大小:<3(填写“<”或“>”).【解答】解:∵7<9,∴<3.故答案为:<.14.(3分)要使二次根式有意义,字母x必须满足的条件是x≥﹣1.【解答】解:根据题意得,x+1≥0,解得x≥﹣1.故答案为:x≥﹣1.15.(3分)的小数部分是﹣2.【解答】解:∵4<5<9,∴2<<3,∴的整数部分是2,∴和小数部分是﹣2;故答案为:﹣2.16.(3分)点A(﹣3,4)到y轴的距离为3,到x轴的距离为4,到原点的距离为5.【解答】解:点A(﹣3,4)到y轴的距离为3,到x轴的距离为4,到原点的距离==5.故答案为:3,4,5.17.(3分)若25x2=100,则x=±2.【解答】解:∵25x2=10,∴x2=4,∴x=±2.故答案为±2.18.(3分)一个直角三角形的两条边的长度分别为3和4,则它的斜边长为4或5.【解答】解:①当3和4均为直角边时,斜边==5;②当3为直角边,4为斜边时,斜边=4.故答案是:4或5.19.(3分)如图,矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴的正半轴于M,则点M的表示的数为.【解答】解:AC===,则AM=,∵A点表示﹣1,∴M点表示﹣1,故答案为:﹣1.20.(3分)如图是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形.如果AB=10,EF=2,那么AH等于6.【解答】解:∵AB=10,EF=2,∴大正方形的面积是100,小正方形的面积是4,∴四个直角三角形面积和为100﹣4=96,设AE为a,DE为b,即4×ab=96,∴2ab=96,a2+b2=100,∴(a+b)2=a2+b2+2ab=100+96=196,∴a+b=14,∵a﹣b=2,解得:a=8,b=6,∴AE=8,DE=6,∴AH=8﹣2=6.故答案为:6.三、解答题(本大题有8小题,共90分.)21.(30分)计算:(1)2+﹣(2)(+)(﹣)﹣(3)(1﹣)2+2.(4)﹣9+×(5)(6)()﹣1﹣|﹣|﹣+(﹣1﹣)0.【解答】解:(1)原式=2+3﹣=;(2)原式=7﹣3﹣4=0;(3)原式=1﹣2+10+2=11;(4)原式=3﹣3+=6;(5)原式=2+1=4+1=5;(6)原式=2﹣﹣(+1)+1=2﹣﹣﹣1+1=2﹣2.22.(8分)一个数的两个平方根分别是a+3与2a﹣15,求a与这个数的值.【解答】解:∵一个数的两个平方根分别是a+3与2a﹣15,∴a+3+(2a﹣15)=0,解得a=4,∴a+3=4+3=7,∴这个数是:72=49.23.(8分)如图:在△ABC中,CD是AB边上的高,AC=20,BC=15,DB=9.(1)求CD的长;(2)△ABC是直角三角形吗?为什么?【解答】解:(1)∵CD是AB边上的高,∴CD⊥AB,∴∠CDB=∠CDA=90°,在Rt△BCD中,BC=15,DB=9,根据勾股定理得:CD===12,(2)△ABC为直角三角形,理由为:在Rt△ACD中,AC=20,CD=12,根据勾股定理得:AD===16;∵AB=BD+AD=9+16=25,∴AC2+BC2=AB2,∴△ABC为直角三角形.24.(8分)已知0<x<2,化简+|x﹣3|.【解答】解:∵0<x<2,∴x﹣2<0,x﹣3<0,∴+|x﹣3|=2﹣x+3﹣x=5﹣2x.25.(9分)如图,长方体盒子(无盖)的长、宽、高分别是12cm,8cm,30cm,在AB中点C处有一滴蜜糖,一只小虫从D处爬到C处去吃,有无数种走法,则最短路程是多少?【解答】解:如图1展开,连接DC,则DC的长就是从D处爬到C处的最短路程,在Rt△DBC中,AD=12cm+8cm=20cm,AC=×30cm=15cm,由勾股定理得:DC==25(cm);即从D处爬到C处的最短路程是25cm.26.(8分)如图,已知∠C=90°,BC=3cm,BD=12cm,AD=13cm.△ABC的面积是6cm2.(1)求AB的长度.(2)求△ABD的面积.【解答】解:(1)∵∠C=90°=×BC×AC=6,∴S三角形ABC∴AC=4(cm).∵BC2+AC2=AB2,∴AB===5(cm).(2)∵AB2+BD2=52+122=169,AD2=132=169,∴AB2+BD2=AD2.∴∠ABD=90°.=×AB×BD=×5×12=30(cm2).∴S△ABD27.(9分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(﹣4,5),(﹣1,3).(1)请在如图所示的网格平面内作出平面直角坐标系;(2)请作出△ABC关于y轴对称的△A′B′C′;(3)写出点B′的坐标.【解答】解:(1)如图所示;(2)如图所示;(3)由图可知,B′(2,1).28.(10分)观察下列一组式的变形过程,然后回答问题:例1:,例2:,,(1)=;=(2)请你用含n(n为正整数)的关系式表示上述各式子的变形规律.(3)利用上面的结论,求下列式子的值..【解答】解:(1)=;=(2)(3)=,==10﹣1=9.。

相关文档
最新文档