动叶可调式轴流风机动叶调节原理图
电站轴流式风机的失速喘振与防治

轴流式风机当调节叶片(动叶调节风机为动叶片,静叶调节风机为入口调节叶片)角度固定在某一位置时,在正常工作区域内,风机的压力随风机流量的减小而增加,当流量减小到某一值时压力达到最大、当流量进一步减小时,风机压力和运行电流突然降低,振动和噪音增大这一现象被称为风机失速。 风机失速后有两种不同表现,一是风机仍能稳定运行,即压力、风量、电流保持相对稳定,但噪音增加;风机及其进、出口气流压力承周期性脉动;风机振动常常比正常运行高。这种现象称之为旋转失速。另一是风机即压力、风量、电流大幅度波动,噪音异常之大,风机不能稳定运行,风机可能很快遭受灭性损坏,这种现象称之为喘振。
图8 轴流风机防失速装置
图9 轴流风机有无防失速装置性能曲线比较
9 防止运行中轴流风机失速措施
1)运行人员应了解风机所在系统的阻力构成,特别是那些阻力较大又易于堵塞的设备(如预热器、暖风器、消声器等)的正常阻力范围。 2)在实际运行中若这些设备阻力超出了范围可能导致风机失速时,应控制该风机的出力,并及时采取措施消除堵塞。
从两次风机失速时的开度均大于停磨后两风机稳定运行时的开度(参见下表)说明:风机失速主要原因是在停磨过程中,在减小磨煤机通风量的同时,未能及时将一次风机的出力降到应有值,即一次风机入口门调节不到位,造成总一次风量低于两台一次风机当时开度下的失速流量,从而导致一台风机失速。
停磨过程中一次风机失速时与停磨后稳定运行时风机有关参数比较
2) 在轴流风机的进出口之间加旁路再循环风(烟)道;当风机失速时,打开旁路风道门,使一部分风(烟)量从风机出口流向风机入口,即使一部分风(烟)量在风机内循环,以增加风机的风(烟)量,使风机脱离失速区运行。但这增加了风机的耗功,是很不经济的。
加装防失速装置 为消除轴流风机的失速,多年来学者们进行了大 量的研究和实验工作,并提出了一些能把失速区向小 风量方向推移,戓者把压力曲线上的波谷减弱直到完 全消除的办法。但戓因结构复杂,戓因对风机效率影 响大,或噪音问题而未能得到广泛应用。直到1974年 原苏联伊万诺夫提出了一种简单有效的装置--空气分 流器来消除旋转失速,并在矿井局扇上获得广泛应 用。取得了美、英、法、原西德、印度、丹麦等多国 专利后,在轴流风机上加装防失速装置才在静调轴流 风机上得到较广泛使用。如德国kkk公司的KSE、我国 淮南煤碳学院和西安热工院均成功地设计出了类似的 防丢速装置并分别应用到矿井和电站轴流风机上。下 面以西安热工院开发的该型防失速装置为例进行介绍
04.PDF文档(第四章 轴流式通风机)

第四章 轴流式通风机图4-1为轴流式风机,由集风器1,、叶轮2,、导叶3,、扩散筒4等组成。
叶轮和导叶组成级,轴流通风机,因为压力较低,一般都用单级,例如低压轴流通风机在490Pa 以下,高压轴流通风机一般在4900Pa 以下。
其特点:压力系数低ψ<0.6,流量系数高φ=0.3~0.6,比转速高n s =18~90(100~500)(单级)全压效率高达η=90%以上,单向扩散筒的单级风机效率为83~85%。
不过目前轴流风机逐渐向高压发展,例如国际上已造出动叶可调轴流通风机ΔP =14210Pa,许多大型离心式风机有被轴流式风机取代的趋势。
图4-1轴流式风机§1 基元级一、基元级上的速度三角形图4-2 轴流式通风机的基元级轴流式通风机的基元级由叶轮和导叶所组成的。
对于不同半径的圆柱面上,由于离心力不同,那么气流的参数是变化的,叶片沿叶高方向(径向)是扭曲的。
为了研究不同半径上的流动,用一圆柱面去切开轴流式通风机,会得到圆柱面上的环形叶删,可以展开成平面叶栅,如图4-2所示,这种平面动叶和导叶所组成的叶栅,称为基元级 与离心通风机一样,在动叶前后形成速度三角形:不过在圆柱面上:u 1 = u 2 = u ,C 1z = C 2z = C z ,ρ1 = ρ2 = ρ(β2 >β1,α2 < α1)对于多级轴流风机,一般要求后导叶出口的流速C 3和气流角α3等于叶轮前的状态C 3 = C 1,α3 =α1可以得出叶流前后平均的相对速度W m 及方向角βmβm = tg(C z / W mu ) (4-1) W mu = u – ΔW u /2 –C 1u (4-2)22muZ W C Wm +=式(5-2)的推导可出图3-2b 时:u = u 1 = u 2 ΔW u = W 1u – W 2u = C 2u - C 1u = ΔC u (4-3) ΔW u 或ΔC u 称为相速。
浅析动叶可调轴流引风机并联运行抢风问题及解决措施

浅析动叶可调轴流引风机并联运行抢风问题及解决措施摘要:动叶可调轴流式锅炉引风机是烟风道系统中的关键组成部分,其高质量的运行对锅炉高质量、高效率的运行具有重要的意义。
在锅炉引风机运行的过程中,一旦出现抢风现象,会对系统内部的相关设备造成严重的损伤,严重制约锅炉及整个系统的稳定运行,对火电厂的平稳发展带来很大的影响。
文章对火电厂锅炉引风机抢风问题进行了分析,并阐述了几点具有针对性的解决途径,意在为促进火电厂更稳定的发展提供参考与借鉴。
关键词:火电厂;动叶可调轴流引风机;并联运行抢风问题;解决途径前言:动叶可调轴流式锅炉引风机是火电厂实际运行中的一种回转设备系统,目前由于其效率高,便于调节的优点已经在火电厂得到了广泛的应用,其主要是凭借着机械中叶片的旋转做功提高气体压力并进行烟气的排送,进而为烟风道系统提供充足的动力支撑,为火电厂的高质量、高效率的运行创造有利条件。
但是,在运行的过程中,一旦出现抢风问题,会导致设备运行状态不稳定的出现,设备会出现振动加剧、噪音升高,出力不足等问题,严重影响了锅炉及整个电厂系统的稳定运行。
现阶段,火电厂如何采取与有效途径,解决动叶可调轴流式锅炉引风机的抢风问题,已逐渐成为火电厂发展过程中面临的巨大挑战。
1、动叶可调轴流式引风机抢风的原理要理解动叶可调轴流式引风机为什么会出现抢风的问题,就必须从其原理上进行分析。
下图为某项目动叶可调轴流式引风机的性能曲线图,可调轴流式引风机由于其运行曲线为驼峰形曲线,这一特点决定了风机存在不稳定区。
图中的马鞍形曲线我们称之为失速线,之所以称其为失速线,是因为落在该失速线左上方的工况点,都是不稳定工况,风机会出现振动加剧、噪音升高,出力不足等问题。
所谓抢风,是指并联运行的两台引风机,突然的其中1台引风机电流上升,另一台电流突然下降。
在这个时候,如果关小流量变大的那台引风机的叶片开度想要平衡风量时,会使得另一台之前流量偏小的风机跳到更大流量运行,根本无法使两台引风机的风量达到平衡状态。
动叶可调轴流引风机的工作原理

第四节引风机一引风机的结构特点动叶可调轴流式送风机一般包括:进口消音器、进口膨胀节、进口风箱、机壳、转子、扩压器、联轴器及其保护罩、调节装置及执行机构、液压及润滑供油装置和测量仪表、风机出口膨胀节、进、出口配对法兰。
电动机通过中间轴传动风机主轴。
1 进气箱、扩压器进气箱和进气管道,扩压器和排气管道分别通过挠性进气膨胀节和排气膨胀节连接;进气箱和机壳、机壳与扩压器间用挠性围带连接。
这种连接方式可防止振动的传递和补偿安装误差和热胀冷缩引起的偏差。
进气箱中心线以下为成弧形结构,减小进气箱进气损失,并相对减小了气流的脉动,有利于提高风机转子的做功效率。
进气箱、扩压器、机壳保证相对轴向尺寸,形成较长的轴向直管流道,使风机气流流动平稳,减少了流动损失,提高了抗不稳定性能,保证了风机装置效率。
进气箱和扩压器均设有人孔门,便于检修。
进气箱有疏水管。
2 机壳机壳具有的水平中分面以及机壳前后的挠性围带连接,很容易拆卸机壳上半,便于安装和检修转子部。
3 转子转子由叶轮、轴承箱、中间轴、液压调节装置等组成。
轴承箱为整体结构,借助两个与主轴同心的由圆柱面内置于机壳内筒中的下半法兰上,轴承箱两个法兰的下半部分与机壳内圆筒的相应法兰用螺栓固定。
机壳上半内筒的法兰紧压轴承箱相应法兰。
在主轴的两端各装一个滚柱轴承用以承受径向力,为了承受轴向力,在近联轴器端装有一个向心推力球轴承,承担逆气流方向的轴向力。
轴承外侧装有氟橡胶制的径向轴密封,防止漏油。
轴承的润滑和冷却借助于轴承箱体内的油池和外置的液压润滑联合油站。
为防止烟气温度的影响,对主轴承箱外表面及油管进行附加冷却,在风机一侧装有冷却(密封风机)。
置于整体式轴承箱中的主轴承为油池强制循环润滑。
当轴承箱油位超过最高油位时,润滑油将通过回油管流回油站。
润滑油和液压油均由25 l/min的公用油站供油。
叶轮叶轮轮壳采用低碳合金钢(后盘及承载环为锻件)通过多次焊接后成型,强度、刚度高,叶轮悬臂装在轴承箱的轴端。
风机液压机构原理

目前在市场上比较常见的动叶调节轴流风机厂商有:豪顿华工程公司、沈阳鼓风机厂、上海鼓风机厂、成都电力设备总厂;豪顿华工程公司和沈阳鼓风机厂是使用同一种调节技术,其技术主要是来自丹麦,且目前的专利是属于英国豪顿公司,上海鼓风机厂的技术主要是来自德国TLT公司,成都电力设备总厂的技术主要是来自德国KKK公司,三种形式的调节机构都有各自的特点和优缺点,下面详细介绍三种调节形式的油路走向以及调节原理。
豪顿华、沈鼓液压调节机构(一次风机、送风机液压缸):1-拉叉 2-旋转油封 3-拉叉接头 4-限位螺栓 5-调节阀阀芯 6-调节臂部 7-错油孔 8-错油孔 9-弹簧 10-活塞 11-液压缸缸体 12-詛油孔 13-液压缸连接盘 14-调节盘 15-滑动衬套 16-旋转油封连接螺栓 17-端盖 18-连接螺栓 19-调节阀阀体 20-风机机壳21-连接螺栓2-(增压风机、引风机液压缸):此液压缸分为三部分:旋转油封、调节阀芯、主缸体,其功能主要如下:旋转油封:其作用是将高压油(P)、回油(O)、润滑油(T)引出或引入高速旋转的缸体,由一高速旋转的轴心和固定不动的壳体在滚动轴承的支撑下组成的,其精度很高,内泄不能太大,长期运行温度不能超过滚动轴承的承受温度。
国产的旋转油封使用寿命大概在2~3年左右,豪顿进口的旋转油封,其内部有W形弹簧垫片,可以保证旋转油封的轴向串动,此弹簧垫为豪顿专利,目前国内无法生产,只有豪顿公司可以生产,而且弹簧垫可以提高旋转油封的寿命,故进口的旋转油封价格高于国产旋转油封的10倍以上。
3-调节阀芯:它是一负遮盖换向阀。
在正常状态下(动叶不动),进油路(P)常开而回油路(O)常闭,润滑油路(T)常开;负遮盖方式使回油路有一很小的开口量,因而有一定的回油量来循环冷却缸体,此开口量的大小决定了在平衡状态下,液压油的油压;目前国产液压缸,由于加工精度的原因,无法在加工上实现,所以基本是在加工好液压缸后,通过使用来决定开口的大小,以保证工作油压;而豪顿生产的液压缸,其加工精度可以实现在机械加工上直接开口,此即为国产缸与进口缸直接的区别,在国产缸的调阀第二道槽的上边缘有一个小开口,为后期磨出来的,如果大家看到了,不要以为是加工缺陷或者磨损掉的,那个开口是故意留出来的,进口缸就不存在。
轴流式风机.

• 轴流式风机的种类很多:只有一个叶轮的轴流式风机叫做单级轴流式风机; 为了提高风机压力,把两个叶轮串在同一根轴上的风机称为双级轴流式风 机,其电动机与叶轮同壳安装,这种风机结构简单、噪声小,但由于这种 风机的电动机直接处于被输送的风流之中,若输送温度较高的气体,就会 降低电动机的效率。为了克服上述缺点,工程中采用一种长轴式轴流式风 机,如图所示。
轴流式风机
1.轴流式风机的基本构造
轴流式风机的基本构造如图 3-28 所示;它主要有 圆形风筒、钟罩形吸入口、装有扭曲叶片的轮毅、 流线型轮毅罩、发动机、发动机罩、扩压管等组 成。
• 轴流式风机的叶轮由轮毅和铆在其上的叶片组成,叶 片从根部到梢部常呈扭曲状态或与轮毅呈轴向倾斜状 态,安装角一般不能调节。但大兴轴流式风机的叶片 安装角是可以调节的(称为叶动可调)。调节叶片安 装角,就可以改变风机的流量和风压。大型风机进气 口上还常常装置导流叶片(称为前导叶),出气口上 装置整流叶片(称为后导叶),以消除气流增压后产 生的旋转运动,提高风机的效率。部分轴流式风机还 在后导叶之后设置扩压管(流线型尾罩),这样更有 助于气流的扩散,进而使气流中的一部分动压转变为 静压,减少流动损失。
• 4 )风机滚动轴承正常工作温度不应大于 70 ℃,瞬间最高温度不应 大于 95 ℃ ,温升不应超过 55 ℃ ;滑动轴承正常工作温度不应大于 75℃。 • 5)风机轴承振动速度有效值不应大于6.3×1/10³ m/s。
• 6 )连续试运转时间不应少于 6h 。停机后应检查管道的密封性和叶 顶间隙。
• (2)轴流式风机的选用
• 轴流式风机选型时,主要考虑风机的使用场所与环境条件(如安装 位置和传动方式、防尘、防爆、防腐蚀要求等)、所需的风量与风 压打小、对噪声与振动的要求和条件选用能进行工况调节的轴流式 风机,如动叶可调式轴流式风机、可变速调节的轴流式风机、打偶 皮静导叶调节的轴流式风机等。
火力发电厂锅炉风机之一---动叶可调式轴流风机

火力发电厂锅炉风机之一 ---动叶可调式轴流风机火力发电厂锅炉辅机设备一般分为:球磨机、引风机、送风机、排粉风机、一次风机等,引风机、送风机、排粉风机、一次风机均属风机类;风机担负着连续输送气体的任务,风机的安全运行将直接影响到锅炉的安全、可靠、经济运行,因而风机是锅炉机组的重要辅机之一。
随着单机发电容量的增大,为保证机组安全可靠和经济合理的运行,对风机的结构、性能和运行调节也提出了更高更新的要求。
风机按其工作原理的不同,主要有离心式风机和轴流式风机两种,离心式风机有较悠久的发展历史,具有结构简单,运行可靠、效率较高(空心机翼型后弯叶片的可达85%一92%),制造成本较低、噪声小等优点。
但随着锅炉单机容量的增长,离心风机的容量已经受到叶轮材料强度的限制,不能随锅炉容量的增加而相应增大,而轴流式风机则可以做得很大,且具有结构紧凑、体积小、质量轻、耗电低、低负荷时效率高等优点。
轴流风机与离心风机比较有以下主要特点:1、离心式风机的气流由轴向进入叶轮,然后在叶轮的驱动下,一方面随叶轮旋转,另一方面在惯性力的作用下提高能量,沿径向离开叶轮。
轴流风机的气流由轴向进入叶轮,在风机叶片的升力作用下,提高能量,沿轴向呈螺旋形地离开叶轮。
2、轴流风机如制造成动叶片可调节式,则调节效率高并可使风机在高效率区域内工作。
因此,运行费用较离心风机明显降低。
3、轴流风机对风道系统风量变化的适应性优于离心风机。
如风道系统的阻力计算不很准确,实际阻力大于计算阻力,或遇到煤种变化所需风机风量、风压不同,就会使机组达不到额定出力。
而轴流风机可以采用动叶片调节关小或开大动叶的角度来适应风量、风压的变化,对风机的效率影响却很小。
4、轴流风机有较低的飞轮效应值(N·m2)。
这是由于轴流风机允许采用较高的转速和较高的流量系数,所以在相同的风量、风压参数下轴流风机的转子较轻,即飞轮效应值较小,使得轴流风机的启动力矩大大地小于离心风机的启动力矩。
第二章 风烟系统

第二章风烟系统第一节风烟系统概述1.1 风系统循环流化床锅炉内物料的循环是依靠风机提供的动能来启动和维持的。
从一次风机出来的空气分成四路,其中三路进入炉膛,另一路至除尘器:第一路:经过空预器加热后的热风进入炉膛底部的风室,通过布置在布风板上的风帽使床料流化,并形成向上通过炉膛的气固两相流;第二路:一部分未经过空预器加热的冷风作为给煤机的密封风;第三路:一部分在空预器加热后,用于炉前的气力播煤;第四路:一部分未进入炉膛,通至电袋除尘器旁路门密封用气。
从二次风机出来的空气直接进入炉膛上的上下二次风环箱,保证物料在炉膛内充分燃烧所需的氧量。
高压流化风机出口的空气送至旋风分离器回料腿中,每个回料腿上布置八路流化风,保证物料的返回。
锅炉冷态启动时,保证流化风量大于最小流化风量,顺控启动床下风道点火燃烧器,控制风道点火燃烧器出口烟温在980℃且风室风温在870℃以下,加热启动床料。
在床温升高至()℃并维持稳定后,()的煤粒开始分别由八个给煤口从前墙送入炉膛下部的密相区内(脱硫用的石灰石由回料阀连同回料一起被送入炉膛)。
燃烧所需的空气分为一、二次风,分别由炉底和前后墙送入炉膛。
一次风经风室,作为床内物料的流化介质和燃烧用风送入燃烧室;二次风在炉高风向上分两层布置,以保证提供给燃料足够的氧量并参与燃烧的调整。
二次风分两层布置有利于在炉膛的底部高温区营造出还原性气氛,抑制氮氧化物的生成,同时使炉膛上部空间处于富氧状态,提高燃料的燃尽率。
1.2 烟气系统密相区域位于炉膛下部,空气与燃料、石灰石在此充分混合,煤粒着火燃烧释放出部分热量,石灰石煅烧生成二氧化碳和氧化钙,未燃尽的煤粒被烟气携带进入炉膛上部稀相区内进一步燃烧。
这一区域主要是脱硫反应区,在这里氧化钙与燃烧生成的二氧化硫反应生产硫酸钙。
燃烧生成的烟气携带大量床料经炉顶转向,通过位于后墙水冷壁上部的三个烟气出口,分别进入三个气冷式旋风分离器进行气—固分离。
分离后,含有少量飞灰的干净烟气由分离器中心筒进入烟道,经过各受热面进行放热,经过布袋除尘器除尘,由引风机进入湿法脱硫系统,最后烟筒排出。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动叶可调式轴流风机动叶调节原理图
轴流风机动叶调节原理(TLT结构)
轴流送风机利用动叶安装角的变化,使风机的性能曲线移位。
性能曲线与不同的动叶安装角与风道性能曲线,可以得出一系列的工作点。
若需要流量及压头增大,只需增大动叶安装角;反之只需减少动叶安装角。
轴流送风机的动叶调节,调节效率高,而且又能使调节后的风机处于高效率区内工作。
采用动叶调节的轴流送风机还可以避免在小流量工况下落在不稳定工况区内。
轴流送风机动叶调节使风机结构复杂,调节装置要求较高,制造精度要求亦高。
改变动叶安装角是通过动叶调节机构来执行的,它包括液压调节装置和传动机构。
液压缸内的活塞由轴套及活塞轴的凸肩被轴向定位的,液压缸可以在活塞上左右移动,但活塞不能产生轴向移动。
为了防止液压缸在左、右移动时通过活
塞与液压缸间隙的泄漏,活塞上还装置有两列带槽密封圈。
当叶轮旋转时,液压
缸与叶轮同步旋转,而活塞由于护罩与活塞轴的旋转亦作旋转运动。
所以风机稳定在某工况下工作时,活塞与液压缸无相对运动。
活塞轴的另一端装有控制轴,叶轮旋转时控制轴静止不动,但当液压缸左右移动时会带动控制轴一起移动。
控制头等零件是静止并不作旋转运动的。
叶片装在叶柄的外端,每个叶片用6个螺栓固定在叶柄上,叶柄由叶柄轴承支撑,平衡块与叶片成一规定的角度装设,二者位移量不同,平衡块用于平衡离心力,使叶片在运转中成为可调。
动叶调节机构被叶轮及护罩所包围,这样工作安全,避免脏物落入调节机构,使之动作灵活或不卡涩。
当轴流送风机在某工况下稳定工作时,动叶片也在相应某一安装角下运转,那么伺服阀将油道①与②的油孔堵住,活塞左右两侧的工作油压不变,动叶安装角自然固定不变。
当锅炉工况变化需要减小调节风量时,电信号传至伺服马达使控制轴发生旋转,控制轴的旋转带动拉杆向右移动。
此时由于液压缸只随叶轮作旋转运动,而调节杆(定位轴)及与之相连的齿条是静止不动的。
于是齿套是以B点为支点,带动与伺服阀相连的齿条往右移动,使压力油口与油道②接通,回油口与油道①接通。
压力油从油道②不断进入活塞右侧的液压缸容积内,使液压缸不断向右移动。
与此同时活塞左侧的液压缸容积内的工作油从油道①通过回油孔返回油箱。
由于液压缸与叶轮上每个动叶片的调节杆相连,当液压缸向右移动时,动叶的安装角减小,轴流送风机输送风量和压头也随之降低。
当液压缸向右移动时,调节杆(定位轴)亦一起往右移动,但由于控制轴拉杆不动,所以齿套以A为支点,使伺服阀上齿条往左移动,从而使伺服阀将油道①与②的油孔堵住,则液压缸处在新工作位置下(即调节后动叶角度)不再移动,动叶片处在关小的新状态下工作。
这就是反馈过程。
在反馈过程中,定位轴带动指示轴旋转,使它将动叶关小的角度显示出来。
若锅炉的负荷增大,需要增大动叶角度,伺服马达使控制轴发生旋转,于是控制轴上拉杆以定位轴上齿条为支点,将齿套向左移动,与之啮合齿条(伺服阀上齿条)也向左移动,使压力油口与油道①接通,回油口与油道②接通。
压力油从油道①进入活塞的左侧的液压缸容积内,使液压缸不断向左移动,而与此同时活塞右侧的液压缸容积内的工作油从油道②通过回油孔返回油箱。
此时动叶片安装角增大、锅炉通风量和压头也随之增大。
当液压缸向左移动时,定位轴也一起往左移动。
以齿套中A为支点,使伺服阀的齿条往右移动,直至伺服阀将油道①与②的油孔堵住为止,动叶在新的安装角下稳定工作。