相似三角形的应用教学设计
人教版数学九年级下册27.2.3相似三角形的应用举例测量金字塔高度、河宽问题教学设计

-类似地,介绍如何利用相似三角形测量河宽等问题。
(三)学生小组讨论
1.教学内容:组织学生进行小组讨论,共同探讨相似三角形在测量问题中的应用,并分享解题方法。
2.教学过程:
-将学生分成若干小组,每组选择一个测量问题进行讨论,如测量金字塔高度、河宽等。
-帮助学生梳理解决实际问题的步骤和思路。
6.课后作业:
-设计具有实际背景的测量问题,让学生课后独立完成。
-鼓励学生将所学知识运用到生活中,发现生活中的数学问题。
四、教学内容与过程
(一)导入新课
1.教学内容:以埃及金字塔为背景,引导学生思考如何测量金字塔的高度。通过展示图片和实际案例,激发学生对相似三角形应用的好奇心。
三、教学重难点和教学设想
(一)教学重难点
1.教学重点:
-理解并掌握相似三角形在测量问题中的应用。
-学会运用相似三角形的性质进行实际问题的计算和分析。
2.教学难点:
-将相似三角形的理论知识与实际问题相结合,解决具体测量问题。
-在实际问题中,正确识别和运用相似三角形的条件,进行有效计算。
(二)教学设想
为了突破重难点,本节课将采用以下教学策略和方法:
人教版数学九年级下册27.2.3相似三角形的应用举例测量金字塔高度、河宽问题教学设计
一、教学目标
(一)知识与技能
本节课是关于相似三角形的应用举例,通过学习,使学生掌握以下知识与技能:
1.理解并掌握相似三角形的性质及其应用,能够运用相似三角形的知识解决实际问题。
2.学会使用测量工具(如测高仪、皮尺等)进行实地测量,并能结合相似三角形的知识计算出实际问题的答案。
2.教学过程:
三角形相似的判定教学设计(优秀4篇)

三角形相似的判定教学设计(优秀4篇)《相似三角形》数学教案篇一一、教材内容分析《探索三角形相似的条件》是北师大版试验教科书八年级下册第四章第九节的内容,1课时,它是在学生学习了相似三角形的概念基础上,进一步研究三角形相似的条件,是今后进一步研究其他图形的基础。
二、教学目标(知识,技能,情感态度、价值观)1、知识目标:(1)使使学生能通过三角形全等的判定来发现三角形相似的判定。
(2)学生掌握相似三角形判定定理1,并了解它的证明。
(3)使学生初步掌握相似三角形的判定定理1的应用。
2、能力目标:(1)通过尺规作图使学生得到技能的训练;(2)通过公理的初步应用,初步培养学生的逻辑推理能力。
3、情感目标:(1)在公理的形成过程中渗透:实验、观察、类比、归纳;(2)通过知识的纵横迁移感受数学的系统特征。
三、教学重难点:重点:掌握相似三角形判定定理1及其应用。
难点:定理1的证明方法。
四、教学环境及资源准备1、投影片2、观看相关视频五、教学过程教学过程教师活动学生活动设计意图及资源准备(一)、导入新课1、多媒体展示问题,什么叫相似三角形?相似三角形与全等三角形有何联系?2、到目前为止判定三角形相似的方法有几个?3、什么叫相似三角形?相似三角形与全等三角形有何联系?学生回答证明三角形的两种方法通过提问既起到复习旧知识又起到引出新问题的作用(二)、探究新知1新课讲解(1)、做一做,做出两个三角形来试验是否相似。
(2)、师生共同总结:两角对应相等的两个三角形相似。
2应用新知教学例1:已知:△ABC和△DEF中A=40,B=80,E=80,F=60求证:△ABC∽△DEF例2:直角三角形被斜边上的高分成的两个直三角形的与原三角形相似3、例题小结1、学生亲手实践2、学生理解3、边听讲边思考让学生通过亲手实践来体验知识的准确性,理解,消化主要知识例1,例2的练习加强学生,以达对定理的更深一步的理解与掌握。
(三)、随堂练习学生完成教师订正练习应用巩固知识(四)、课时小结通过这节课的学习,你能获得哪些收获?分小组交流后个别回答知识系统化(五)、课后作业习题4.9第1题、第2题。
高中 相似三角形的应用 射影定理(教学设计)

相似三角形的应用·射影定理(教学设计)怀化市铁路第一中学高用一、教材衔接分析初中阶段,《相似三角形的应用》是湖南教育出版社义务教育教科书《数学》九年级上册第3章第五节内容,射影定理以习题的形式出现在第3章复习题B组第12题,属于基于教材又高于教材的拓展性内容,学习射影定理可以进一步熟练掌握相似三角形的应用,同时也是相似三角形应用得出的重要结论,其本质是一种特殊且非常常见的相似三角形模型,熟悉这种模型对于很多平面几何问题的证明有非常重要的作用.高中阶段,原人教A版《数学》选修4-1《几何证明选讲》中专门有一节《直角三角形的射影定理》,在新高中课程中,相似三角形的应用和射影定理在基本不等式的几何解释、平面向量、立体几何和解析几何中都有重要的应用,还是物理学科中力的分析、几何光学等的重要数学基础.另外,平面几何证明思路的探寻过程中常用执果索因的方法,也就是高中阶段所说的分析法,这是思维层面的初高中衔接.二、教学目标1、能够熟练应用相似三角形证明射影定理及一些简单问题,发展学生几何直观、逻辑推理的核心素养;2、理解射影定理、熟悉射影定理的基本图形,并能利用射影定理求解和证明一些简单问题.三、教学重难点教学重点:1、熟练应用相似三角形的性质;2、理解射影定理、熟悉射影定理的基本图形,熟练利用射影定理求解或证明问题.教学难点:熟练应用相似三角形的性质、射影定理解决问题四、教学方法从回顾相似三角形的性质和判定定理入手,先探究射影定理,再引申到“歪射影定理”,形成问题探究、基础训练、思维拓展、反思提高四个教学环节.采取课堂讨论、问题探究的教学方法,发挥教师的主导作用,尽可能调动学生的积极性,参与到学习中来,学会构建数学模型解题,让学生在愉快的氛围中自然构建自己的知识体系.五、教学过程(一)旧知回顾相似三角形的判定:1、平行于一边的直线截得的三角形与原三角形相似;2、两角对应相等;3、三边对应成比例;4、两边对应成比例且夹角相等.若两三角形相似,则1、对应长度成比例,2、对应角相等.【设计意图】通过复习相似三角形判定方法和两三角形相似可以得到的结论,为进一步熟练应用相似三角形定下基调,更为探究射影定理作准备.(二)问题探究中,CD为斜边AB上的高.探究1:如图,在Rt ABC问题:图中有哪些相似三角形?由这些相似三角形,你能得到哪些与长度有关的结论?(学生自行探究并上黑板展示,教师点评并加以引导)例如,由ADC CDB ∆∆ ,可得CD AD AC BD CD BC==,从而可得2CD AD BD =⋅.类似地,可得2AC AD AB =⋅2BC BD BA=⋅【设计意图】通过引导学生自主探究射影定理,使学生进一步熟练应用相似三角形,同时在已有的知识基础上探究新知,符合学生最近发展区,体现数学自然生成的教学理念.注意到,CD AB ⊥,垂足为D ,则称点D 为点C 在AB 上的正射影,那么线段AD 为线段AC 在AB 上的正射影,线段BD 为线段BC 在AB 上的正射影.探究1得到的三个等式都反映了两直角边在斜边上的射影与其他线段之间的关系,因而称之为射影定理.直角三角形中的射影定理:直角三角形斜边上的高是两直角边在斜边上射影的比例中项,两直角边分别是它们在斜边上的射影与斜边的比例中项.(教师强调射影定理的图形特征:“双垂直结构”)【设计意图】介绍射影定理命名的缘由,让学生对定理理解更加形象、深刻,也使学生对射影定理的识记更加容易,培养学生用模型解决问题的能力.定理的初步应用例1如图,圆O 上一点C 在直径AB 上的射影为D ,已知90ACB ∠=︒,2AD =,8DB =.求CD 、AC 和BC 的长.【解析】在Rt ABC ∆中,CD AB ⊥,则由射影定理有22816CD AD BD =⋅=⨯=,则4CD =,221020AC AD AB =⋅=⨯=,则AC =281080BC BD BA =⋅=⨯=,则BC =.【设计意图】通过例1对射影定理进行最直接、最简单的运用,让学生基本熟悉射影定理.思考:若AD a =,DB b =,计算CD 的长;当点C 在 AB 上运动时,ACB ∠始终为90︒,比较CD 与AB 的长度,你发现了什么结论?易得CD =,AB a b =+,当点C 在 AB 上运动时,CD 的长不超过圆的半径,2a b +≤(基本不等式).【设计意图】在例1的基础上进行一般化,通过观察CD 长度的变化得到不等式2a b +≤,为高中学习基本不等式、理解基本不等式作铺垫.探究2:如图,已知ABC ∆中,D 为AB 上一点,且BCD BAC ∠=∠.是否还能得到类似在直角三角形中射影定理的结论?(学生自主探究,并展示成果)成果展示:因为BCD BAC ∠=∠,又同角B ∠,所以BCD BAC ∆∆ ,从而BD BC BC BA=,即2BC BD BA =⋅.教师点评:虽然ABC ∆不是直角三角形,D 也不再是C 在AB 上的正射影,但有BCD BAC ∆∆ ,从而仍得到一个类似直角三角形中射影定理的结论2BC BD BA =⋅,我们形象地称之为“歪射影定理”.【设计意图】“歪射影定理”的基本图形是一种较为常见的相似三角形的形式,通过“歪射影定理”的探究,主要是让学生熟悉这种相似三角形的图形结构特征,建立起一种解题模型,在较为复杂的证明问题中能快速识别图形,并用相似三角形求解.同时,引入“歪射影定理”还可以激发学生的学习兴趣,可以为今后学习圆幂定理奠定基础.(三)应用提升例2如图,AD 为Rt ABC ∆斜边BC 边上的高,过点B 作BE BA =,连接,ED EC .求证:BED BCE ∠=∠.【思路分析】要证BED BCE ∠=∠,因为EBD CBE ∠=∠,只要证EBD CBE ∆∆ ,只要证BE BD BC BE=,即2BE BD BC =⋅,不难发现BA BE =,则只要证2AB BD BC =⋅,这就是射影定理,于是思路打通.【证明】由射影定理可得2AB BD BC =⋅,因为BA BE =,所以2BE BD BC =⋅,即BE BD BC BE=,又EBD CBE ∠=∠,所以EBD CBE ∆∆ ,从而BED BCE ∠=∠.例3如图,点D 为Rt ABC ∆直角边斜边AC 延长线上一点,连接BD .过点A 分别作BC 、BD 的垂线,垂足分别为,E F ,连接EF .求证:EF BD BE CD ⋅=⋅.【思路分析】要证EF BD BE CD ⋅=⋅,只需证EBF DBC ∆∆ ,因为EBF DBC ∠=∠,只要证BE BF BD BC=,即BE BC BF BD ⋅=⋅,联系题目的垂直条件,容易想到射影定理2AB BE BC =⋅,2AB BF BD =⋅,从而思路打通.【证明】由射影定理,有2AB BE BC =⋅,2AB BF BD =⋅,所以BE BC BF BD ⋅=⋅,即BE BF BD BC=,又EBF DBC ∠=∠,所以EBF DBC ∆∆ ,从而EF BE CD BD =,即EF BD BE CD ⋅=⋅.【设计意图】通过例2和例3,使学生进一步熟练应用相似三角形和射影定理、熟悉定理的基本图形,体会结论倒推法分析证明思路的思维方法,提升学生思维能力.(四)课堂小结1、射影定理、歪射影定理及其图形特征,本质上是一种特殊且常见的相似三角形模型;2、平面几何证明思路探寻方法:结论倒推法(执果索因法).【设计意图】通过课堂小结进一步巩固本节课所学所得.。
人教版数学九年级下册27.2.3《相似三角形应用举例》教学设计1

人教版数学九年级下册27.2.3《相似三角形应用举例》教学设计1一. 教材分析人教版数学九年级下册27.2.3《相似三角形应用举例》一节,是在学生学习了相似三角形的性质和判定之后,进一步探讨相似三角形在实际问题中的应用。
通过本节课的学习,使学生了解相似三角形在实际生活中的重要性,提高他们运用数学知识解决实际问题的能力。
二. 学情分析九年级的学生已经掌握了相似三角形的性质和判定,具备了一定的逻辑思维能力和空间想象能力。
但学生在解决实际问题时,往往缺乏将数学知识与实际问题相结合的能力。
因此,在教学过程中,教师需要注重引导学生将所学知识应用于实际问题,提高他们的数学应用能力。
三. 教学目标1.理解相似三角形在实际问题中的应用,提高学生运用数学知识解决实际问题的能力。
2.培养学生的逻辑思维能力和空间想象能力。
3.增强学生对数学学科的兴趣和自信心。
四. 教学重难点1.重点:相似三角形在实际问题中的应用。
2.难点:将实际问题转化为数学问题,运用相似三角形的性质和判定解决实际问题。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究相似三角形在实际问题中的应用。
2.利用多媒体课件辅助教学,直观展示实际问题,提高学生的空间想象能力。
3.采用小组合作学习的方式,培养学生的团队协作能力和沟通能力。
4.注重个体差异,因材施教,使每个学生都能在课堂上得到有效的训练和提高。
六. 教学准备1.准备相关实际问题,用于引导学生运用相似三角形知识解决。
2.准备多媒体课件,展示实际问题及解题过程。
3.准备练习题,巩固所学知识。
七. 教学过程1.导入(5分钟)教师通过展示一些生活中的实际问题,如建筑物的设计、尺子测量等,引导学生思考这些实际问题与数学知识的联系。
从而引出本节课的主题——相似三角形在实际问题中的应用。
2.呈现(10分钟)教师展示一个实际问题:在同一平面内,有两座建筑物,一座高度为30米,另一座高度为18米。
请问,在离这两座建筑物等距离的地点,如何测量出两座建筑物的高度比?教师引导学生分析问题,并提出解决方法:利用相似三角形。
湘教版数学九年级上册3.5《相似三角形的应用》教学设计2

湘教版数学九年级上册3.5《相似三角形的应用》教学设计2一. 教材分析《相似三角形的应用》是湘教版数学九年级上册3.5节的内容。
本节主要让学生掌握相似三角形的性质及应用,进一步培养学生的几何思维能力和解决问题的能力。
教材通过实例引入相似三角形的概念,接着介绍了相似三角形的性质,最后列举了一些应用实例。
二. 学情分析九年级的学生已经学习了三角形的性质、角的计算等基础知识,对几何图形有了一定的认识。
但学生对相似三角形的理解及应用可能还存在一定的困难,因此,在教学过程中,要注重引导学生通过观察、操作、思考、讨论等方法,逐步掌握相似三角形的性质及应用。
三. 教学目标1.理解相似三角形的概念,掌握相似三角形的性质。
2.能够运用相似三角形的性质解决一些实际问题。
3.培养学生的几何思维能力和解决问题的能力。
四. 教学重难点1.相似三角形的概念及性质。
2.相似三角形在实际问题中的应用。
五. 教学方法1.采用问题驱动法,引导学生通过观察、操作、思考、讨论等方式,主动探索相似三角形的性质。
2.运用实例讲解法,让学生在实际问题中体验相似三角形的应用。
3.采用分组合作法,培养学生的团队协作能力。
六. 教学准备1.准备相关教学课件、图片、例题等教学资源。
2.准备教案、学案、作业等教学资料。
3.准备几何画板等教学工具。
七. 教学过程1.导入(5分钟)利用课件展示一些生活中的相似图形,如古建筑的窗花、玩具模型等,引导学生观察并提出问题:“这些图形有什么共同特点?”让学生思考相似图形的性质,从而引出相似三角形的概念。
2.呈现(10分钟)讲解相似三角形的定义及性质,通过举例让学生理解相似三角形的判定方法。
同时,引导学生发现相似三角形在实际问题中的应用,如测量身高、计算物体面积等。
3.操练(10分钟)让学生分组合作,利用几何画板绘制相似三角形,并观察它们的性质。
每组选取一个实例,运用相似三角形的性质解决问题,如计算未知边长、面积等。
初中数学初三数学上册《相似三角形的性质及其应用》教案、教学设计

3.引导学生回顾已学的全等三角形的性质和判定方法,为新课的学习做好铺垫。
4.揭示本节课的主题——相似三角形的性质及其应用,激发学生的学习兴趣。
(二)讲授新知
在这一环节中,我将系统地讲授相似三角形的性质和判定方法:
-以小组为单位,共同完成一道具有挑战性的相似三角形综合应用题,要求小组成员分工合作,共同讨论解题策略。
-每个小组将解题过程和答案进行整理,并在下一节课上进行汇报,分享学习成果。
4.思考与反思:
-结合本节课的学习,反思自己在解决相似三角形问题时遇到的困难和挑战,分析原因,并总结经验教训。
-撰写一篇学习心得,谈谈自己对相似三角形性质及其应用的认识和理解。
4.学会运用相似三角形的性质解决与实际生活相关的问题,如测量物体的高度、求解线段长度等。
(二)过程与方法
1.通过自主探究、合作交流等形式,引导学生主动发现相似三角形的性质及其应用。
2.培养学生运用几何直观和逻辑推理解决问题的能力,提高学生的几何思维能力。
3.引导学生运用类比、归纳等方法,从特殊到一般,发现几何图形的性质,培养学生发现问题和解决问题的能力。
5.预习与拓展:
-预习下一节课要学习的相似多边形的性质及其应用,为新课的学习做好准备。
-探索相似三角形与其他数学分支(如代数、平面几何等)的联系,拓展知识面。
3.培养学生的几何直观和逻辑推理能力,提高学生解决几何问题的策略和方法。
4.激发学生的学习兴趣,增强学生对数学学科的情感态度,提升学生的数学素养。
(二)教学设想
1.创设情境,引入新课
-通过展示实际生活中的相似图形,如建筑物的立面图、摄影中的缩放效果等,引起学生对相似三角形性质的兴趣。
九年级数学上册《相似三角形的应用》教案、教学设计

4.引导学生了解相似变换的概念,掌握相似变换的矩阵表示。
5.通过示例和练习,让学生理解相似三角形在实际问题中的应用。
(三)学生小组讨论
1.将学生分成小组,讨论以下问题:
-相似三角形的判定方法有哪些?
-相似三角形具有哪些性质?如何运用这些性质解决问题?
2.通过讨论,引出相似图形的概念,强:“我们已经学过全等三角形,那么相似三角形与全等三角形有什么联系和区别?”引导学生思考,为新课的学习做好铺垫。
(二)讲授新知
1.讲解相似三角形的定义,强调对应角相等、对应边成比例的特点。
2.介绍相似三角形的判定定理,如AA相似定理、SAS相似定理等,并通过实例进行解释。
(二)过程与方法
1.掌握几何直观和逻辑推理能力,培养学生运用几何知识解决实际问题的能力;
2.培养学生运用数学语言进行表达、交流与合作的能力,提高学生的团队协作意识;
3.引导学生运用类比、归纳等数学思想方法,发现和提出问题,培养创新意识;
4.培养学生自主探究、合作交流的学习方式,提高学生独立解决问题的能力。
-拓展题:运用相似变换解决较为复杂的几何问题。
2.学生完成后,教师进行点评,指出解题过程中的注意事项,纠正错误。
(五)总结归纳
1.教师引导学生回顾本节课所学内容,总结相似三角形的定义、判定定理、性质及相似变换的应用。
2.强调相似三角形在实际问题中的重要作用,鼓励学生在生活中发现和运用相似三角形的原理。
(三)情感态度与价值观
1.培养学生热爱数学,认识到数学在现实生活中的重要作用,增强学生的数学应用意识;
2.培养学生勇于探索、克服困难的精神,增强学生面对挫折的勇气和信心;
九年级数学上册《相似三角形的性质及应用》教案、教学设计

4.培养学生严谨、踏实的学术态度,使其养成良好的学习习惯。
5.通过相似三角形的学习,引导学生体会几何图形的和谐美,提高学生的审美情趣。
二、学情分析
九年级的学生已经具备了一定的几何基础,对三角形的性质、全等三角形的判定和应用有较为深入的了解。在此基础上,学习相似三角形的性质及应用,对学生来说是一个新的挑战。此时,学生正处于抽象逻辑思维逐渐成熟的阶段,对几何图形的观察、分析和解决问题的能力有待提高。因此,在教学过程中,要关注以下几点:
3.实践应用题:鼓励学生从生活中发现相似三角形的应用,拍摄照片或画图,并简要说明相似三角形在其中的作用。例如,建筑物的立面图、桥梁的支撑结构等。这样的作业既有助于学生将所学知识应用于实际,又能激发学生的学习兴趣。
4.小组合作题:布置一道小组合作题目,要求学生在课后分组讨论,共同完成。题目可以涉及相似三角形在实际问题中的应用,如测量距离、计算面积等。通过合作完成作业,培养学生的团队协作能力和沟通表达能力。
5.思考题:提出一些富有挑战性的问题,引导学生深入思考相似三角形的性质及应用。例如:“在相似三角形中,如何求解一个未知角的度数?”这类题目可以激发学生的探究欲望,提高学生的自主学习能力。
作业布置要求:
1.学生在完成作业时,要注意书写规范,保持解答过程的简洁和清晰。
2.鼓励学生在解题过程中尝试不同的方法,培养解题的灵活性和创新意识。
1.学生对相似三角形的概念和性质可能存在理解困难,需要教师耐心引导,通过具体实例和图形演示,帮助学生建立清晰的认识。
2.学生在解决相似三角形相关问题时的思路可能不够开阔,需要教师设计多样化的练习题,引导学生从不同角度思考问题,提高解题技巧。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.采用师生合作教学模式。本节课采用师生合作教学模式,以师生之间、生生之间的全员互动关系为课堂教学的核心,使学生共同达到教学目标。教师要当好“导演”,让学生当好“演员”,从充分尊重学生的潜能和主体地位出发,课堂教学以教师的“导”为前提,以学生的“演”为主体,把较多的课堂时间留给学生,使他们有机会进行独立思考,相互磋商,并发表意见。
好风光好风光恢复供货才
《相似三角形的应用》教学设计
无锡市安镇中学 汪秋莲
【教材分析】
(一)教材的地位和作用
《相似三角形的应用》选自华东师范大学出版社义务教育课程标准实验教科书中数学九年级上册第二十四章。相似与轴对称、平移、旋转一样,也是图形之间的一种变换,生活中存在大量相似的图形,让学生充分感受到数学与现实世界的联系。相似三角形的知识是在全等三角形知识的基础上的拓展和延伸,相似三角形承接全等三角形,从特殊的相等到一般的成比例予以深化。在这之前学生已经学习了相似三角形的定义、判定、性质,这为本节课问题的探究提供了理论的依据。本节内容是相似三角形的有关知识在生产实践中的广泛应用,通过本节课的学习,一方面培养学生解决实际问题的能力,另一方面增强学生对数学知识的不断追求。
5.小强用这样的方法来测量学校教学楼的高度:如图,在地面上放一面镜子(镜子高度忽略不计),他刚好能从镜子中看到教学楼的顶端B,他请同学协助量了镜子与教学楼的距离EA=21米,以及他与镜子的距离CE=2.5米,已知他的眼睛距离地面的高度DC=1.6米,请你帮助小强计算出教学楼的高度。(根据光的反射定律:反射角等于入射角)
(温馨提示:太阳光线是平行线)
(通过对这一问题的顺利解决,一方面促使学生经历从实际问题到建立数学模型的过程,明确通过运用相似三角形的判定定理构造相似三角形和运用相似三角形的性质列出比例式求解来解决这类问题;另一方面,让学生品尝解题成功带来的喜悦,从而提高学习数学的兴趣。)
2.如图,另一同学在某时刻测得1m长的标杆竖直放置时影子长为1.6m,同一时刻测量旗杆的影子长时,因旗杆靠近一栋楼房,影子不全落在地面,有一部分落在墙上,他测得落在地面上的影子长为11.2m,留在墙上的影子高为1m。你能帮他求出旗杆的高度吗?
【教学设计说明】
相似应用最广泛的是测量学中的应用,在实际测量物体的高度、宽度时,关键是要构造和实物所在三角形相似的三角形,而且要能测量已知三角形的各条线段的长,运用相似三角形的性质列出比例式求解。鉴于这一点,我设计整节课围绕测量旗杆高度这个问题展开,通过一个个问题的解决,一方面,促使学生了解测量旗杆高度的方法,从而学会设计利用相似三角形解决问题的方案;另一方面,会构造与实物相似的三角形,通过对实际问题的分析和解决,让学生充分感受到数学与现实世界的联系,教学中既发挥教师的主导作用,又注重凸现学生的主体地位,“以学生活动为中心”构建课堂教学的基本框架,以“探究交流为形式”作为课堂教学的基本模式,以全面发展学生的能力作为根本的教学目标,最大限度地调动学生学习的积极性和主动性。
2.如图,第四位同学把一小镜子放在离旗杆(AB)14米的点E处,然后沿着直线BE后退到点B',这时恰好在镜子里看到旗杆顶端A点。再用皮尺量得B' E=2.8米,观察者目高A' B' =1.6米。这时的旗杆高度是多少?你能解决这个问题吗?(温馨提示:根据光的反射定律:反射角等于入射角。即∠1=∠2)
(进一步深化相似三角形的基本知识,形成“构造相似三角形”的基本技能,并尝试独立地写出完整的解题过程,培养学生严谨的学习态度和良好的学习习惯。)
1.相似三角形的识别方法:
◆的两个三角形相似;
◆的两个三角形相似;
◆的两个三角形相似。
2.相似三角形的性质:
相似三角形的。
(通过对知识的梳理,帮助学生形成自己的知识结构体系,为解决问题储备理论依据。)
二、情境导入
古希腊,有一位伟大的科学家塔列斯。一天,希腊国王阿马西斯对他说:“听说你什么都知道,那就请你测量一下埃及大金字塔的高度吧!”这在当时的条件下是个大难题,因为很难爬到塔顶的。亲爱的同学,你知道塔列斯是怎样测量大金字塔的高度的吗?
1.采用情境教学法。整节课围绕测量旗杆高度这个问题展开,按照从易到难层层推进。在数学教学中,注重创设相关知识的现实问题情景,让学生充分感知“数学来源于生活又服务于生活”。
2.贯彻启发式教学原则。教学的各个环节均从提出问题开始,在师生共同分析、讨论和探究中展开学生的思路,把启发式思想贯穿与教学活动的全过程。
四、思维拓展
如果没有影子,怎样测量旗杆的高度呢?
1.如图,第三位同学与标杆顶端F、旗杆顶端在同一直线上,已知此人眼睛距地面1.5米,标杆为3米,且BC=3米,CD=10米。求旗杆的高度。
(在前面一个题目中,通过教师的引导和点拨,大大激活了学生的思维,打开了学生思绪的闸门,通过这一问题的出示,为学生提供了大展身手的机会。在这里,学生通过动手实践,真正领悟“构造相似三角形”的精髓,亲身体验数学建模的过程,在积极参与的过程中享受探索的乐趣。同时,借助实物投影出示部分学生的解题方法,这样,为学生提供了一个展示成果的平台,从而将课堂气氛推向高潮。)
在学生求出旗杆的高度以后,教师设计两个问题:①能不能把旗杆缩短一点,使它的影子恰好落在地上?②如果把那堵墙拆除,光线照射过来影子落在什么地方?
(通过这一问题的解决,一方面加深学生对“构造相似三角形”的理解和应用,另一方面发散学生思维,促使他们获取更多解决问题的方法。同时,及时总结,比较三种方法,将它们归结为梯形中添加辅助线的两大类型:平移对角线和延长两腰,从而提高学生的认知水平,促使他们获取更多解决问题的策略。)
(数学教学从学生的生活体验和客观存在的事实或现实课题出发,为学生提供较感兴趣的问题情景,帮助学生顺利地进入学习情景。同时,问题是知识、能力的生长点,通过富有实际意义的问题能够激活学生原有认知,促使学生主动地进行探索和思考。)
三、问题探究
1.如图,某同学想测量旗杆的高度,他在某时刻测得1m长的标杆竖直放置时影子长为1.5m,同一时刻测得旗杆的影子长为12m,你能帮他求出旗杆的高度吗?
(二)教学目标
1、。知识与能力:
①了解测量旗杆高度的方法。
②会用相似三角形的知识解决生活实际问题。
2.过程与方法:
经历从实际问题到建立数学模型的过程,发展学生的抽象概括能力。
3.情感、态度与价值观:
①通过利用相似形知识解决生活实际问题,使学生体验数学来源于生活,服务于生活。
②通过对问题的探究,培养学生认真踏实的学习态度和科学严谨的学习方法,通过获得成功的经验和克服困难的经历,增进数学学习的信心。
五、回顾小结
1.现在你知道塔列斯是怎样测量大金字塔的高度了吗?
(前呼后应,让学生解决开头提出的实际问题。通过学生的表述,概括出常见的测量旗杆的方法,并且促使学生体验数学来源于生活又服务于生活。)
(结合图形,教师出示塔列斯测量的方法)
天气晴朗时,塔列斯来到大金字塔旁,在沙地上立起一根棍子,在太阳光的照射下,棍子把影子留在了沙地上,当棍子和他的影子一般长时,塔列斯就把大金字塔的高度测量出来了。
A.3.2m B.4.8m C.5.2m D.5.6m
3.某数学课外实习小组想利用树影测量树高,如图,他们在同一时刻测得一身高为1.5米的同学的影子长为1.35,因大树靠近一栋建筑物,大树的影子不全在地面上,他们测得地面部分的影子长BC=3.6米,墙上影子高CD=1.8米,求树高AB。
4.如图,某测量工作人员与标杆顶端F、电视塔顶端在同一直线上,已知此人眼睛距地面1.6米,标杆为3.2米,且BC=1米,CD=5米,求电视塔的高ED。
2.这节课你有哪些收获?
(落实教师的引导作用以及学生的主体地位,既训练学生的概括归纳能力,又有助于学生在归纳的过程中把所学的知识条理化、系统化。)
六、跟踪练习
1.(2005·陕西)如图,身高1.6m的小华站在距路灯杆5m的C处,测得她在灯光下的影长CD为2.5m,则路灯的高度AB为m.
2.(2005·大连)张华同学的身高为1.6m,某一时刻他在阳光下的影长为2m,与他临近的一棵树的影长为6m,则这棵树的高为()
七、ቤተ መጻሕፍቲ ባይዱ合延伸
(2006·深圳)如图,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,继续往前走2米到达E处时,测得影子EF的长为2米,已知王华的身高是1.5米,求路灯A的高度。
(分梯度的练习,既落实双基又满足不同层次学生的需求,照顾了学生的个体差异,关注了学生的个性发展。同时,练习的内容紧扣教学要求,目的明确,有针对性;练习的设计有层次,有坡度,难易适中。这样。学生在解题的过程中既巩固和深化了所学知识,形成技能,并且享受了解题成功带来的喜悦。)
(三)教学重点、难点和关键
重点:利用相似三角形的知识解决实际问题。
难点:运用相似三角形的判定定理构造相似三角形解决实际问题。
关键:将实际问题转化为数学模型,利用所学的知识来进行解答。
【教法与学法】
(一)教法分析
为了突出教学重点,突破教学难点,按照学生的认知规律和心理特征,在教学过程中,我采用了以下的教学方法:
(二)学法分析
按照学生的认识规律,遵循教师为主导,学生为主体的指导思想,在本节课的学习过程中,采用自主探究、合作交流的学习方式,让学生思考问题、获取知识、掌握方法,运用所学知识解决实际问题,启发学生从书本知识到社会实践,学以致用,力求促使每个学生都在原有的基础上得到有效的发展。
【教学过程】
一、知识梳理