《质点动力学》选择题解答与分析
质点运动学动力学作业解

t = 2h = 2s 10
4.如图所示,质量 m 为 0.1kg 的木块,在一个水平面上 和一个倔强系数k 为 20Nm-1 的轻弹簧碰撞,木块将弹簧
由原长压缩了0.4m。假设木块与水平面间的滑动摩擦系数
µk 为0.25,问在将要发生碰撞时木块的速率 υ 为多少?
动能定理
−
frx −
1 2
kx2
3.一质点从静止(t=0)出发,沿半径 R = 3m 的圆周运动,
切向加速度大小保持不变,为 at = 3ms-2。在t时刻,其
总加速度恰与半径成45°角,此时 t =_______ ,此时,
质点的速度大小为_______,质点的加速度大小为 ______。
解:切向加速度不变
at
=
dυ dt
= 不变
∆E = 0
MgLsin
α
=
1 2
Mυ02
(1)
过垂程 直二x:方发向炮,。则由沿于x爆方炸向产动生量的守作恒用。力很大,重力px
m
α
υ
Mυ0 = mυ cos α (2)
由式(1)、(2)解出 υ = M
2gL sin α
m cos α
四、证明题
一艘正在沿直线行驶的电艇,在发动机关闭后,其加速度 方向与速度方向相反,大小与速度平方成正比,即 dυ = −kυ2
2
3
3
解: υ = (4 + t 2 ) = dx
[C]
dt
dx = (4 + t 2 )dt
x = 4t + 1 t3 + C 3
当t =3s时,质点位于 x = 9m 处 C = 9 − 4× 3 − 1 × 33 = −12 3
01 质点运动学和动力学习题答案

(2)由题知:
������������ ������ ������ = − ������ ������������
������ ������������
������ ������
∫
������0
dt dv A Bv
t
v
dt
dv
0
0 A Bv
t 1 [ln( A Bv) ln A] B
即: v A (1 eBt ) B
(2) v dy A (1 eBt ) dy A (1 eBt )dt
dt B
B
y
dy
t A (1 eBt )dt
(2)������ = |���⃑���| = 2√16������2 + 1
���⃑��� = ���������⃑⃑��� = 8���⃑���
������������
������������
32������
������������ = ������������ = √16������2 + 1
������d������, 1
������0
−
1 ������
=
−
1 2
������������2
������
=
2
2������0 + ������������0������2
4.t=1s
分析:由 an
a ,������
= ������������������, a
v2 R
可得。
质点动力学-参考答案

质点动力学习题参考答案一、选择题1B; 2(1)D,(2)C; 3C; 4B; 5A; 6C; 7B; 8A; 9C; 二.填空题 1、s g μ/参考解:当ma N f mg s s μμ===时不致掉下,则s g a μ/=. 2、R g /;3、 0.2F ;4、220d d )1(t x m kt F =-,)21(200kt t m F -+υ,)6121(3200kt t m F t -+υ;5.、5 m/s ;6、J 12;7、 0,18J ,17J ,7J ;8、882J ; 三.计算题 1. 解:解法一设船和人相对于岸的速度分别为V 和υ,船和人相对于岸移动的距离分别为x 和y 。
由动量守恒定律 0=+υm MV 上式对时间积分0d d 0=+⎰⎰ttt m t MV υ得 0=+my Mx (1) 由题意可知 L y x =- (2)式中 L 为船头到船尾的长度。
由(1)、(2)解得()m L m M m x 2.16.35010050=⨯+=+=解法二人走动过程中,人和船的质心位置不变。
m M my Mx m M my Mx ++=++11000)()(0101=-+-y y m x x M0)(=-+d l m Md()m l m M m d 2.16.35010050=⨯+=+=2. 解:设小球和圆弧形槽的速度分别为1υ和2υ(1)由动量守恒定律 021=+υυM m 由机械能守恒定律 mgR M m =+22212121υυ 由上面两式解得()MM m gRMM m MgR+=+=221υ()MM m gRm+-=22υ(2)小球相对槽的速度为()MM m gRm M +-=-=2)(21υυυ竖直方向应用牛顿运动第二定律Rmmg N 2υ=-()Mgm mg M M m mg m M mg R m mg N N 222232)(+=+-+=+=='υ3. 解:人受力如图(1) 图2分 a m g m N T 112=-+ 1分 底板受力如图(2) 图2分 a m g m N T T 2221=-'-+ 2分212T T = 1分N N ='由以上四式可解得 a m m g m g m T )(421212+=--∴ 5.2474/))((212=++=a g m m T N 1分5.412)(21=-+=='T a g m N N N 1分4. 解:小石子落下h 后的速度为 s m gh /8.92==υ小石子入盒前后应用动量定理p t F d d =⋅,tN m t p F d d d d υ==式中N d 为t d 时间内入盒的石子数 因n tN=d d ,所以()N m n F 6.198.902.0100=⨯⨯=⋅=υ图(1)a ϖ图(2)ϖ gm 1t 秒时盒内的石子质量为m t n M ⋅⋅= t 秒时秤的读数为)(6.2156.198.91002.0100N F g m t n F Mg Q =+⨯⨯⨯=+⋅⋅⋅=+=5. 解:第一阶段:子弹射入到相对静止于物块A 。
质点动力学习题解答2

作业04(质点动力学2)1. 质量为m 、速度大小为V 的质点受到某个力作用后,其速度的大小未变,但方向改变了θ,则这个力的冲量大小为[ ]。
A.)2/cos(2θmvB. )2/sin(2θmvC. )2/cos(θmvD. )2/sin(θmv 答:[B ]解:如图,由动量定理,冲量等于动量的变化 im v j m v i m v i m v j m v i m v v m v m v m I -+=-+=-=∆=θθθθsin cos sin cos /// 冲量的大小为 )2/s i n (2c o s 22s i n )c o s (222θθθθv m mv v v v m I I =-=+-==2. 一质量为kg m 60=的人静止站在一条质量为kg M 300=、且正以12-⋅=s m V 的速率向湖岸驶进的小木船上,湖水是静止的,其阻力不计。
现在人相对于船以一水平速度v 沿船的前进方向向河岸跳去,该人起跳后,船速减为原来的一半,v 应该是[ ]A. 12-⋅s mB. 13-⋅s mC. 15-⋅s mD. 16-⋅s m答:[C ]解:以地面为参考系。
人与船为系统。
人相对于地面的起跳速度为v V +,起跳后,船向岸边运动的速度为2/V ;原来人与船以水平速度V 一起向岸边运动。
水平方向不受外力 V M m MV v V m )(21)(+=++,)(5602230022-⋅=⨯⨯==s m m MV v 也可以原船为参考系(也是惯性系),人与船为系统。
人相对于原船的起跳速度为v ,起跳后,船相对于原船的运动速度为2/V -;在原船参考系中,起跳前,人与船静止。
水平方向不受外力,由动量守恒,得到VM mv 210-=,)(5602230022-⋅=⨯⨯==s m m MV v 3. 下列叙述中正确的是[ ]A. 质点的动量不变,则动能也不变。
B 质点的动能不变,则动量也不变C. 质点的动量变化,则动能也一定变化。
大学物理第2章 质点动力学习题(含解答)

第2章质点动力学习题解答2-1如图所示,电梯作加速度大小为a 运动。
物体质量为m ,弹簧的弹性系数为k ,•求图示三种情况下物体所受的电梯支持力(图a 、b )及电梯所受的弹簧对其拉力(图c )。
解:(a )ma mg N =-)(a g m N +=(b )ma N mg =-)(a g m N -=(c )ma mg F =-)(a g m F +=2-2如图所示,质量为10kg 物体,•所受拉力为变力2132+=t F (SI ),0=t 时物体静止。
该物体与地面的静摩擦系数为20.0=s μ,滑动摩擦系数为10.0=μ,取10=g m/s 2,求1=t s 时,物体的速度和加速度。
解:最大静摩擦力)(20max N mg f s ==μmax f F >,0=t 时物体开始运动。
ma mg F =-μ,1.13.02+=-=t mmgF a μ 1=t s 时,)/(4.12s m a =dtdv a =,adt dv =,⎰⎰+=t v dt t dv 0201.13.0t t v 1.11.03+=1=t s 时,)/(2.1s m v =2-3一质点质量为2.0kg ,在O x y 平面内运动,•其所受合力j t i t F 232+=(SI ),0=t 时,速度j v 20=(SI ),位矢i r20=。
求:(1)1=t s 时,质点加速度的大小及方向;(2)1=t s时质点的速度和位矢。
解:j t i t m Fa+==223 223t a x =,00=x v ,20=x ⎰⎰=t v x dt t dv x 0223,23t v x =⎰⎰⎰==txtx dt t dt v dx 03202,284+=t xt a y =,20=y v ,00=y⎰⎰=tv y tdt dv y02,222+=t v y⎰⎰⎰+==tyty dt t dt v dy 020)22(,t t y 263+=(1)1=t s 时,)/(232s m j i a +=(2)j t i t v )22(223++=,1=t s 时,j i v2521+= j t t i t r )26()28(34+++=,1=t s 时,j i r613817+=2-4质量为m 的子弹以速度0v 水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为k ,忽略子弹的重力,求:(1)子弹射入沙土后,速度随时间变化的关系;(2)子弹射入沙土的最大深度。
质点动力学答案

第2章-质点动力学答案(总6页) --本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--2015-2016(2)大学物理A (1)第二次作业第二章 质点动力学答案[ A ] 1、【基础训练1 】 一根细绳跨过一光滑的定滑轮,一端挂一质量为M 的物体,另一端被人用双手拉着,人的质量M m 21=.若人相对于绳以加速度a 0向上爬,则人相对于地面的加速度(以竖直向上为正)是 (A) 3/)2(0g a +. (B) )3(0a g --.(C) 3/)2(0g a +-. (D) 0a [解答]:()()()()00000(),/3,2/3Mg T Ma T mg m a a M m g M m a ma a g a a a g a -=-=+-=++=-∴+=+ [ D ]2、【基础训练3】 图示系统置于以g a 21=的加速度上升的升降机内,A 、B 两物体质量相同均为m ,A 所在的桌面是水平的,绳子和定滑轮质量均不计,若忽略滑轮轴上和桌面上的摩擦并不计空气阻力,则绳中张力为 (A) mg . (B) m g 21.(C) 2mg . (D) 3mg / 4.[解答]: 设绳的张力为T ,F 惯=mamg −T +ma =ma‘,T =ma’,mg +mg /2=2ma’. 所以 a’=3g/4, T=3mg/4[ B ] 3、【基础训练5】 光滑的水平桌面上放有两块相互接触的滑块,质量分别为m 1和m 2,且m 1<m 2.今对两滑块施加相同的水平作用力,如图所示.设在运动过程中,两滑块不离开,则两滑块之间的相互作用力N 应有BA a(A) N =0. (B) 0 < N < F.(C) F < N <2F. (D) N > 2F.[解答]:2F=(m 1+m 2)a, F+N=m 2a, 所以:2N=(-m 1+m 2)a=2F(-m 1+m 2)/ (m 1+m 2)N=F(-m 1+m 2)/ (m 1+m 2) 0 < N < F.[ C ] 4、【自测1】 在升降机天花板上拴有轻绳,其下端系一重物,当升降机以加速度a 1上升时,绳中的张力正好等于绳子所能承受的最大张力的一半,问升降机以多大加速度上升时,绳子刚好被拉断 (A) 2a 1. (B) 2(a 1+g ).(C) 2a 1+g . (D) a 1+g . [解答]: 适合用非惯性系做。
《质点动力学》选择题解答与分析

2 质点力学的运动定律 守恒定律 2.1直线运动中的牛顿运动定律1. 水平地面上放一物体A ,它与地面间的滑动摩擦系数为μ.现加一恒力F如图所示.欲使物体A 有最大加速度,则恒力F与水平方向夹角θ 应满足 (A) sin θ =μ. (B) cos θ =μ.(C) tg θ =μ. (D) ctg θ =μ.答案: (C)参考解答:按牛顿定律水平方向列方程:,)sin (cos a m F g m F A A =--μθθ显然加速度a 可以看作θ 的函数,用高等数学求极值的方法, 令,0d d =θa,有.μθ=tg 分支程序:凡选择回答错误的,均给出下面的进一步讨论:1.一质量为m 的木块,放在木板上,当木板与水平面间的夹角θ由00变化到090的过程中,画出木块与木板之间摩擦力f 随θ变化的曲线(设θ角变化过程中,摩擦系数μ不变).在图上标出木块开始滑动时,木板与水平面间的夹角θ0 ,并指出θ0与摩擦系数μ的关系.(A) 图(B)正确,sin θ0 =μ. (B) 图(A)正确,tg θ 0=μ.答案: (B)参考解答:(1) 当θ较小时,木块静止在木板上,静摩擦力;sin θmg f =(正确画出θ为0到θ 0之间的f -θ 曲线)(2) 当θ=θ 0时 (tg θ 0=μ),木块开始滑动; (3) 0θθ>时,滑动摩擦力,cos θμmg f =(正确画出θ为θ 0到90°之间的f -θ曲线) .F θA2.2曲线运动中的牛顿运动定律1. 如图所示,假设物体沿着竖直面上圆弧形轨道下滑,轨道是光滑的,在从A 至C 的下滑过程中,下面哪个说法是正确的?(A) 它的加速度大小不变,方向永远指向圆心. (B) 它的速率均匀增加. (C) 它的合外力大小变化,方向永远指向圆心. (D) 它的合外力大小不变. (E) 轨道支持力的大小不断增加. 答案: (E)参考解答:根据牛顿定律法向与切向分量公式:.dtd ,2υυm F R m F t n == .cos ,sin θθmg F mg N F t n =-= 物体做变速圆周运动,从A 至C 的下滑过程中速度增大,法向加速度增大。
第2章 质点动力学 习题答案

2-8. 长为l的轻绳,一端固定,另一端系一质量为m的小 长为 的轻绳,一端固定,另一端系一质量为 的小 的轻绳 开始运动, 球,使小球从悬挂着的位置以水平初速度 v 0 开始运动, 求小球沿逆时针转过 解:法向方程 角度时的角速度和绳子张力。 角度时的角速度和绳子张力。 θ
T − mg cos θ = m ω 2 l m v + 2 gl (cos θ − 1) = l
r2
r
2
,求电子从 r1 运动到 r2 ( r1 > r2 )
r1
r r r2 k 1 1 f ⋅dr = − ∫ 2 dr = k − r r r1 r 2 1
2-14. 质量为 m = 2 × 10 −3 kg的子弹,在枪筒中前进时受到 的子弹, 的合力为 F = 400 − 300m/s,试计算枪筒的长度。 ,试计算枪筒的长度。 解:设枪筒的长度为
其速度是? 其速度是?
r 2-3. 一物体质量为 一物体质量为10kg,受方向不变的力 F = 30 + 40t ,
的作用,在开始的 内 此力的冲量大小为? 的作用,在开始的2s内,此力的冲量大小为?若物体的 方向与力同向,则在2s末物体 初速度大小为 10 m ⋅ s ,方向与力同向,则在 末物体 速度的大小等于? 速度的大小等于?
r r 2-2. 一质量为 一质量为10kg的物体在力 f = (120t + 40) i 作用 的物体在力 r r v0 = 6i m ⋅ s −1 ,则t=3时 轴运动, 时其速度 下,沿x轴运动,t=0时其速度 轴运动 时
r r r r f (120t + 40)i = = (12t + 4) i 解:a = m 10 r r r t r t r 2 v = ∫ adt = ∫ (12t + 4) i dt =(6t + 4t ) i + v0 0 0 r = ( 6t 2 + 4t + 6) i r r v ( 3) = 72i m ⋅ s −1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 质点力学的运动定律守恒定律2.1直线运动中的牛顿运动定律1. 水平地面上放一物体A,它与地面间的滑动摩擦系数为μ.现加一恒力Fϖ如图所示.欲使物体A有最大加速度,则恒力Fϖ与水平方向夹角θ 应满足(A) sinθ =μ.(B) cosθ =μ.(C) tgθ =μ.(D) ctgθ =μ.答案:(C)参考解答:按牛顿定律水平方向列方程:,)sin(cos amFgmFAA=--μθθ显然加速度a可以看作θ的函数,用高等数学求极值的方法,令,0dd=θa,有.μθ=tg分支程序:凡选择回答错误的,均给出下面的进一步讨论:1.一质量为m的木块,放在木板上,当木板与水平面间的夹角θ由00变化到090的过程中,画出木块与木板之间摩擦力f随θ变化的曲线(设θ角变化过程中,摩擦系数μ不变).在图上标出木块开始滑动时,木板与水平面间的夹角θ0,并指出θ0与摩擦系数μ的关系.(A) 图(B)正确,sinθ0 =μ.(B) 图(A)正确,tgθ 0=μ.答案:(B)参考解答:(1) 当θ较小时,木块静止在木板上,静摩擦力;sinθmgf=(正确画出θ为0到θ 0之间的f-θ 曲线)(2) 当θ=θ 0时(tgθ 0=μ),木块开始滑动;FθA(3) 0θθ>时,滑动摩擦力,cos θμmg f =(正确画出θ为θ 0到90°之间的f -θ曲线) .2.2曲线运动中的牛顿运动定律1. 如图所示,假设物体沿着竖直面上圆弧形轨道下滑,轨道是光滑的,在从A 至C 的下滑过程中,下面哪个说法是正确的?(A) 它的加速度大小不变,方向永远指向圆心.(B) 它的速率均匀增加.(C) 它的合外力大小变化,方向永远指向圆心.(D) 它的合外力大小不变.(E) 轨道支持力的大小不断增加.答案: (E)参考解答:根据牛顿定律法向与切向分量公式:.dtd ,2υυm F R m F t n == .cos ,sin θθmg F mg N F t n =-= 物体做变速圆周运动,从A 至C 的下滑过程中速度增大,法向加速度增大。
由轨道支持力提供的向心力增大。
凡选择回答错误的,均给出下面的进一步讨论:1.1质点作圆周运动时,所受的合外力一定指向圆心.这种说法(A) 正确. (B) 不正确.答案: (E)参考解答:作圆周运动的质点,所受合外力有两个分量,一个是指向圆心的法向分量,另一个是切向分量,只要质点不是作匀速率圆周运动,它的切向分量就不为零,所受合外力就不指向圆心.2.3动量与动量守恒1. 用一根细线吊一重物,重物质量为5kg ,重物下面再系一根同样的细线,细线只能经受70N 的拉力.现在突然向下拉一下下面的线.设力最大值为50N ,则(A)下面的线先断. (B)上面的线先断.A O θC(C)两根线一起断. (D)两根线都不断.答案: (D)参考解答:由于作用时间短,对上端细线影响可以忽略,突然向下拉力最大值为50 N<70 N(细线能经受的拉力),下面的线不会断,故两根线都不断。
凡选择回答错误的,均给出下面的进一步讨论:1.1用细线把球挂起来,球下系一同样的细线,拉球下细线,逐渐加大力量,哪段细线先断?为什么?如用较大力量突然拉球下细线,哪段细线先断,为什么?参考解答:拉球下细线逐渐加大力量时,上面那段细线先断;突然拉球下细线时,下面那段细线先断。
因为,两种情况都应引起系统动量改变,但前一种情况作用时间长,冲量较大(t F ∆⋅ϖ),引起系统动量变化大,故细线和球同时被拉下;后一种情况由于作用时间短,故冲力很大,冲力大于绳子张力,故细线立即被拉断.2.4角动量与角动量守恒1. 一质点作匀速率圆周运动时,(A) 它的动量不变,对圆心的角动量也不变.(B) 它的动量不变,对圆心的角动量不断改变.(C) 它的动量不断改变,对圆心的角动量不变.(D) 它的动量不断改变,对圆心的角动量也不断改变.答案: (C)参考解答:动量是矢量,方向与速度方向相同;角动量也是矢量,方向与角速度ω方向相同。
而动量守恒与角动量守恒都是矢量守恒,是指其大小与方向均保持不变。
如图所示:质点作匀速率圆周运动时,速度方向变化,但角速度方向不变;另外,质点角动量定理:,v ϖϖϖϖϖm r P r L ⨯=⨯=匀速率圆周运动时:ω2mR R m L ==v ,角动量的大小也不变。
所以一质点作匀速率圆周运动时,它的动量不断改变,对圆心的角动量不变。
凡选择回答错误的,均给出下面的进一步讨论:1.1 在匀速圆周运动中,质点的动量是否守恒?角动量呢?(A) 动量不守恒,角动量守恒. (B) 动量守恒,角动量不守恒.答案: (A)参考解答:在匀速圆周运动中,质点受力、动量不守恒,但对于中心轴,质点所受合力矩为零,角动量守恒.如果继续回答错误的,给出下面的进一步讨论:1.1.1 一个系统的动量守恒和角动量守恒的条件有何不同?答:动量守恒定律为:系统所受的合外力为零时,系统的总动量不变。
角动量守恒定律为:对于某定点(或某轴),系统所受的合外力矩为零时,则对同一定点(或同一轴),系统的总角动量不变。
总结上述两定律,可知系统动量守恒的条件是 0=∑i i F 外ϖ角动量守恒的条件是 0=∑i i M 外ϖ要注意的是,系统的合外力为零时,其合外力矩不一定为零;反之,系统的合外力矩为零时,其合外力也不一定为零。
条件不同,所对应的守恒量自然就不相同。
2. 体重、身高相同的甲乙两人,分别用双手握住跨过无摩擦轻滑轮的绳子各一端.他们从同一高度由初速为零向上爬,经过一定时间,甲相对绳子的速率是乙相对绳子速率的两倍,则到达顶点的情况是(A)甲先到达. (B)乙先到达.(C)同时到达. (D)谁先到达不能确定.答案: (C)参考解答:同时到达。
若重量不等,较轻者先到达.以滑轮轴为参考点,把小孩, 滑轮和绳看作一系统,合外力矩为零,系统角动量守恒.设两小孩质量分别是m 1、m 2,当m 1= m 2时,由 R m R m 2211v v =,得 21v v =. 同时到达.若m 1与m 2不等,合外力矩不为零,由角动量定理可以解出:若重量不等,较轻者先到达.凡选择回答错误的,均给出下面的进一步讨论:2.1如何理解质点系角动量定理和角动量守恒定律?O v t t 1 t 2 t 3 t 4参考解答:在实际物体的运动中,存在大量的旋转运动,即对某一位置的绕行运动。
例如质点作圆周运动和行星绕太阳的运动;原子中电子绕原子核的运动等。
对于旋转运动,可引入一个称之为角动量的物理量L ϖ。
质点对某一参考点的角动量定义为 v ϖϖϖϖϖm r P r L ⨯=⨯= r ϖ是质点相对于参考点的位置矢量,P ϖ为质点动量。
如图所示,角动量又称动量矩。
圆周运动时,由于v ϖϖ⊥r ,质点对圆心的角动量大小为R m m L v vr == )(R r =质点系角动量(或动量矩)定理(微分形式):质点系统合外力矩等于系统总角动量对时间的变化率。
即td d L M ϖϖ=. 质点系角动量(或动量矩)定理(积分形式):质点系统合外力矩的冲量矩等于系统总角动量(或总动量矩)的增量。
即⎰∆=21t d t t L M ϖϖ 如果质点系统合外力矩等于零,则系统总角动量(或称总动量矩)守恒。
这一结论称为质点系角动量守恒定律。
即使M 不为零,质点系总角动量不守恒,但若M 在某方向的分量为零,则质点系在该方向的角动量仍然守恒。
2.5动能定理、功能原理1. 一个作直线运动的物体,其速度v 与时间t 的关系曲线如图所示.设时刻t 1至t 2间外力作功为W 1 ;时刻t 2至t 3间外力作功为W 2 ;时刻t 3至t 4间外力作功为W 3 ,则(A) W 1>0,W 2<0,W 3<0.(B) W 1>0,W 2<0,W 3>0. (C) W 1=0,W 2<0,W 3>0.(D) W 1=0,W 2<0,W 3<0答案: (C)参考解答:根据动能定理:,2121d 2122v v m m x F W -==⎰ t 1至t 2间物体速度不变,外力作功W 1=0,t 2至t 3间物体速度减小,外力作功W 2<0,时刻t 3至t 4间物体速度(绝对值)增大,外力作功W 3>0。
凡选择回答错误的,均给出下面的进一步讨论:1.1 当重物加速下降时,合外力对它做的功(A)为正值. (B)为负值.答案: (A)参考解答:根据动能定理:,d k E x F W ∆==⎰ .0,0>∴>∆W E k Θ2. 对于一个物体系来说,在下列的哪种情况下系统的机械能守恒?(A) 合外力为0.(B) 合外力不作功.(C) 外力和非保守内力都不作功.(D) 外力和保守内力都不作功.答案: (C)参考解答:根据功能原理:))001111ip ni ik ip n i n i n i ik i i E E E E A A +-+=+∑∑∑∑====((内非外 其中)(ik iip E E +∑表示动能与势能的总和,称为机械能。
一切外力和所有非保守内力作功的代数和等于系统机械能的增量。
对于本题外力和非保守内力都不作功,当然有系统的机械能守恒。
凡选择回答错误的,均给出下面的进一步讨论:2.1请写出质点系的机械能守恒的条件.参考解答:机械能守恒条件:外力对质点系做的功和系统内非保守内力做的功分别为零或其和为零.2.6 机械能守恒定律1. 对质点组有以下几种说法:(1) 质点组总动量的改变与内力无关.(2) 质点组总动能的改变与内力无关.(3) 质点组机械能的改变与保守内力无关.在上述说法中:(A) 只有(1)是正确的.(B) (1)、(3)是正确的.(C) (1)、(2)是正确的.(D) (2)、(3)是正确的.答案:(B)参考解答:由质点组动量定理:n个质点组成的力学系统所受合外力的冲量等于系统总动量的增量;和由功能原理:系统外力与非保守内力作功之和等于系统机械能的增量;所以质点组总动量的改变与内力无关,质点组机械能的改变与保守内力无关。
凡选择回答错误的,均给出下面的进一步讨论:1.1请分别写出质点系的动量守恒、动能守恒和机械能守恒的条件.参考解答:动量守恒条件:质点系所受的合外力为零.动能守恒条件:外力和内力对质点系的各质点做的功之和为零.机械能守恒条件:外力对质点系做的功和系统内非保守内力做的功分别为零或其和为零.2. 关于机械能守恒条件和动量守恒条件有以下几种说法,其中正确的是(A) 不受外力作用的系统,其动量和机械能必然同时守恒.(B) 所受合外力为零,内力都是保守力的系统,其机械能必然守恒.(C) 不受外力,而内力都是保守力的系统,其动量和机械能必然同时守恒.(D)外力对一个系统做的功为零,则该系统的机械能和动量必然同时守恒.答案:(C)参考解答:当系统不受外力或所受合外力为零时,系统的总动量保持不变. 这就是动量守恒定律;当外力对系统所作的总功和系统内成对非保守内力的总功之和恒为零时,系统在此过程中机械能守恒。