透明氟氧化物玻璃陶瓷研究进展

合集下载

激光玻璃陶瓷的研究进展

激光玻璃陶瓷的研究进展
氟化物 晶粒而制 得 的玻璃 陶瓷 。由于氟化 物具有极 低的声子 能量 ,而氧化物 玻璃基 质具有优异 的机械 性 能和稳 定的化 学性能 ,两者 的结 合物将极有 可能
晚 ,但 已歼发出 了多 种拥有 自t知识 产权 的玻 璃 陶 瓷激 光材料 ,进一 步加大 了研 究力度 ,使我 囝 的激 光玻璃 陶瓷有望 与世界先进水平 同步甚至领 先 j
质 的区别更为 明显 ,有利 于更 镇层 次 的理 论研 究和
第1 期
总第2 0 2 期
光 的转 换 ,而这种 由近 红外 激光器抽 运 产生 的可见
光 对 大容量 数据存 储光 学器 件 的发展 意 义巨大 ,因
而引发 了国际各研 究机 构 的广泛兴趣 ,并 形成 了一 股 研究 热潮 。鉴 于半导 体激 光器 的迅速 发展和 商 品 化 ,上转换 激光玻 璃 陶瓷通 过选择合 适 的掺杂 粒子 可与 这种半 导体激 光器 很好 地耦合 ,实 现近红 外到 白、红 、绿 、蓝 、紫 等宽波 上范 围 内的激光转 换 , 能获 得高峰 值功 率和 波长可 调 的激 光输 出 。这 一性 能 可 在 光 盘技 术 、信 息 技 术 、彩 色 显示 、彩 色打
光器 等 )玻璃陶瓷可望取代单 品和玻璃 。
从 现有公 开报道 的资料看 ,目前各 国激光玻璃
陶瓷 均 处 于 理 论 研 究 和 实 验 室 研 究 阶 段 ,真 正 应 用 于 实 践 的 还 不 多 。我 的玻 璃 陶 瓷 研 究 虽 然 起 步 较
( 2)氟氧化物玻璃陶瓷 氟氧化 物玻璃 陶瓷是在 氧化物基质玻 璃 中析 出
印 、三维显 示器 、生 物 医学 诊断 和水下 通讯等 方 面 得到广泛 应用 。
( 光 纤 放 大 器 2)

2024年透明陶瓷市场发展现状

2024年透明陶瓷市场发展现状

透明陶瓷市场发展现状1. 前言透明陶瓷是一种具有高透明度和优异物理化学性能的陶瓷材料。

随着科技的发展和需求的增加,透明陶瓷市场逐渐展现出可观的潜力。

本文将对透明陶瓷市场的发展现状进行详细分析。

2. 透明陶瓷的定义与特点透明陶瓷是指具有高透明度的陶瓷材料,其主要成分为氧化物、氮化物或氧化硼等无机化合物。

透明陶瓷具有以下特点:•高透明度:透明陶瓷的透光率远高于传统玻璃材料,可达到90%以上。

•优异物理化学性能:透明陶瓷具有高硬度、高抗压强度、耐磨损、耐腐蚀等特点。

•耐高温性能:透明陶瓷可在高温环境下保持稳定的物理和化学性质。

•广泛应用领域:透明陶瓷的应用领域包括光学、电子、航空航天、医疗器械等。

3. 透明陶瓷市场发展情况3.1 市场规模透明陶瓷市场在过去几年呈现出快速增长的趋势。

根据市场研究报告,全球透明陶瓷市场规模从2016年的10亿美元增长到2021年的20亿美元,年均增长率达到10%以上。

3.2 透明陶瓷的应用领域目前,透明陶瓷的主要应用领域包括光学、电子、航空航天和医疗器械等。

•光学应用:透明陶瓷在光学领域有广泛应用,如激光器、光纤通信、光学器件等。

•电子应用:透明陶瓷在电子领域的应用主要包括电子器件的封装、电子陶瓷绝缘体等。

•航空航天应用:透明陶瓷在航空航天行业有重要应用,如航天器窗口、导弹头等。

•医疗器械应用:透明陶瓷在医疗器械领域的应用涵盖诊断设备、人工关节等。

3.3 市场发展驱动因素透明陶瓷市场的快速发展离不开以下几个主要驱动因素:•新技术的突破:透明陶瓷制备技术的不断创新和改进推动了产品质量的提高和成本的降低。

•产业升级需求:在光学、电子等行业快速发展的背景下,对高性能材料的需求不断增加,推动了透明陶瓷市场的扩大。

•政策支持与投资增加:各国政府对新材料产业的支持力度加大,吸引了更多的投资进入透明陶瓷领域。

4. 市场竞争态势与前景展望目前,透明陶瓷市场主要由少数几家企业垄断,市场竞争相对激烈。

利用Judd-Ofelt理论研究氟氧化物玻璃陶瓷

利用Judd-Ofelt理论研究氟氧化物玻璃陶瓷

Judd-Ofelt理论的简介
三价自由稀土离子的4fN组态的电子波函数具有相同的宇称, 电偶极跃迁是宇称禁戒的,没有电偶极辐射和吸收。而当三价 稀土离子掺入晶体后看到了发光现象,并且实验上发现4fN组 态的跃迁多数是电偶极跃迁。 Laurence Radiation 实验室的B.R.Judd和Johns Hopkins 大学 B.R.Judd Johns 的G.S.Ofelt分别独立地在理论上解释了这一现象,他们假定由 于某种非中心对称的作用使4fN组态的态和具有相反宇称的态 混杂,从而产生电偶极跃迁,并且导出了4fN组态电偶极跃迁 强度的表达式。他们的理论具有异曲同工之处,所以后来被称 为Judd-Ofelt理论或J-O理论,用于对实际稀土发光体进行定量 计算。实践证明,J-O理论是目前唯一能在一定精度内(误差 10%-15%)定量计算稀土离子发光强度的理论方法。
利用Judd-Ofelt理论计算光谱参量
自发跃迁几率AJJ’和能级辐射寿命τ 自发跃迁几率AJJ’和能级辐射寿命计算公式分别如 下: 64π e ν n(n + 2) A = ⋅ S
4 2 3 2 2 JJ '
3h(2 J + 1)
9
JJ '
τ = 1 A (αJ ) T
自发辐射几率随Ω6减小而减小,能级辐射寿命随 Ω6减小而增大。而能级寿命越长越容易在上能级 形成更多的粒子布居数,越容易形成粒子数反转, 这是产生激光的必备条件。
晶场参数Ωλ
晶场参数Ωλ从宏观上描述材料的物化特性: Ω2表示共价键的数量。与玻璃基质的对称性有关,对 玻璃成分的变化最敏感。反映了基质玻璃结构的配位对 称性和有序性。Ω2越大,玻璃的共价性越强,反之, 离子性越强。 Ω4受玻璃键性和结构对称性影响较小,它主要受玻璃 的酸碱度影响。 Ω6与基质的刚性有关,且刚性越好,Ω6值越小。Ω6决 定自发辐射跃迁几率AJJ’和能级辐射寿命τ,Ω6越小自 发辐射跃迁几率AJJ’越小,辐射寿命越大。

【国家自然科学基金】_氟氧化物玻璃_基金支持热词逐年推荐_【万方软件创新助手】_20140801

【国家自然科学基金】_氟氧化物玻璃_基金支持热词逐年推荐_【万方软件创新助手】_20140801

科研热词 氟氧化物玻璃 能量传递 高lu-gd 闪烁玻璃 量子剪裁 tb3+掺杂 j-o理论 i-h理论模型 ho3+ dexter理论
推荐指数 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2014年 序号 1 2 3 4 5
2014年 科研热词 能量传递 玻璃陶瓷 下转换 上转换 er3+/yb3+ 推荐指数 1 1 1 1 1
科研热词 推荐指数 微晶玻璃 2 蓝色上转换荧光 1 荧光光谱 1 能量传递 1 稀土红外一级和二级量子剪裁 1 温度 1 氟氧化物玻璃陶瓷 1 氟氧化物微晶玻璃 1 材料 1 太阳能电池 1 外量子效率 1 吸收光谱 1 光谱参数 1 上转换 1 tm3 1
2013年 序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
推荐指数 3 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1
2010年 序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
科研热词 推荐指数 玻璃陶瓷 2 上转换 2 锗酸盐氟氧化物玻璃 1 量子剪裁 1 能量转移 1 能量传递 1 纳米材料 1 纳米晶体 1 红外量子剪裁现象 1 红外发射光谱 1 白光发射 1 玻璃陶瓷材料 1 激发过程 1 氟氧化物玻璃陶瓷 1 方波激发 1 改进 1 掺镱 1 掺铒的纳米相氟氧化物玻璃陶瓷 1 太阳能电池 1 国际照明委员会 1 上转换发光 1 yb3+ 1 tm~(3+)和ho~(3+)双掺 1 tm3+/yb3+ 1 tm 1 er~(3+) 1 er3+ 1

陶瓷材料论文

陶瓷材料论文

透明陶瓷的研究现状与发展展望摘要:透明陶瓷以其优异的综合性能已成为一种新型的、备受瞩目的功能材料。

综述了透明陶瓷的分类,探讨了透明陶瓷的制备工艺,并展望了透明陶的应用前景。

关键词:透明陶瓷透光性制备工艺应用前言:自1962年R.L.Coble首次报导成功地制备了透明氧化铝陶瓷材料以来,为陶瓷材料开辟了新的应用领域。

这种材料不仅具有较好的透明性,且耐腐蚀,能在高温高压下工作,还有许多其他材料无可比拟的性质,如强度高、介电性能优良、低电导率、高热导性等,所以逐渐在照明技术、光学、特种仪器制造、无线电子技术及高温技术等领域获得日益广泛的应用〔1〕。

近38年来,世界上许多国家,尤其是美国、日本、英国、俄罗斯、法国等对透明陶瓷材料作了大量的研究工作,先后开发出了Al2O3、Y2O3、MgO、CaO、TiO2、ThO2、ZrO2等氧化物透明陶瓷以及AlN、ZnS、ZnSe、MgF2、CaF2等非氧化物透明陶瓷.透明陶瓷的分类透明陶瓷材料主要分为氧化物透明陶瓷和非氧化物透明陶瓷两类。

1氧化物透明陶瓷对氧化物透明陶瓷的研究早于对非氧化物透明陶瓷的究,其制备工艺也相对成熟。

到目前为止,已经先后研发出了多种材料:Be()、ScZ()3、Ti认、ZK):、Ca(〕、Th(矢、A12()3仁5·6〕、Mg()、AI()NL,」、YZ03[8·”〕、稀土元素氧化物、忆铝石榴石(3Y203·SA12()。

)仁’0,”】、铝镁尖晶石(Mg()·A一2()。

)〔’2,’3]和透明铁电陶瓷pLZ子川等。

其中AiZ姚、M四、YZ姚以及忆铝石榴石以其自身优异的综合性能,现已经得到广泛的应用。

2非氧化物透明陶瓷对非氧化物透明陶瓷的研究是从20世纪80年代开始的。

非氧化物透明陶瓷的制备比氧化物透明陶瓷的制备要困难得多,这是由于非氧化物透明陶瓷具有较低的烧结活性、自身含有过多的杂质元素(如氧等),这些都成为制约非氧化物透明陶瓷实现成功烧结并得到广泛应用的主要因素。

氟氧化物玻璃陶瓷中铒激活中心的双光子三光子与四光子近红外量子剪裁发光

氟氧化物玻璃陶瓷中铒激活中心的双光子三光子与四光子近红外量子剪裁发光

氟氧化物玻璃陶瓷中铒激活中心的双光子三光子与四光子近红外量子剪裁发光陈晓波;林伟;陈鸾;胡丽丽;李崧;郭敬华;周固;樊婷婷;于春雷;郑东;赵国营;陶京富【摘要】Two-photon,three-photon,and four-photon near-infrared quantum cutting luminescence of Er3+:oxyfluoride vitroceramics are studied.X-ray diffraction,absorption,visible to near infrared luminescence and excitation spectra of Er3+-doped oxyfluoride vitroceramics have been measured.We found that when the concentration of the Er3+ ion increased from 0.5%to 2.0%,the infrared excitation spectra intensities of the Er3+ ion enhanced by approximately5.64,4.26,2.77,7.31,6.76,4.75,2.40,11.14,2.88,and 4.61 times for the4I15/2→2G7/2,4I15/2→4G9/2,4I15/2→4G11/2,4I15/2→2H9/2,4I15/2→(4F3 /2,4F5/2),4I15/2→4F7/2,4I15/2→2H11/2,4I15/2→4S3/2,4I15/2→4F9/2,and 4I15/2→4I9/2 transitions.Meanwhile,it can also be found that the visible excitation spectra intensity of the Er3+ ion decreased by approximately 1.36,1.93,3.43,1.01,2.24,and 2.28 times for the4I15/2→2G7/2,4I15/2→4G9/2,4I15/2→4G11/2,4I15/2→2H9/2,4I15/2→(4F3 /2,4F5/2),and 4I15/2→4F7/2 absorptio n transitions of the Er3+ion,respectively.That is to say,the samples exhibited a 2 to 11 times enhancement in both infrared luminescence and excitation intensities,with a concomitant one to three times decreasing of both visible luminescence and excitation intensities.Moreover,the excitation spectra of 1 543.0 and 550.0 nm luminescence were very similar both in shape and peakwavelength,confirming that the multiphoton near-infrared quantum cutting luminescence phenomena were found.In order to analyze the process and mechanism of quantum cutting better,we measured the variation of main visible and infrared luminescence intensity based on the excitation intensity.It found that all visible and infrared luminescence intensity was linear depended on the excitation intensity basically.In which,the variation of the visible luminescence intensity depended on the excitation intensity was slightly larger than linear.It is resulted from the very small absorption of excited state.The variation of the infrared 1 543.0 nm luminescence intensity depended on the excitation intensity was slightly smaller than linear.It is the characteristic phenomena of quantum cutting luminescence.It found that two-photon quantum cutting luminescence of 4I9/2 state mainly resulted from the{4I9/2→4I13/2,4I15/2→4I13/2} ETr31-ETa01 cross-energy transfer process.Three-photon quantum cutting luminescence of the 4S3/2 state mainly result from the {4S3/2→4I9/2,4I15/2→4I13/2} ETr53-ETa01 and {4I9/2→4I13/2,4I15/2→4I13/2} ETr31-ETa01 cross-energy transfer process.Four-photon quantum cutting of 2H9/2 mainly results from the {2H9/2→4I13/2,4I15/2→4S3/2} ETr91-ETa05,{4S3/2→4I9/2,4I15/2→4I13/2} ETr53-ETa01 and {4I9/2→4I13/2,4I15/2→4I13/2} ETr31-ETa01 cross-energy transfer process.These measured results are useful for the next-generation of quantum cutting solar cells,a current hot point globally.%研究了掺铒的氟氧化物玻璃陶瓷的双光子、三光子与四光子近红外量子剪裁发光.我们测量了掺铒的氟氧化物玻璃陶瓷的X 射线衍射谱、吸收谱、从可见到近红外的发光光谱与激发光谱.当Er3+浓度从0.5%增加到2.0%,发现铒离子的4I15/2→2G7/2,4I15/2→4G9/2,4I15/2→4G11/2,4I15/2→2H9/2,4I15/2→(4F3 /2,4F5/2),4I15/2→4F7/2,4I15/2→2H11/2,4I15/2→4S3/2,4I15/2→4F9/2,与4I15/2→4I9/2红外激发谱峰的强度增加了大约5.64,4.26,2.77,7.31,6.76,4.75,2.40,11.14,2.88,和4.61倍,同时,铒离子的4I15/2→2G7/2,4I15/2→4G9/2,4I15/2→4G11/2,4I15/2→2H9/2,4I15/2→(4F3 /2,4F5/2),与4I15/2→4F7/2的可见激发谱峰的强度减小了1.36,1.93,3.43,1.01,2.24和2.28倍.也就是说我们发现红外发光与激发的强度都增强了2~11倍,与此相伴的可见的发光与激发强度都减小了一到三倍.而且,1 543.0与550.0 nm发光的激发谱不仅在峰值波长而且也在波峰形状上非常相近.上述实验结果证实了所看到的现象为多光子近红外量子剪裁发光现象.为了更好的分析量子剪裁的过程与机理,还测量了主要的可见与红外发光强度随激发强度的改变;发现所有可见和红外发光强度都基本上是随激发强度成线性变化关系;其中,可见的发光强度随激发强度的改变呈略大于线形一次幂的变化关系,它是由于小的激发态吸收造成的;而1 543.0 nm红外发光强度随激发强度的变化呈略小于线形一次幂的变化关系,它即是量子剪裁发光的特征现象.还发现4I9/2能级的双光子量子剪裁主要由{4I9/2→4I13/2,4I15/2→4I13/2} ETr31-ETa01交叉能量传递所导致;4S3/2能级的三光子量子剪裁主要由{4S3/2→4I9/2,4I15/2→4I13/2} ETr53-ETa01和{4I9/2→4I13/2,4I15/2→4I13/2} ETr31-ETa01交叉能量传递所导致;2H9/2能级的四光子量子剪裁主要由{2H9/2→4I13/2,4I15/2→4S3/2} ETr91-ETa05,{4S3/2→4I9/2,4I15/2→4I13/2} ETr53-ETa01和{4I9/2→4I13/2,4I15/2→4I13/2} ETr31-ETa01交叉能量传递所导致.上述研究结果对目前的全球热点新一代量子剪裁太阳能电池很有价值.【期刊名称】《光谱学与光谱分析》【年(卷),期】2017(037)008【总页数】8页(P2619-2626)【关键词】近红外量子剪裁;铒离子发光;太阳能电池【作者】陈晓波;林伟;陈鸾;胡丽丽;李崧;郭敬华;周固;樊婷婷;于春雷;郑东;赵国营;陶京富【作者单位】北京师范大学应用光学北京重点实验室与物理系,北京 100875;北京师范大学应用光学北京重点实验室与物理系,北京 100875;北京师范大学应用光学北京重点实验室与物理系,北京 100875;中国科学院上海光学精密机械研究所,上海201800;北京师范大学应用光学北京重点实验室与物理系,北京 100875;北京师范大学应用光学北京重点实验室与物理系,北京 100875;北京师范大学应用光学北京重点实验室与物理系,北京 100875;北京师范大学应用光学北京重点实验室与物理系,北京 100875;中国科学院上海光学精密机械研究所,上海 201800;北京师范大学应用光学北京重点实验室与物理系,北京 100875;上海应用技术大学材料科学与技术系,上海 200235;北京师范大学应用光学北京重点实验室与物理系,北京 100875【正文语种】中文【中图分类】O482.3Rapid developments in science, technology and society have resulted in an ever more increasing requirement for energy[1-12]. However, the reserves of traditional mineral fuels have been rapidly decreasing and will eventually be exhausted. This will undoubtedly hinder the continued rapid development of science, technology and society. Hence, new sustainableenergy production methods, especially solar energy, have become of vital importance[8-18]. Solar light is inexhaustible and possesses the advantages of cleanness and safety. Solar light is considered as an ideal energy source. For many decades, scientists have sought to achieve higher photo-electric transfer efficiency with a decrease in cost. This has always been a key factor in the development of the solar photovoltaic field[1-10]. Near infrared quantum cutting luminescence is an important method for the spectral modulation and has become an excellent method for enhancing the solar cell efficiency to surpass the Shockley-Queisserlimit[1-12]. The near-infrared quantum cutting luminescence method can remove three type of energy loss of the solar cell. The first and second types of losses are the thermalization loss and transmission loss, which are related to a 70% loss. The third type of loss is surface recombination[1-12]. The electron-hole pair creation in crystalline silicon induced by high energy photons results in surface recombination, Auger recombination in the sub-surface, and Shockly-Read-Hall recombination. Hence, the spectral response of solar cells can be enhanced greatly, and the surface recombination can be reduced if the high-energy photons are transferred into multi small-energy photons, which are sensitive to the solar cell, by the near-infrared quantum cutting luminescence method. Therefore, near infrared quantum cutting luminescence solar cells have excellent application prospects. In the early of research, second-order near-infrared quantum cutting of sensitizer-Yb3+ ion codoped material has been proceeded extensively. Recently, the research center has been transferredto the first-order near-infrared quantum cutting, such as Er3+ ion or Tm3+ ion doped materials.1.1 Instruments, conditions, and the samplesThe samples used in our experiments were Erbium Er3+-doped oxyfluoride vitroceramics (FOV)∶(A) Er(2.0%)∶oxyfluoride vitroceramics(Er(2.0%)∶FOV) and (B) Er(0.5%)∶oxyfluoride vitroceramics(Er(0.5%)∶FOV). The sample manufacture methods are similar to previous published paper[8].A fluorescence spectrometer FL3-2iHR, manufactured by the Horiba-JY Company (America, Japan, and France), was used. The experimental condition is similar to previous published paper[8].1.2 X-ray diffraction spectraThe XRD data for lattice parameter refinements were collected by a Philips (Holland) X’Pert PRO MPD diffractometer (45 kV×40 mA) with Cu Kα radiation (λ=0.154 06 nm) in the range of 2θ=10°~80°. Figure 1 shows the representative X-ray diffraction (XRD) patterns of the Er(2.0%)∶FOV. It shows that all diffraction peaks can be fitted to the corresponding peaks in the reported data of Pb4Lu3F17 (00-044-1373).1.3 AbsorptionFigure 2 shows the absorption spectrum of an Er3+-doped oxyfluoride vitroceramic, which was measured by a UV-3100 spectrophotometer (Shimadzu, Japan). There are a series of absorption peaks at 973.5, 802.5, 652.5, 540.5, 522.5, 487.0, 450.0, 441.5, 405.5, 378.5, and 364.5 nm. These absorption peaks can easily be assigned to the absorption transitions ofthe 4I15/2→4I11/2, 4I15/2→4I9/2, 4I15/2→4F9/2, 4I15/2→4S3/2,4I15/2→2H11/2, 4I15/2→4F7/2, 4I15/2→4F5/2, 4I15/2→4F3/2,4I15/2→2H9/2, 4I15/2→4G11/2, and 4I15/2→4G9/2 of the Er3+ ion, respectively[3,18]. Moreover, it can be calculated from the above experimental curves that the centers of gravity of the 4I11/2, 4I9/2, 4F9/2, 4S3/2, 2H11/2, 4F7/2, 4F5/2, 4F3/2, 2H9/2, 4G11/2, and 4G9/2 energy levels of the Er3+ ion are at 10 241, 12 461, 15 278, 18 502, 19 138, 20 470, 22 173, 22 650, 24 660, 26 420, and 27 435 cm-1 respectively, in which it is assumed that the ground level 4I15/2 is at 0 cm-1.2.1 Measured results and the analysis for luminescence and excitation SpectraAccording to peaks observed from the absorption and excitation spectra, we measured the near infrared luminescence spectra of (A)Er(2.0%)∶oxyfluoride vitroceramics (Er(2.0%)∶FOV)) and (B)Er(0.5%)∶oxyfluoride vitroceramics (Er(0.5%)∶F OV)). Careful selection of the output of a Xenon lamp at 378.0, 405.5, 486.0, 520.0, 539.5 and 800.5 nm was performed as the excitation, while maintaining all other experimental conditions constant. The emission signal was filtered with an IR HB850 filter to ensure that only light with a wavelength of greater than 800 nm was detected. The measured luminescence spectra in the infrared region, obtained with excitation at 378.0, 486.0, and 520.0 nm, are shown in Figs.3, 4, and 5, respectively. All the results of the measured infrared luminescence spectra obtained with excitation at 378.0, 520.0, 486.0, 405.5, 539.5, and 800.5 nm, are listed in Table 1. Two main infrared peaks, a highintensity 1 543.0 nm peak and a moderate intensity 980.0 nm peak, were observe d. These peaks can be assigned to the 4I13/2→4I15/2 and4I11/2→4I15/2 luminescence transitions[3,18]. Table 1 presents the information of the luminescence intensities for these transitions. It can be easily observed that the infrared luminescence intensities of the Er3+ ion are all enhanced by 2 to 11 times when the concentration of Er3+ ion increased from 0.5% to 2.0%.We also measured the visible luminescence spectra of (A) Er(2.0%)∶FOV and (B) Er(0.5%)∶FOV, by carefully selecting the output of a Xenon la mp at 378.0, 405.5, 486.0, 520.0, 539.5, and 800.5 nm as the excitation. We also selected the appropriate filters to ensure that only the true visible luminescence signal was detected. An enhancement of the ratio of the signal-to-noise and the quality of the measured spectra was achieved. The measured luminescence spectra in the visible region, with excitation at 378.0, 486.0,and 520.0 nm, are shown in Figs.3, 4, and 5, respectively. All the results of the measured visible luminescence spectra obtained at 378.0, 405.5, 486.0, 520.0, 539.5, and 800.5 nm, are listed in Table 2. It can be easily observed from Figs.3, 4, and 5 that there are mainly five visible luminescence peaks at 406.0, 522.5, 550.0, 665.5, and 800.5 nm. The 550.0 nm luminescence signal is very strong, the luminescence intensities of the 406.0, 522.5, and 665.5 nm bands are moderate, and the 800.5 nm signal is weak. The five visible signals at 406.0, 522.5, 550.0, 665.5, and 800.5 nm are the luminescence transitions of 2H9/2→4I15/2, 2H11/2→4I15/2,4S3/2→4I15/2, 4F9/2→4I15/2, 4I9/2→4I15/2 of the Er3+ ion[3,18]. Table 2presents the intensity information for these transitions. It can be easily observed that the 522.5 nm 2H11/2→4I15/2 and 550.0 nm 4S3/2→4I15/2 luminescence intensities, with all investigated excitation wavelengths, decreased by approximately two to four times, when the concentration of the Er3+ ion increased from 0.5% to 2.0%. This resulted from the very intense cross energy transfer between the 2H11/2 or 4S3/2 state and the ground level 4I15/2, for example, {2H11/2→4I9/2, 4I15/2→4I13/2} and{4S3/2→4I9/2, 4I15/2→4I13/2}. The energy may be quickly transferred from the 2H11/2 or 4S3/2 level to a lower state by either the multiphonon non-radiative relaxation linear process or the cross energy transfer non-linear process. Therefore, when the concentration of the Er3+ ion increased from 0.5% to 2.0%, the rate of energy loss for the 4H11/2 and4S3/2 levels would be larger than their energy-rich rate. Their luminescence intensity would be substantially reduced. However, an interesting phenomenon emerged for the 4F9/2 level. It showed that the luminescence intensity of the 665.5 nm 4F9/2 level, after excitation at 486.5 and 520.5 nm, decreased when the concentration of Er3+ ion is enhanced from 0.5% to 2.0%. However, the luminescence intensity of the 665.5 nm 4F9/2 level increased by 3.33, 5.68, and 8.33 times, when excited by 377.5, 363.5, and 405.5 nm light of the 4G11/2, 4G9/2, and 2H9/2 levels, respectively. As we know, the energy gap between the first excited state4I13/2 and ground state 4I15/2 is approximately 6 530 cm-1; however, the energy gap between the 2H11/2 or 4F7/2 and 4F9/2 states is approximately 3 860 or 5 190 cm-1. Hence, cross energy transfer for the{2H11/2 or 4F7/2→4F9/2, 4I15/2→relative state} process is hardly observed because their energy mismatch is too large. Therefore, the energy rich process of the 4F9/2 state when excited from the 2H11/2 and 4F7/2 levels can only undergo the process of multiphonon non-radiative relaxation. However, the 4F9/2 state has two types of energy loss processes, multiphonon non-radiative relaxation and the cross energy transfer, which are generally greater than the spontaneous radiation rate. Therefore, the luminescence intensity of the 4F9/2 state decreased when the 2H11/2 and 4F7/2 statesare excited. However, the energy-rich process of the 4F9/2 state, when excited to the 4G11/2, 4G9/2, and 2H9/2 levels, can undergo multiphonon non-radiative relaxation and cross energy transfer. Hence, the luminescence intensity from the 4F9/2 state increased when 4G11/2,4G9/2, and 2H9/2 states were excited.According to the obtained luminescence spectra, we obtained the near infrared excitation spectra of (A) Er(2.0%)∶FOV and (B) Er(0.5%)∶FOV, by selecting a luminescence wavelength of 1 543.0 nm. We used an IR HB850 filter for the emission signal. The measured near-infrared excitation spectra of the 1 543.0 nm luminescence are shown in Fig.6. Figure 6 shows that there are two main intense excitation peaks at 378.0 and 522.0 nm, and there are also eight moderate excitation peaks at 355.0, 363.5, 405.0, 448.5, 486.0, 539.5, 650.5, and 800.5 nm. These infrared excitation peaks at 355.0, 363.5, 378.0, 405.0, 448.5, 486.0, 522.0, 539.5, 650.5, and 800.5 nm agreew ell with the 10 absorption transition lines of the 4I15/2→2G7/2,4I15/2→4G9/2, 4I15/2→4G11/2, 4I15/2→2H9/2, 4I15/2→(4F3/2, 4F5/2),4I15/2→4F7/2, 4I15/2→2H11/2, 4I15/2→4S3/2, 4I15/2→4F9/2, and4I15/2→4I9/2 transitions of the Er3+ ion[3,18], respectively. We find from these measurements that the 10 excitation spectra line intensities are8.88×106, 2.18×107, 5.02×107, 1.73×107, 1.43×107, 2.12×107, 2.59×107, 1.44×107, 1.08×107, 5.44×106 for (A) Er(2.0%)∶FOV; and 1.57×106,5.11×106, 1.81×107, 2.37×106, 2.12×106,4.45×106, 1.08×107, 1.29×106, 3.76×106, 1.18×106 for (B) Er(0.5%)∶FOV. The excitation intensities of the Er3+ ion are enhanced by approximately 5.64, 4.26, 2.77, 7.31,6.76, 4.75, 2.40, 11.14, 2.88, and 4.61 times, respectively, when the concentration of the Er3+ ion is increased from 0.5% to 2.0%. They are all enhanced by approximately two to 11 times. The enhancement effects are excellent. Finally, we measured the visible excitation spectra of (A) Er(2.0%)∶FOV and (B) Er(0.5%)∶FOV, by selecting a lumines cence wavelength of 550.0 nm as the emission wavelength. We used a CB535 filter to ensure that the detected excitation spectra signal was shorter than 500 nm. The measured results of the visible excitation spectra of the 550.0nm luminescence are shown in Fig.6. Peaks are observed at 355.5, 363.5, 377.5, 405.5, 449.0, and 486.5 nm in the excitation spectra. These peaks can be assigned to the 4I15/2→2G7/2, 4I15/2→4G9/2, 4I15/2→4G11/2,4I15/2→2H9/2, 4I15/2→(4F3/2, 4F5/2), and 4I15/2→4F7/2 absorption transitions of the Er3+ ion[3,18], respectively. The excitation spectra line intensity from the 550.0 nm visible luminescence are 2.75×105, 1.06×106, 5.00×106, 5.73×105, 4.86×105, and 1.09×106 for (B) Er(0.5%)∶FOV, and2.03×105, 5.51×105, 1.46×106, 5.68×105, 2.17×105, and 4.76×105 for (A) Er(2.0%)∶FOV. Hence, the visible excitation spectra intensities of the Er3+ ion decreased by approximately 1.36, 1.93,3.43, 1.01, 2.24, and 2.28 times when the concentration of the Er3+ ion increased from 0.5% to 2.0%. In conclusion, from the above measurements and analyses, the excitation spectra of 1 543.0 nm infrared light and 550.0 nm visible light are very similar in wave shape and peak wavelengths. When the concentration of the Er3+ ion increased from 0.5% to 2.0%, the one to three times decrease of the visible excitation spectra intensity of 550.0 nm luminescence exhibited a concomitant 2 to 11 times enhancement in the infrared excitation spectra of 1 543.0 nm luminescence. Therefore, we conclude that the present phenomenon is the near-infrared quantum cutting luminescence phenomenon[1-12]. Because the enhancement in the infrared excitation spectra intensity is about three times larger than that of the decrease in visible excitation spectra intensity, it is proposed that this is attributed to the multiphoton near-infrared quantum cutting luminescence phenomenon.In order to analyze the process and mechanism of quantum cutting better, we measured the variation of main visible and infrared luminescence intensity based on the excitation intensity, as is shown in Fig.7. In Fig.7, the abscissa is the excited light intensity, and the ordinate is the luminescence intensity. It could be found that all visible and infrared luminescence intensity is linear depended on the excitation intensity basically. In which, the variation of the visible luminescence intensity depended on theexcitation intensity is slightly larger than linear. It is resulted from the very small absorption of excited state. The variation of the infrared 1 543.0 nm luminescence intensity depended on the excitation intensity is slightly smaller than linear. It is the characteristic phenomena of quantum cutting luminescence[2].2.2 AnalysisThe schematic diagram of the energy level structure and quantum cutting process is shown in Fig.8. According to the above analysis, Er(2.0%)∶FOV exhibits an excellent near-infrared quantum cutting luminescence effect. From further analysis about the energy mismatch ΔE, the reduced matrix elements (Uλ)2[3,18], and the multiphonon non-radiative relaxation, we can obtain the main cross-energy transfer processes for these interesting 4I13/2→4I15/2 near-infrared quantum cutting luminescence effect. When light excites the 4I9/2 state, the population of the 4I9/2 energy level may directly transfer to 4I13/2 energy level, mainly through the{4I9/2→4I13/2, 4I15/2→4I13/2} ETr31-ETa01 cross-energy transfer process of the intense two-photon near-infrared quantum cutting.When light excites the 4F9/2 state, the population of 4F9/2 energy level may directly transfer to the 4I13/2 energy level, mainly through the{4F9/2→4I13/2, 4I15/2→4I13/2} ETr41-ETa01 cross-energy transfer process of the intense two-photon near-infrared quantum cutting.When light excites the 4S3/2 state, the population of the 4S3/2 state may transfer to the 4I13/2 state mainly through the {4S3/2→4I9/2,4I15/2→4I13/2} ETr53-ETa01 and {4I9/2→4I13/2, 4I15/2→4I13/2} ETr31-ETa01 cross-energy transfer processes of the very intense three-photon near-infrared quantum cutting.When light excites the 2H11/2 state, the population of the 2H11/2 energy level may transfer to the 4I13/2 state mainly through the {2H11/2→4I9/2, 4I15/2→4I13/2} ETr63-ETa01 and {4I9/2→4I13/2, 4I15/2→4I13/2} ETr31-ETa01 cross-energy transfer processes of the intense three-photon near-infrared quantum cutting.When light excites the 4F7/2 state, the population of the 4F7/2 state may transfer to the 4I13/2 state mainly through the {4F7/2→4I11/2,4I15/2→4I11/2} ETr72-ETa02 cross-energy transfer process and multiphonon non-radiative relaxation of the intense two-photon near-infrared quantum cutting.When light excites the 4F5/2 state, the population of the 4F5/2 state may transfer to the 4I13/2 state mainly through the {4F5/2→4F9/2,4I15/2→4I13/2} ETr84-ETa01 and {4F9/2→4I13/2, 4I15/2→4I13/2} ETr41-ETa01 cross-energy transfer processes of the intense three-photon near-infrared quantum cutting.When light excites the 2H9/2 state, the population of the 2H9/2 energy level may transfer to 4I13/2 state mainly through the {2H9/2→4I13/2,4I15/2→4S3/2} ETr91-ETa05 , {4S3/2→4I9/2, 4I15/2→4I13/2} ETr53-ETa01 and {4I9/2→4I13/2, 4I15/2→4I13/2} ETr31-ETa01 cross-energy transfer processes of the intense four-photon near-infrared quantum cutting. When light excites the 4G11/2 state, the population of the 4G11/2 state may transfer to the 4I13/2 state mainly through the {4G11/2→4I13/2,4I15/2→2H11/2} ETr101-ETa06 , {2H11/2→4I9/2, 4I15/2→4I13/2} ETr63-ETa01 and {4I9/2→4I13/2, 4I15/2→4I13/2} ETr31-ETa01 cross-energy transfer processes of the intense four-photon near-infrared quantum cutting.We can find from above analysis that only one population comes from the excited state for cross-energy transfer quantum cutting. Other populations come from the ground state. Therefore, the luminescence intensity of the infrared quantum cutting 4I13/2→4I15/2 fluorescence can be expressed as following:I∝Nexcited sate×(Nground state)n-1∝Nexcited sate∝P1Where Nexcited sate is the population number of excited state, Nground state is the population number of ground state. n is the fold of multi-photon near infrared quantum cutting. P is the power of excitation light. For the condition of excitation by xenon lamp or non-condensed solar light in present manuscript, the excitation intensity is small. We have Nground state≈1. Therefore the luminescence intensity I of multi-photon quantum cutting, induced by cross-energy transfer, is basically linear depended on excitation intensity.These analyses regarding the quantum cutting efficiency are coincident with the experimental results. It should be noted that the action of the phonon equal to 0 is not the largest point for the near-infrared quantum cutting luminescence of the Er3+ ion. The largest point for the near-infrared quantum cutting luminescence of the Er3+ ion will be at the field that has a slight phonon action. Quantum cutting requires a higher dopingconcentration of a rare earth ion, efficient cross energy transfer and to achieve intense near-infrared quantum cutting luminescence. However, it is difficult to find a material that exhibits the ideal conditions for completely resonant energy transfer. Therefore, it is currently sufficient for energy transfer to be near resonant. Therefore, slight phonon-assistance is needed to achieve the effective intense phonon-assisted energy transfer. In the article, X-ray diffraction spectra, absorption, visible to near-infrared luminescence and excitation spectra of Er3+-doped oxyfluoride vitroceramics have been measured. We found that when the concentration of the Er3+ ion increased from 0.5% to 2.0%, the infrared excitation spectra intensities of the Er3+ ion enhanced by approximately 5.64, 4.26, 2.77, 7.31, 6.76, 4.75, 2.40, 11.14, 2.88, and 4.61 times for the4I15/2→2G7/2, 4I15/2→4G9/2, 4I15/2→4G11/2, 4I15/2→2H9/2,4I15/2→(4F3/2,4F5/2), 4I15/2→4F7/2, 4I15/2→2H11/2, 4I15/2→4S3/2,4I15/2→4F9/2, and 4I15/2→4I9/2 transitions. Meanwhile, it can also be found that the visible excitation spectra intensity of the Er3+ ion decreased by approximately 1.36, 1.93, 3.43, 1.01, 2.24, and 2.28 times for the4I15/2→2G7/2, 4I15/2→4G9/2, 4I15/2→4G11/2, 4I15/2→2H9/2,4I15/2→(4F3/2, 4F5/2), and 4I15/2→4F7/2 absorption transitions of theEr3+ ion, respectively. Therefore, the one to three times decreased of both the visible luminescence intensity and visible excitation spectra of 550.0 nm luminescence, is concomitant with the 2 to 11 times enhancement in both infrared luminescence intensity and infrared excitation spectra of the 1 543.0 nm luminescence. Moreover, the excitation spectra of 1 543.0 nminfrared light and 550.0 nm visible light are very similar in wave shape and peak wavelength. Therefore, we can conclude that the present phenomenon is the multiphoton near-infrared quantum cutting luminescence phenomenon.[1] Vergeer P, Vlugt T J H, Meijerink A, et al. Phys. Rev. B, 2005, 71(1): 014119.[2] Zhou J J, Teng Y, Qiu J R, et al. Opt. Express, 2010, 18(21): 21663.[3] Reisfeld R. Lasers and Excited States of Rare-Earth. Berlin Heidelberg: Springer-Verlag, 1977.[4] Dexter D L. Phys. Rev., 1957, 108(3): 630.[5] Liu X F, Qiu J R. Chem. Soc. Rev., 2015, 44(23): 8714.[6] Chen D Q, Wang Y S, Hong M C. Nano Energy, 2012, 1(1): 73.[7] Yu D C, Zhang Q Y, Meijerink A, et al. Light-Science & Applications, 2015, 4: e344.[8] Chen X B, Nie Y X. SPIE, 2000, 4221: 88.[9] Zhu W J, Chen D Q, Wang Y S, et al. Nanoscale, 2014, 6(18): 10500.[10] Trupke T, Green M A, Wurfel P. J. Appl. Phys., 2002, 92(3): 1668.[11] Sun R J, Qiu P Y, Cui D X, et al. CIESC Journal, 2014, 65(7): 2620.[12] Tang Jinfa, Zhou Bingkun, Chen Jiaer, et al. National Natural Science Foundation of China. Optics and Opto-electronics. Beijing: Science Press, 1991.[13] Li L, Wei X T, Yin M, et al. J. Rare Earths, 2012, 30(3): 197.[14] Richards B S. Sol. Energy Mater. Sol. Cells, 2006, 90(9): 1189.[15] Chen J D, Guo H, Li Z Q, et al. Opt. Materials, 2010, 32(9): 998.[16] Pan Z, Sekar G, Morgan S H, et al. J. Non-Cryst. Solids, 2012, 358(15): 1814.[17] Yao Wenting, Chen Xiaobo, Peng Fanglin, et al. Spectroscopy and Spectral Analysis, 2015, 35(2): 325.[18] Song Zengfu. Principle and Application of Atomic Spectroscopy and Crystal Spectroscopy. Beijing: Science Press, 1987.。

纳米相氟氧化物玻璃陶瓷Tm(0.35)Yb(5)∶FOV的上转换发光

纳米相氟氧化物玻璃陶瓷Tm(0.35)Yb(5)∶FOV的上转换发光
1 应用光学北京市重点实验室 , 京师范大学物理系和分析测试 中心 , 京 10 7 . 北 北 085
2 .北 京 大 学 物 理学 院 ,北 京 10 7 081
3 S mi . u t Opt a a s n .,4 72 fg y ,Ur wa,S i ma,3 8,J p n a i lGls ,I c c -— 5 Ha a a i a at a 3 aa
o yfu rd ir e a is x l o i e vtoc r m c 1:Re rs n n ry ta fr p ee te e g rnse ;2:Re rs n u r se c p e e tf o e c n e l
基金项 目: 国家 自然科学基金项 目(0 7 0 9 资助 1 64 1 )
的应用 。 而提高上转换 的效率一直是上转换研究 和应用 的关
( 9 . , 6 1 0 n ) 04 — 0 , 6 7 0 nn 0 6 7 0 8 . m /6 F3 5 . Y

。 2 和 4 2 5nn H 的 吸 收 跃 迁 。图 1给 出 了 T F , 6. l。 一 G m3
lvlsr cue o m ( . 5) ee tu tr T f O 3 Yb( 5) :F OV 咖 舢
1 吸收光谱
我 们 用 分 光 光 度 计 (h as,U -6 ) 量 了 T S i du V 35 测 m m
收稿 日期 :20 -51 。修订 日期:2 0 —92 0 70- 1 0 70 —6


研 究了纳米相氟氧化物玻璃 陶瓷 Tm(. 5Y ( ); OV在 9 5nn半导体激光激发 下的上转换发 03) b 5 F 7 Y

氟氧化物纳米相玻璃陶瓷Tb(0.7)Yb(5)∶FOV的合作下转换发光

氟氧化物纳米相玻璃陶瓷Tb(0.7)Yb(5)∶FOV的合作下转换发光

氟氧化物纳米相玻璃陶瓷Tb(0.7)Yb(5)∶FOV的合作下转换发光陈晓波;杨国建;丁卉芬;于春雷;胡丽丽;王水锋;李崧【摘要】报道了氟氧化物纳米相玻璃陶瓷Tb(0.7)Yb(5)∶FOV的红外量子剪裁研究,测量了从可见到红外的荧光发光光谱、激发谱、和荧光寿命,分析了{1([5 D4→7 F6](Tb3+),2([2 F7/2→2 F5/2] (Yb3+)}的红外量子剪裁现象,发现了487.0nm光激发5 D4能级和378.0nm光激发(5 D3,5 G6)能级的理论量子剪裁效率ηx%Yb 依次分别为121.35%和136.27%.首次发现了一种新颖的合作(共协)下转换发光现象{2([(5 D3,5 G6)→5 D4](Tb3+),1([2 F7/2→2 F/2](Yb+)},即首次发现施主Tb3+离子释放两个小能量光子[(5 D3,5 G6)→5 D4]的能量,导致出现一个受主Yb3+的[2 F5/2→2 F7/2]的中等能量的光子.%The present article reports the infrared quantum cutting study of the nanophase oxyfluoride vitroceramics Tb(0.7)Yb (5. 0) : FOV. The visible to infrared fluorescence emission spectra, excitation spectra and fluorescence lifetime were measured carefully. The infrared quantum cutting phenomenon {l([5D4 →7F6](Tb3+), 2([zF7/2→2F5/2](Yb3+)} was analyzed based on the above experiments. It was found that the' theoretical quantum cutting efficiency is about 121. 35% when 5D4 level is excited by 487. Onm light, and about 136. 27% when (5D3, 5G6) levels are excited by 378. 0 run light respectively. Meanwhile, it is first time for the present paper to find a cooperative downconversion phenomenon {2([(5 D3, 5 G6) →5 D4 ] (Tb3+ ), 1 ( [2F7/2 → 2F5/2](Yb3+ )}. That is, the authors found for the first time that the donor Tb3+ ionreleases two pieces of energy [(5D3, 5G6) →5D4] of small energy photon to produce a middle energy photon [2F5/2 →2F7/2] of acceptor Yb3+ ion.【期刊名称】《光谱学与光谱分析》【年(卷),期】2011(031)011【总页数】5页(P2914-2918)【关键词】红外量子剪裁;太阳能电池;氟氧化物纳米相玻璃陶瓷Tb(0.7)Yb(5)∶FOV【作者】陈晓波;杨国建;丁卉芬;于春雷;胡丽丽;王水锋;李崧【作者单位】北京师范大学,应用光学北京重点实验室,北京100875;北京师范大学,应用光学北京重点实验室,北京100875;北京大学化学与分子工程学院,北京100871;中国科学院上海光学精密机械研究所,上海201800;中国科学院上海光学精密机械研究所,上海201800;北京师范大学,应用光学北京重点实验室,北京100875;北京师范大学,应用光学北京重点实验室,北京100875【正文语种】中文【中图分类】O482.3太阳能新能源是当前的国际热点研究领域,它是一种高效、国家亟需的、用途广、没污染、廉价、健康、取之不尽用之不竭的新能源[1-7]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
赖 于有 效 的成 核 , 般 情 况 下 , 核 是 非 均匀 的 , 一 成 晶 相从 预先 存 在的成 核剂 粒子 表 面形 成 并 长大 ,分相 往往 是成 核过 程 的第一 步 。玻璃 陶瓷的 性能 既决定 于组 成相 的 固有 属 性 , 决 定 于 形 成 的 微 观 组 织 。 又
不 能加 热到 使产 品 发生变 形 的温度 ] 。
早在 2 O世纪 7 O年代 ,Au e 及合 作 者 利 用 特 zl 殊 的工 艺 在常规 的 氧化物 玻璃 中嵌 入稀 土离 子掺 杂
的氟化 物 以提 高玻 璃 体 的 上转 换 发 光 效 率 , 当时 是
红外 至蓝光 上转 换 效 率 最 高 的材 料 之 一 , 受 当时 但 工艺 条件 的 限制 , 嵌 入 的氟化 物微 晶 的粒 度较 大 , 所
LIQig f n —u。HUANG h— u S ih a
(n t u e f po l t nc eh o g ,N  ̄ enJa tn n vri ,B U n 0 0 4 HN I s t t o t e r i T c n l y o h r io gU i s y e i g1 0 4 ,C ) i O eco o o e t Ab ta t sr c : Ox fu rd g a s c r m is i a t a t e m a e i l f r fb r a p iir , y lo ie ls e a c s t r c i v t ra o i e m l e s f
稀 土 掺 杂 玻 T O , 0 ,I3 , 2 5 3 4 4 6 氧 化 物 铽 氟 e z Ge 2 n O2 6 8 1 璃 Z O,K n F
在 玻 璃 陶 瓷 组 成 设 计 中 要 考 虑 两 个 方 面 的 问
题 : 1 既要使 玻 璃较易 熔炼 而 且在 成形 过程 中保持 ()
・ 87 ・
维普资讯
Apt 2 03 .0
2 研 究 进 展
氟 氧 化 物玻 璃 陶 瓷 虽然 出现 较 晚 , 但鉴 于其 独 特的优 点 , 从而 在很 多方 面有 着潜 在 的应用 , 因此引
起 了人 们 的极大 兴 趣 , 材 料 的 制 备 以及 性 质 的研 在
大 于氟化 物玻 璃 的声 子 能 量 , 致 了稀 土 离 子 掺杂 导 的氧化物 玻 璃 上 转 换 发 光 的 效 率 远 小 于 氟 化 物 玻
和 韧性 , 改善 其性 能 , 扩大 玻璃 陶瓷材料 在机 械工 程
收 稿 日期 :0 2 9 2 . 20 一O — 9
璃 [ 。由于 氟氧化 物 玻 璃 陶瓷 的 特殊 结 构 , 其 既 2 ] 使
物 玻璃 陶瓷 的组 成如 表 1所 示 。这 里 T 为 玻 璃 转 换 温度 , 为 晶化 起始 温度 , 为 晶化 峰值 温度 。
表 1 几 种 透 明 氟 氧 化 物 玻 璃 陶瓷 的 组成 组 成
含 C l F S0 d 2 i 一
富集 在微 晶 中 , 透过 率基 本没 有 损 失 , 其 与母 体 氟

要 : 氟氧化 物玻 璃 陶瓷 由于兼具 氟化物 与 氧化物的 优 点 , 成为人 们 最近研 究的热 点 。概
述 了透 明 氟氧 化玻 璃 陶 瓷近十 年 的研 究进 展 , 在材 料 的 制备 、 质 的研 究等 方 面进 行 了 阐述 , 性 并对 其前 景进 行 了展 望 。
关键 词 : ,玻 璃 陶瓷 ; 备 ; 用 制 应
维普资讯
《 导体 光 电  ̄ 0 2 第 2 第 6 半 20 年 3卷 期
李 庆 福 等 : 透 明 氟 氧 化 物 玻 璃 陶瓷 研 究进 展
透 明氟 氧 化 物 玻璃 陶瓷研 究 进展
李 庆 福 ,黄 世 华
( 方 交 通 大 学 光 电子 技 术 研 究 所 ,北 京 10 4 ) 北 0 0 4
up o e son l s r c nv r i a e s, a d n op ia d v c s o t e - i nso l i pl y . The tc l e ie f r hr e d me i na d s a s de l me o veop nt f ox fuo i e g a s e a c i ti e n h s a e , wih he e y l rd l s c r mi s s ou ln d i t i p p r t t mph ss n h a a y i o h a i o t e n l s s f t e rsac v l me t e e r h de eop n ,pr pa a i n r e te a s c r mi s i e e a s Fi ly,t e r ton a d p op ri s ofgls e a c n r c ntye r . na l he de l m e r nd f g a s c r m is a e f r c s e . veop ntt e s o l s e a c r o e a t d Ke r s: g a s c r mi s r pa a i y wo d l s — e a c ;p e r ton;a i a on pplc t

1 引 言
玻 璃 陶瓷 ,又 叫微 晶玻璃 , 通 过 玻璃 的 受控 是
Hale Waihona Puke 领域 中 的运用 L 。 1 ]
透 明氟氧 化物 玻璃 陶瓷 是最 近才 发展起 来 的一 类新 的玻 璃 陶瓷 , 具 氟 化物 与 氧 化 物 的 优 点 。氟 兼 化物 玻璃 与单 晶对 于稀 土 离 子是 比较 好 的基 质 , 因 为它 们有 比较 低 的声子 能量 , 无辐 射跃 迁几 率小 , 以 及好 的稀 土 可熔 性 , 使 它 们 在 13 0n 与 15 0 这 1 m 5
40 7
19 9 8年 , en k [ 用 熔 融 法 制 备 了镶 嵌 有 掺 D j e a2 稀 土 离子 氟化 物 微 晶 的硅 酸 铝 (lmio ict ) au n sl ae 玻 i
含 L F 纳 米 S0 ,Al03 a3 i2 2 ,Al , 微 晶 的 铝 硅 Na C) , Na NO3 ~ 5 0 6 0 6 O 2 (3 2 , 6 0 5 酸 盐 玻 璃 B N( , L 2O3 ( r a ) 3 a o
潜 在的应 用 。但实 际应 用 中 , 然存 在许 多问题 , 仍 如 较难 制备 成低 损 耗 光 纤 , 湿 环 境 中稳 定 性 差 等 。 潮 与 氟化物 玻璃 相 比 , 化物玻 璃 的化学 稳定 性 、 氧 机械 强 度 、 光损 伤 阈值等 指标都 有 明显 的优 越性 , 激 而且
具 有氧化 物 玻璃 的稳 定性 , 又有 低 的声 子 能 量 及稀 土 离子 的可溶 性 , 因此具 有 广 阔的应用 前景 。
基 金 项 目 : 国 国 家 重 点 基 础 研 究 发 展 规 划 一稀 土 功 能 材 料 中 的基 础 研 究 资 助 项 目( 9 8 6 3 9 . G1 90 10 )
就一 般 的玻 璃 陶瓷 而 言 , 管 各种 玻 璃 陶 瓷 的 尽 配料 和 晶相组 成不 同 , 都可 采用 玻 璃 或 陶瓷 的生 但 产方 法制 备 , 工艺 过 程为 : 其 制备 添加 了晶核形 成剂 的玻 璃配 料 一高温 熔制 一熔 体 成形 一退 火与检 验 一
热 处理 。
La ) ,B C03 a
璃 陶瓷材 料 。将各 种组 分 在 14 0℃熔 融 在 一用 铂 5
金覆 盖 的带有 SC棒 的熔 炉 中 , 4h后 , 入一 钢 i 经 倒 器中, 然后 在 玻璃 转换 温度 2  ̄3 0 0℃下 退 火 1 , 最 h 后 以一定 的 速率加 热进 行热 处理 , 产生 L F 纳米 微 a。 晶 。用透 射 电子 显 微 镜 ( E ) T M 测试 表 明 , 土 离 稀 子 掺杂 的 氟 化 物 微 晶 尺 寸 在 1 0~ 2 0 n m。将
含 P d一 F 纳米 微 晶玻 璃 陶瓷 , 最早 出现 bC 是 的透 明氟 氧化 物玻 璃 陶瓷 材 料 , 是 人 们研 究 的 比 也
只有在 一定 范 围的组 成才 能制 备符 合性 能要 求
较 多 的一类 材 料 。1 9 9 3年 , Wa g等 第 一 次 报 Y. n 道 了 P d一 F 掺 Yb , 。 b C 什 Er 和单 掺 E 。 明玻 r 透 璃 陶瓷 。他们是 将组 分放 在 P 坩 埚 中制 备 , 后 在 t 然
n 光纤放 大 器 、 转 换 激 光 器 与 三维 显 示 方 面 有 m 上
结 晶而制 成 。这类 材料 是 由大 比例 的 ( 型体 积 比 典 为 9 ~ 9 ) 小 的 晶体 ( 常小 于 1 5 8 很 通 m ) 和 少量 残余 玻璃 相所 组成 的无 孔 复合体 。控 制 晶化依
玻 璃转换 温 度 下 退 火 , 后 在 温度 下 热 处 理 , 最 热 处 理 后 在 氟 氧 化 物 玻 璃 中 形 成 约 几 十 纳 米 的 P d一 F 氟化 物 微 晶 。 掺 杂 的稀 土 离 子 将 优 先 b C
的玻璃 陶瓷 。一 般都应 含 有一 定 量 的玻 璃形 成 剂 , 如 SO 、 2 。 , 在 网络 外体 中往 往 需 引入 具 有 i B O 等 而 小 离子 半径 、 场强 的 L 、 抖 和 Z 抖等 , 大 i Mg n 其作 用 在于使 玻璃 易 于引起 分相 和 晶化 。几种 透 明氟氧 化
究方 面都 取得 了很 大 的进展 。
2 1 材料 的制备 .
对可 见光 有较 大 的散射 作用 , 使得 玻 璃体 变 成不 透
明体 , 这影 响 了材料 在 频率上 转换 的使 用 [ 。 3 ]
相关文档
最新文档