第12讲一次函数(正比例函数)的应用
初二数学-第12讲 一次函数k,b与图象关系

第十二讲 一次函数k,b 与图象关系【知识要点】1.一次函数)0(≠+=k b kx y 中,k (斜率):倾斜程度,b (截距):与y 轴交点坐标, 一次函数图像:一条交x 轴(0,b ),y 轴(kb-,0)的直线; 2.正比例函数的图像(kx y =的图像)是一条过原点(0,0)的直线。
3.正比例函数,一次函数具有相同的性质: ①当k >0时,y 随x 的增大而增大; ②当k <0时,y 随x 的增大而减小;||k 越大,直线与x 轴相交所成的锐角越大. 4.一次函数b kx y +=的图像与k 、b 的符号关系如下表:★同一平面内,两直线111与222的位置关系可由系数决定:①相交与2221l l k k ⇔≠ ②()平行222121//l l b b k k ⇔⎩⎨⎧≠=③重合与=222121l l b b k k ⇔⎩⎨⎧= ④()点,轴上相交与与=12221210b y l l b b k k ⇔⎩⎨⎧≠【经典例题】【例1】在直角坐标系内分别作出下列函数的图像: ① 42+=x y ② 421+-=x y ③ 42-=x y ④ 421--=x y并写出函数与坐标轴交点坐标及与坐标轴所围成面积总结:两直线平行的条件:两直线垂直的条件: 。
小结:函数y kx b =+的图像与坐标轴围成的三角形的面积为22b k。
【例2】已知一次函数)4()36(-++=n x m y 。
求:①m 为何值时,y 随x 的增大而减小;②m 、n 满足什么条件时,函数图像与y 轴的交点在x 轴下方; ③m 、n 分别为何值时,函数图像经过原点; ④m 、n 满足什么条件时,函数图像不经过第二象限。
【例3】①直线y kx b =+,经过一、二、四象限,到直线y bx k =-的图象只能是( )②设b >a ,将一次函数y=bx+a 与y=ax+b 的图象画在平面直角坐标系内,则有一组a 、b 的取值,使得下列四个图中的一个为正确的是( )③当00<,>ac ab ,直线0ax by c ++=不通过的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 ④已知abc ≠0,且p acb bc a c b a =+=+=+,那么直线p px y +=一定经过( )。
2014年中考复习第12讲_一次函数

考点知识梳理
中考典例精析
基础巩固训练
考点训练
宇轩图书
温馨提示 当直线 y1= k1x+ b1 与 y2= k2x+ b2, 当 k1= k2, b1≠ b2 时,两条直线平行,这样的两条直线可通过平移得到 .
考点知识梳理
中考典例精析
基础巩固训练
考点训练
宇轩图书
考点三
一次函数的性质
一次函数 y=kx+b, 当 k>0 时, y 随 x 的增大而 增 大 ,图象一定经过第一、三象限;当 k<0 时,y 随 x 的增大而减小,图象一定经过第二、四象限.
考点知识梳理
中考典例精析
基础巩固训练
考点训练
宇轩图书
【点拨】 本题考查建立一次函数模型解决方案设计 问题. 解:(1)由图象可设 y 与 x 之间的函数关系式为 y= kx + b , 因 为 点 (50,250) , (200,100) 在 函 数 图 象 上 ,
50k+ b=250, k=-1, ∴ 解得 ∴ y 与 x 之间的 200k+b= 100, b=300,
考点知识梳理
中考典例精析
基础巩固训练
考点训练
宇轩图书
考点四
待定系数法求一次函数解析式
用待定系数法求一次函数解析式的一般步骤 (1)设出含有待定系数的函数解析式 y= kx+ b; (2) 把两个已知条件 (自变量与函数的对应值 ) 代入 解析式,得到关于系数 k, b 的二元一次方程组 ; (3)解二元一次方程组 ,求出待定系数 k, b; (4)将求得的待定系数的值代入 y= kx+ b.
考点知识梳理 中考典例精析 基础巩固训练 考点训练
宇轩图书
方法总结 确定一次函数解析式常用的方法是待定系数法, 具 体步骤是:首先设出一次函数的一般形式,然后把已知 条件代入所设解析式, 得到关于待定系数的方程或方程 组,解方程或方程组求出待定系数的值,从而写出一次 函数的解析式 .
第12课 一次函数及其图象

助学微博
一个防范
一次函数的图象是一条直线,但直线并不一定是一次函数的 图象.
例:已知直线 y=(m+3)x+m2-9 经过点(1,0),求 m 的值. 解答:当 x=1 时,y=0,即 m2+m-6=0.解得 m=2 或 m= -3.很多同学误以为 m+3≠0,m≠-3,舍去 m=-3,故 m=2. 其实,当 m=-3 时,此直线变为 y=0,而 y=0 就是 x 轴, 又因为点(1,0)在 x 轴上,即 x 轴经过点(1,0),所以 m=-3 也 符合题意,不能舍去.故所求的 m 的值为-3 或 2. 如果把本题中的“已知直线”改为“一次函数的图像”,还是 应考虑 m+3≠0 这个限制条件的,要予以区分.
解析 ∵直线不经过第二象限,∴m-2<0,m<2.
题型分类 题型二 待定系数法求一次函数的解析式
【例 2】 如图,直线 l1、l2 相交于点 A(2,3),直线 l1 与 x 轴的交点坐标为(-1,0),直线 l2 与 y 轴的交点坐标为 (0,-2),结合图象解答下列问题: (1)求直线 l1、l2 的解析式;
知能迁移 1 (1)衡阳) 如图,一次函数 y=kx+b 的图象与 x 轴的交点坐标为(2,0), 则下列说法:①y 随 x 的增大而减小;②b>0; ③关于 x 的方程 kx+b=0 的解为 x=2.其中 说法正确的有_①__②__③___.(把你认为说法确 的序号都填上)
(2)已知一次函数 y=3x+m-2 的图象不经过第二象限,则 m 的取值范围是___m_<_2___.
解 (1)设直线 AB 的函数解析式为 y=kx+b,依题意, 解得得∴直AA((线(111,,)A设B00))直的,,线函BB((数A00B,,解的22析))函,,式数∴∴为解0202y析=====式k0k0-++++为2bbbbx,,,,+y=解解2k.得得x+kbkbb====,-2-2依..22题,,意, ∴当直0≤线yA≤B2的时函,数自解变析量式x为的y取=值-范2x围+是2.0≤x≤1. 当 0≤y≤2 时,自变量 x 的取值范围是 0≤x≤1. (2)线段 BC 即为所求.y 随 x 的增大而增大. (2)线段 BC 即为所求.y 随 x 的增大而增大.
第12讲 一次函数

【即时应用】
若直线y=x+3与直线y=2x-1的交点坐标为(4,7),
x 4, x y 3, 则方程组 的解为______ y 7. 2x y 1
【核心点拨】
1.理解一次函数的定义应注意以下三个方面:
(1)形式:y=kx+b;(2)条件:k≠0;(3)实质:函数y是自变量x 的一次式. 2.正比例函数都是一次函数,但一次函数不一定是正比例函数. 3.一次函数的增减性由k的符号决定,与b的符号无关.
2
3.①y=x2+5x;②y=2π r;③y=
②⑤⑥ ⑤y=( 2 3 )x+1;⑥s=30t.其中是一次函数的是_______,是 ②⑥ 正比例函数的是_____.(只填序号)
10 ;④y=kx+b; x
二、一次函数的图象和性质
1.一次函数y=kx+b(k,b是常数,k≠0)的图象和性质
k,b符号
4.(2012·怀化中考)如果点P1(3,y1),P2(2,y2)在一次函数y=2x-
1的图象上,则y1_______y2(填“>”“<”或“=”).
【解析】∵一次函数关系式为y=2x-1,∴y随x的增大而增大, 又∵3>2,∴y1>y2. 答案:>
5.如图,直线y=- 3 x+3与x轴、y轴分别交于A,B两点,则△AOB
【即时应用】 0 1.一次函数y=-2x+b的图象过原点,则b=__.
2.在直线y=2x+1上有两个点(x1,y1)和(x2,y2),且x1>x2,则 > y1___y2. 3.将直线y=-x+1向下平移两个单位后,所得直线的解析式为 y=-x-1 _______. > > 4.直线y=(k-2)x+b+1经过第一、二、三象限,则k___2,b___-1.
第12讲正比例函数(知识解读题型精讲随堂检测)(原卷版)

第12讲正比例函数知识点1:正比例函数的定义一般地,形如y=kx(k≠0)函数,叫做正比例函数,其中k叫做比例系数.知识点2:正比例函数图像和性质:待定系数法求正比例函数解析式1.正比例函数的表达式为y=kx(k≠0),只有一个待定系数k,所以只要知道除(0,0)外的自变量与函数的一对对应值或图象上一个点的坐标(原点除外)即可求出k的值,从而确定表达式.2.确定正比例函数表达式的一般步骤:(1)设——设出函数表达式,如y=kx(k≠0);(2)代——把已知条件代入y=kx中;(3)求——解方程求未知数k; (4)写——写出正比例函数的表达式【题型一:正比例函数的定义】【典例1】(2023春•永定区期末)下列函数中,是正比例函数的是()A.B.C.y=x2D.y=2x﹣1(2023春•赣州期末)下列式子中,表示y是x的正比例函数的是()【变式11】A.y=3x2B.C.D.y2=3x【变式12】(2023春•洪江市期末)下列函数中,是正比例函数的是()A.y=2x﹣1B.C.D.y=2x2+1【变式13】(2023春•朝阳区校级期中)下列变量之间的关系,一个变量是另一个变量的正比例函数的是()A.正方形的面积S随边长x的变化而变化B.面积为20的三角形的一边上的高h随着这边长a的变化而变化C.正方形的周长C随着边长x的变化而变化L/min的流量往外放水,水箱中的剩水量V(单位:L)随着放水时间t(单位:min)的变化而变化【典例2】(2023春•兴隆县期末)已知y=(m+1)x|m|,若y是x的正比例函数,则m的值为()A.1B.﹣1C.1或﹣1D.0【变式21】(2023春•南皮县月考)若函数y=(k+1)x+b﹣2是正比例函数,则()A.k≠﹣1,b=﹣2B.k≠1,b=﹣2C.k=1,b=﹣2D.k≠﹣1,b=2【变式22】(2023春•永春县期末)若y=x+b是正比例函数,则b的值是()A.0B.﹣1C.1D.任意实数【变式23】(2023春•孝感期末)若函数y=﹣2x m﹣2+n+1是正比例函数,则m+n ()A.3B.2C.1D.﹣1【题型二:判断正比例函数图像所在象限】【典例3】(2023春•朔州期末)正比例函数的图象经过()A.第一、二象限B.第一、三象限C.第一、四象限D.第二、四象限【变式31】(2023春•凤庆县期末)正比例函数y=﹣3x的图象经过()象限.A.第一、三象限B.第二、四象限C.第一、四象限D.第二、三象限【变式32】(2023春•南岗区期末)在平面直角坐标系中,正比例函数y=﹣4x 的图象经过()A.第一、二象限B.第一、三象限C.第二、三象限D.第二、四象限【题型三:正比例函数的性质】【典例4】(2023春•乐陵市期末)关于函数y=2x,下列说法错误的是()A.它是正比例函数B.图象经过(1,2)C.图象经过一、三象限D.当x>0,y<0【变式41】(2022秋•东胜区期末)关于函数y=﹣3x,下列说法正确的是()A.该函数的图象经过点(﹣3,1)B.是一次函数,但不是正比例函数C.该函数的图象经过第一、三象限D.随着x的增大,y反而减小【变式42】(2023•金山区二模)已知函数y=kx(k≠0,k为常数)的函数值y 随x值的增大而减小,那么这个函数图象可能经过的点是()A.(0.5,1)B.(2,1)C.(﹣2,4)D.(﹣2,﹣2)【变式43】(2022•临渭区二模)已知正比例函数y=kx(k≠0),当自变量的值减小1时,函数y的值增大3,则k的值为()A.B.C.3D.﹣3【题型四:判断正比例函数的比例系数大小】【典例5】(2022春•南城县校级月考)如图,三个正比例函数的图象分别对应表达式:①y=ax,②y=bx,③y=cx.将a,b,c按从小到大排列并用“<”连接,正确的是()A.a<b<c B.c<b<a C.b<c<a D.a<c<b【变式51】(2022秋•渠县校级期中)三个正比例函数的表达式分别为①y=ax;②y=bx;③y=cx,其在平面直角坐标系中的图象如图所示,则a,b,c的大小关系为()A.a>b>c B.c>b>a C.b>a>c D.b>c>a【变式52】(2023秋•太仓市期末)如图,三个正比例函数的图象分别对应函数关系式:①y=ax,②y=bx,③y=cx,将a,b,c从小到大排列并用“<”连接为()A.a<b<c B.c<a<b C.c<b<a D.a<c<b【题型五:待定系数法求正比例函数解析式】【典例6】(2023春•鼓楼区校级期末)已知y与x成正比例,且当x=2时,y =4.(1)求y与x之间的函数关系式;(2)若点(a,3)在这个函数图象上,求a的值.【变式61】(2023春•荆门期末)已知y与x成正比例,且x=﹣2时y=4,(1)求y与x之间的函数关系式;(2)设点(a,﹣2)在这个函数的图象上,求a.【变式62】(2022秋•城关区期末)已知点(,1)在函数y=(3m﹣1)x的图象上,(1)求m的值,(2)求这个函数的解析式.【变式63】(2022秋•江宁区校级月考)已知y=y2﹣y1,其中y1与x成正比例,y2与x+2成正比例,当x=﹣1时,y=2,当x=2时,y=10.(1)求y与x的函数表达式;(2)当x取何值时,y的值为30?【题型六:正比例函数的图像性质综合】【典例7】(2021春•灵山县期末)(1)小青学习了函数后,对画函数的图象很感兴趣,她作函数y=|x|的图象过程如下(请补充完整空格的部分):当x≥0时,得y=x,当x<0时,得y=﹣x,她在坐标系中画出了如图1的图象,所以函数y=|x|的图象由两条构成;同理,她用类似的方法和过程作出函数y=|x﹣1|的图象;(2)请你在图2的坐标系中作出y=|x﹣1|的图象;(3)学习经验拓展:根据上述的过程获得的经验,请你画出函数y=|x﹣1|+|x|的图象.【变式7】(2022秋•大兴区校级期末)探究活动:探究函数y=|x|的图象与性质,下面是小左的探究过程,请补充完整.(1)下表见y与x的几组对应值.x…﹣3﹣2﹣10123…y…3m10123…直接写出m的值是.(2)如图.在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.请你先描出点(﹣2.m),然后画出该函数的图象.(3)观察图象,写出函数y=|x|的一条性质:.1.(2023春•东城区校级期中)下列函数中,是正比例函数的是()A.y=2x B.y=C.y=x2D.y=2x﹣1 2.(2023春•信都区期末)正比例函数y=x的图象大致是()A.B.C.D.3.(2023•凤凰县模拟)下列图象中,表示正比例函数图象的是()A.B.C.D.4.(2023春•灵宝市期末)已知(x1,y1)和(x2,y2)是直线y=﹣3x上的两点,且x1>x2,则y1与y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2D.以上都有可能5.(2023春•南宁期末)一次函数y=2x的图象经过的象限是()A.第一、三象限B.第二、四象限C.第二、三象限D.第一、二象限6.(2023春•廊坊期末)下列关于正比例函数y=3x的说法中,正确的是()A.当x=3时,y=1B.它的图象是一条过原点的直线C.y随x的增大而减小D.它的图象经过第二、四象限7.(2022春•道里区期末)已知函数y=(k﹣3)x,y随x的增大而减小,则常数k的取值范围是()A.k>3B.k<3C.k<﹣3D.k<0 8.(2022•碑林区校级模拟)若一个正比例函数的图象经过点(2,﹣3),则这个图象一定也经过点()A.(﹣3,2)B.(,﹣1)C.(,﹣1)D.(﹣,1)9.(2021•芦淞区模拟)已知正比例函数y=(m﹣1)x的图象上两点A(x1,y1),B(x2,y2),当x1<x2时,有y1>y2,那么m的取值范围是()A.m<1B.m>1C.m<2D.m>0 10.(2019•武功县一模)对于正比例函数y=﹣2x,当自变量x的值增加1时,函数y的值增加()A.B.C.2D.﹣2 11.(2023春•寻乌县期末)若函数y=3x m﹣2是正比例函数,则m的值是.12.(2022春•青山区期末)已知函数y=2x+m﹣1是正比例函数,则m=.13.(2023•范县一模)写出一个y随x的增大而减小的正比例函数的表达式.14.(2021•包河区校级开学)已知正比例函数y=kx,当﹣2≤x≤2时,函数有最大值3,则k的值为.15.(2022秋•宁波期末)已知y与x之间成正比例关系,且当x=﹣1时,y=3.(1)求y与x之间的函数关系式;(2)当x=2时,求y的值.16.(2023春•陵城区校级月考)已知y﹣2与3x﹣4成正比例函数关系,且当x =2时,y=3.(1)写出y与x之间的函数解析式;(2)若点P(a,﹣3)在这个函数的图象上,求a的值;(3)若y的取值范围为﹣1≤y≤1,求x的取值范围.17.(2023春•西城区校级期中)函数问题:(1)作出y与x的函数y=2|x|的图象;①自变量x的取值范围是;②列表并画出函数图象:x…﹣2﹣1012…y…4…③当自变量x的值从1增加到2时,则函数y的值增加了.(2)在一个变化的过程中,两个变量x与y之间可能是函数关系,也可能不是函数关系:下列各式中,y是x的函数的是.①x+y=1;②|x+y|=1;③xy=1;④x2+y2=1.。
人教版数学九年级上册第12讲 一次函数-课件

-2
解析:∵若正比例函数y=kx的图象经过第二、四象限,∴k<0,∴符合要求的k的值是-2, 故答案为:-2.
【思路点拨】据正比例函数的性质;当k<0时,正比例函数y=kx的图象经过第二、四 象限,可确定k的取值范围,再根据k的范围选出答案即可.
< 解析:∵一次项系数2>0,又∵-1<2,∴y1<y2.故答案是:<.
(0,6) 解析:根据题意令x=0,解得:y=6,∴一次函数y=-3x+6的图象与y轴的交点坐标是(0,6).
【思路点拨】根据一次项系数的符号,以及一次函数的性质即可直接判断;根据题意令x=0, 解得y值即可得图象与y轴的交点坐标.
(2,0)
(0,4)
4
解析:令y=0得一次函数的图象与x轴交点坐标为(2,0),令x=0得一次函数的图象与y轴交 点坐标为(0,4),易求面积为4.
解:一次函数y=kx+b的图象经过M(0,2)和N(1,3)两点,可用待定系数法求得k=1, b=2.∴y=x+2.
B
解析:把点(1,m)代入y=3x,可得:m=3,故选B. -1
第12讲 一次函数
B
B
D 解析:由两直线l1与l2的方程联立求解可得答案.
A 解析:由图象平移规律“左加右减,上加下减”,可知选A.
-1
1
解析:因函数y=(k+1)x+k2-1是一次函数,所以k+1≠0,即k≠-1;又函数y=(k+1)x +k2-1是正比例函数,所以k+1≠0且k2-1=0,所以k=1.
C
解析:∵k<0,∴-k>0,∴一次函数y=kx-k的图象经过第一、二、四象限.故选C.
第12讲_一次函数

2.一次函数的图象
a. 正比例函数y=kx(k≠0)的图象是过点(_____),(______) 0,0 1,k 一条直线 的_________。 b b b.一次函数y=kx+b(k≠0)的图象是过点(0,___),(____, 一条直线 0)的__________。 k c.一次函数y=kx+b(k≠0)的图象与k,b符号的关系:
5.(2010·黔南州中考)已知正比例函数 y=kx(k≠0)的图象如图所示,则在下列选 项中k值可能是( (A)1 (C)3 ) (B)2 (D)4
3
【解析】选B.若正比例函数y= kx经过(3,5),此时k= 5 ;若 经过(2,6)此时k=3,由图象可知 5 <k<3,故选B.
3
二、填空题(每小题6分,共24分) 6.已知y是x的一次函数,下表给出了部分对应值,则m的值 是_____.
> k___0,b___0 >
> < k___0,b___0
< > k___0,b___0
< < k___0,b___0
3.一次函数的性质
一次函数y=kx+b(k ≠ 0)的性质: 增大 ⑴当k>0时,y随x的增大而_________。 减小 ⑵当k<0时,y随x的增大而_________。
例:点A(5,y1)和B(2,y2)都在直线y= -x+1上,则y1与 y2的关系是( ) C A、y1≥ y2 B、y1= y2 C、y1<y2 D、y1>y2
11.(12分)如图,已知一次函数y=kx+b的图象经过A(-2, -1),B(1,3)两点,并且交x轴于点C,交y轴于点D,
(1)求该一次函数的解析式;
第12讲一次函数复习PPT课件

当b=0 时,y=kx+b 即为 y=kx,
所以正比例函数,是一次函数的特例.
(1)若y=5x3m-2是正比例函数,m= 1 。 (2)若 y (m 2)xm23 是正比例函数,m= -2 。
考点2、正比例函数与一次函数的图象与性质
正比例函数y=kx的图象与性质
(1)图象:正比例函数y= kx (k 是常 数,k≠0)) 的图象是经过原点的一条直线, 我们称它为直线y= kx 。
1、通过近三年潍坊中考考点的展示及连接中考环节,体验潍坊中考对一次函 数的考查。 2、通过一次函数知识网络的整理,整体把握本讲的知识构成。 3、通过考点精讲及例习题,进一步加深以下知识点的认知及应用:
(1)一次函数及正比例函数的概念。 (2)一次函数的图象及性质。 (3)用待定系数法求一次函数的解析式。 (4)一次函数的实际应用。 4、通过检测过关环节反馈本讲知识的达标情况,及时查缺补漏。
4.函数y=ax+b与y=bx+a的图象在同一坐标系内的大致位 置正确的是 ( C)
A
B
C
D
5.(202X·安徽第20题)如图,一次函数y=kx+b的图象分别与反比例函数y= a x
的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.
(1)求函数y=kx+b和y= a 的表达式; x
【答案】 (1)由图象可知,当x=4 h时,y=380 km,故从小刚家到该景区乘车一共用了 4小时. (2)设直线AB的函数关系式为y=kx+b, 由题意可知:A(1,80),B(3,320),
∴
∴线段AB的解析式为y=120x-40(1≤x≤3). (3)小刚一家出发2.5小时时处于AB段,把x=2.5代入y=120x-40,得y=120×2.540=260(km), 380-260=120(km). 所以小刚一家出发2.5小时时离目的地120 km.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第12讲:一次函数(正比例函数)的应用陈剑波2010---2013河南中考题欣赏(2012)19(9分)甲、乙两人同时从相距90千米的A地前往B地,甲乘汽车,乙骑摩托车,甲到达B地停留半个小时后返回A地,如图是他们离A地的距离(千米)与(时间)之间的函数关系图像(1)求甲从B地返回A地的过程中,与之间的函数关系式,并写出自变量的取值范围;(2)若乙出发后2小时和甲相遇,求乙从A地到B地用了多长时间?练习1、(2013•十堰)张师傅驾车从甲地到乙地,两地相距500千米,汽车出发前油箱有油25升,途中加油若干升,加油前、后汽车都以100千米/小时的速度匀速行驶,已知油箱中剩余油量y(升)与行驶时间t(小时)之间的关系如图所示.以下说法错误的是( ) A.加油前油箱中剩余油量y(升)与行驶时间t(小时)的函数关系是y=﹣8t+25 B.途中加油21升 C.汽车加油后还可行驶4小时 D.汽车到达乙地时油箱中还余油6升2、(2013•孝感)如图,一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水量是两个常数,容器内的水量y(单位:升)与时间x(单位:分)之间的部分关系.那么,从关闭进水管起 分钟该容器内的水恰好放完.3、(2013•黄冈)钓鱼岛自古就是中国领土,中国政府已对钓鱼岛开展常态化巡逻.某天,为按计划准点到达指定海域,某巡逻艇凌晨1:00出发,匀速行驶一段时间后,因中途出现故障耽搁了一段时间,故障排除后,该艇加快速度仍匀速前进,结果恰好准点到达.如图是该艇行驶的路程y(海里)与所用时间t(小时)的函数图象,则该巡逻艇原计划准点到达的时刻是 .4、(2013年广东湛江)周末,小明骑自行车从家里出发到野外郊游.从家出发1小时后到达南亚所(景点),游玩一段时间后按原速前往湖光岩.小明离家1小时50分钟,妈妈驾车沿相同路线前往湖光岩,如图是他们离家的路程与小明离家时间的函数图象.(1)求小明骑车的速度和在南亚所游玩的时间;(2)若妈妈在出发后分钟时,刚好在湖光岩门口追上小明,求妈妈驾车的速度及所在直线的函数解析式.5、(2013•南宁)在一条笔直的公路上有A、B两地,甲骑自行车从A地到B地;乙骑自行车从B地到A地,到达A地后立即按原路返回,如图是甲、乙两人离B地的距离y(km)与行驶时x(h)之间的函数图象,根据图象解答以下问题:(1)写出A、B两地直接的距离;(2)求出点M的坐标,并解释该点坐标所表示的实际意义;(3)若两人之间保持的距离不超过3km时,能够用无线对讲机保持联系,请直接写出甲、乙两人能够用无线对讲机保持联系时x的取值范围.6、(2013•牡丹江)甲乙两车从A市去往B市,甲比乙早出发了2个小时,甲到达B市后停留一段时间返回,乙到达B市后立即返回.甲车往返的速度都为40千米/时,乙车往返的速度都为20千米/时,下图是两车距A市的路程S(千米)与行驶时间t(小时)之间的函数图象.请结合图象回答下列问题:(1)A、B两市的距离是千米,甲到B市后, 小时乙到达B市;(2)求甲车返回时的路程S(千米)与时间t(小时)之间的函数关系式,并写出自变量t的取值范围;(3)请直接写出甲车从B市往回返后再经过几小时两车相距15千米.7、(2013•鄂州)甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系;折线BCD表示轿车离甲地距离y(千米)与x(小时)之间的函数关系.请根据图象解答下列问题:(1)轿车到达乙地后,货车距乙地多少千米?(2)求线段CD对应的函数解析式.(3)轿车到达乙地后,马上沿原路以CD段速度返回,求轿车从甲地出发后多长时间再与货车相遇(结果精确到0.01).8、(2013•株洲)某生物小组观察一植物生长,得到植物高度y(单位:厘米)与观察时间x(单位:天)的关系,并画出如图所示的图象(AC是线段,直线CD平行x轴).(1)该植物从观察时起,多少天以后停止长高?(2)求直线AC的解析式,并求该植物最高长多少厘米?9、(2013•绥化)2008年5月12日14时28分四川汶川发生里氏8.0级强力地震.某市接到上级通知,立即派出甲、乙两个抗震救灾小组乘车沿同一路线赶赴距出发点480千米的灾区.乙组由于要携带一些救灾物资,比甲组迟出发1.25小时(从甲组出发时开始计时).图中的折线、线段分别表示甲、乙两组的所走路程y甲(千米)、y乙(千米)与时间x(小时)之间的函数关系对应的图象.请根据图象所提供的信息,解决下列问题:(1)由于汽车发生故障,甲组在途中停留了 小时;(2)甲组的汽车排除故障后,立即提速赶往灾区.请问甲组的汽车在排除故障时,距出发点的路程是多少千米?(3)为了保证及时联络,甲、乙两组在第一次相遇时约定此后两车之间的路程不超过25千米,请通过计算说明,按图象所表示的走法是否符合约定?10、(2013•徐州)为增强公民的节约意识,合理利用天然气资源,某市自1月1日起对市区民用管道天然气价格进行调整,实行阶梯式气价,调整后的收费价格如表所示:每月用气量单价(元/m3)不超出75m3的部分 2.5a超出75m3不超出125m3的部分超出125m3的部分a+0.25(1)若甲用户3月份的用气量为60m3,则应缴费 元;(2)若调价后每月支出的燃气费为y(元),每月的用气量为x(m3),y与x之间的关系如图所示,求a的值及y与x之间的函数关系式;(3)在(2)的条件下,若乙用户2、3月份共用1气175m3(3月份用气量低于2月份用气量),共缴费455元,乙用户2、3月份的用气量各是多少?11、(2013•衡阳)为了响应国家节能减排的号召,鼓励市民节约用电,我市从2012年7月1日起,居民用电实行“一户一表”的“阶梯电价”,分三个档次收费,第一档是用电量不超过180千瓦时实行“基本电价”,第二、三档实行“提高电价”,具体收费情况如右折线图,请根据图象回答下列问题;(1)档用地阿亮是180千瓦时时,电费是 元;(2)第二档的用电量范围是 ;(3)“基本电价”是 元/千瓦时;(4)小明家8月份的电费是328.5元,这个月他家用电多少千瓦时?12、(2013陕西)“五一节“期间,申老师一家自驾游去了离家170千米的某地,下面是分们离家的距离(千米)与汽车行驶时间(小时)之间的函数图象。
Oy/千米x/小时901701.52.5BA第21题图(1)求他们出发半小时时,离家多少千米?(2)求出AB段图象的函数表达式(3)他们出发2小时时,离目的地还有多少千米?;13、(2013•湖州)某农庄计划在30亩空地上全部种植蔬菜和水果,菜农小张和果农小李分别承包了种植蔬菜和水果的任务.小张种植每亩蔬菜的工资y(元)与种植面积m(亩)之间的函数如图①所示,小李种植水果所得报酬z(元)与种植面积n(亩)之间函数关系如图②所示.(1)如果种植蔬菜20亩,则小张种植每亩蔬菜的工资是元,小张应得的工资总额是 元,此时,小李种植水果 亩,小李应得的报酬是 元;(2)当10<n≤30时,求z与n之间的函数关系式;(3)设农庄支付给小张和小李的总费用为w(元),当10<m≤30时,求w与m之间的函数关系式.14、(2013•淮安)甲、乙两地之间有一条笔直的公路L,小明从甲地出发沿公路ι步行前往乙地,同时小亮从乙地出发沿公路L骑自行车前往甲地,小亮到达甲地停留一段时间,原路原速返回,追上小明后两人一起步行到乙地.设小明与甲地的距离为y1米,小亮与甲地的距离为y2米,小明与小亮之间的距离为s米,小明行走的时间为x分钟.y1、y2与x之间的函数图象如图1,s与x之间的函数图象(部分)如图2.(1)求小亮从乙地到甲地过程中y1(米)与x(分钟)之间的函数关系式;(2)求小亮从甲地返回到与小明相遇的过程中s(米)与x(分钟)之间的函数关系式;(3)在图2中,补全整个过程中s(米)与x(分钟)之间的函数图象,并确定a的值.15、(2013•遂宁)四川省第十二届运动会将于2014年8月18日在我市隆重开幕,根据大会组委会安排,某校接受了开幕式大型团体操表演任务.为此,学校需要采购一批演出服装,A、B两家制衣公司都愿成为这批服装的供应商.经了解:两家公司生产的这款演出服装的质量和单价都相同,即男装每套120元,女装每套100元.经洽谈协商:A公司给出的优惠条件是,全部服装按单价打七折,但校方需承担2200元的运费;B公司的优惠条件是男女装均按每套100元打八折,公司承担运费.另外根据大会组委会要求,参加演出的女生人数应是男生人数的2倍少100人,如果设参加演出的男生有x人.(1)分别写出学校购买A、B两公司服装所付的总费用y1(元)和y2(元)与参演男生人数x之间的函数关系式;(2)问:该学校购买哪家制衣公司的服装比较合算?请说明理由.16、(2013年黄石)一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为千米,出租车离甲地的距离为千米,两车行驶的时间为小时,、关于的函数图像如右图所示:y(千米)x(小时)106O600出租车客车(1)根据图像,直接写出、关于的函数关系式;(2)若两车之间的距离为千米,请写出关于的函数关系式;(3)甲、乙两地间有、两个加油站,相距200千米,若客车进入加油站时,出租车恰好进入加油站,求加油站离甲地的距离.17、(2013年南京)小丽驾车从甲地到乙地。
设她出发第x min时的速度为y km/h,图中的折线表示她在整个驾车过程中y与x之间的函数关系。
(1) 小丽驾车的最高速度是km/h;(2) 当20x30时,求y与x之间的函数关系式,并求出小丽出发第22 min 时的速度;(3) 如果汽车每行驶100 km耗油10 L,那么小丽驾车从甲地到乙地共耗油多少升?方法指导如果物体的运动速度随着时间均匀增加(或减少),那么其在某个时间段内的平均速度为该时间段开始时刻的速度与结束时刻的速度的平均数。
例如,由图像可知,第5 min到第10 min汽车的速度随着时间均匀增加,因此汽车在该时间段内的平均速度为=36(km/h)。
该时间段行驶的路程为36=3(km)。
ABCDx(min) y(km/h) 240 480 720O 100 200 300 400 500EF。