电伴热带热效力计算

合集下载

电伴热功率计算

电伴热功率计算

电伴热功率计算全文共四篇示例,供读者参考第一篇示例:电伴热系统是一种常用于管道、容器、储槽等设备的加热方式,它利用电伴热导线产生的热量来保持设备内部的温度恒定。

对于电伴热系统的设计和安装,关键的一点是需要准确计算电伴热的功率,以确保设备能够达到所需的加热效果。

电伴热功率的计算是根据设备的特性、使用环境和热阻的情况来确定的。

通常情况下,电伴热功率计算的公式如下:P = (T – T0) / RP表示电伴热功率,单位为瓦特(W);T表示设备所需维持的恒定温度,单位为摄氏度(℃);T0表示环境温度,单位为摄氏度(℃);R表示电伴热线路的总热阻,单位为摄氏度-瓦特/米(℃-W/m)。

在实际计算中,需要考虑以下因素:1. 设备的工作温度:根据设备的使用要求和工艺流程,确定设备所需维持的恒定温度。

2. 环境温度:考虑设备周围环境的温度,即环境温度T0。

3. 电伴热线路的热阻:电伴热线路的热阻是指电伴热导线和绝缘层的导热能力,通常通过实验或计算获得。

4. 设备的热容量:设备的热容量是指设备在一定时间内吸收或释放热量的能力,通常通过设备的物理参数和相关数据获得。

根据以上因素,可以确定设备所需的电伴热功率。

需要注意的是,电伴热功率的计算并非一成不变的,随着设备使用环境的变化、工艺流程的改变或设备的老化,电伴热功率可能需要重新计算和调整。

除了电伴热功率的计算,还需要考虑以下几点:1. 安全性:电伴热系统需要符合相关安全规范和标准,避免出现短路、过载等安全隐患。

2. 节能性:尽量选用高效的电伴热导线和控制系统,减少能源的浪费。

3. 可靠性:选择质量可靠的电伴热材料和设备,确保系统长期稳定工作。

4. 维护性:定期检查电伴热系统的状况,及时发现和处理问题,延长设备的使用寿命。

电伴热功率的计算是电伴热系统设计中的重要环节,决定了设备能否正常运行和达到预期的加热效果。

通过合理计算电伴热功率,并且结合安全、节能、可靠和维护等方面的考虑,可以确保电伴热系统的高效运行和长期稳定。

电伴热功率计算

电伴热功率计算

电伴热功率计算
电伴热功率计算是确保电伴热系统正常运行的关键环节。

以下是对电伴热功率计算的一些基本介绍:
首先,电伴热功率计算主要依据国际通用的功率计算公式,即P=W/t,这里的P代表功率,W代表功,t代表时间。

在实际应用中,这个公式可以转化为P=UI,其中U表示电压,I表示电流。

这是因为在电伴热系统中,功率、电压和电流之间存在这样的关系。

其次,电伴热带的功率计算还需要考虑到电阻的因素。

电流的计算公式可以是I=U/R,其中R表示电阻。

通过这个公式,我们可以知道在给定的电压下,电阻越大,电流越小,从而影响到电伴热带的功率。

另外,需要注意的是,电伴热带的功率并不是一成不变的,它会受到使用环境和伴热要求的影响。

因此,在计算电伴热带的功率时,需要考虑到这些实际因素,以确保系统的正常运行。

总的来说,电伴热功率计算是一个复杂的过程,需要综合考虑多个因素。

正确的功率计算可以确保电伴热系统的稳定运行,从而提高设备的效率和安全性。

希望以上信息能够对你有所帮助。

电伴热工程量计算公式

电伴热工程量计算公式

电伴热工程量计算公式电伴热在很多工程领域都有应用,要准确计算其工程量,那可得有点小窍门。

先来说说电伴热的原理,其实就像给管道或者设备穿上了一件“保暖衣”,通过电能转化为热能,让它们在寒冷的环境中也能正常工作。

咱们来看看电伴热工程量的计算公式。

一般来说,电伴热的工程量计算要考虑几个关键因素。

首先是管道的长度,这个很好理解,管道越长,需要的伴热也就越多。

然后是管道的直径,粗的管道和细的管道,所需要的伴热功率是不一样的。

还有环境温度,在极寒的地方和稍微冷一点的地方,伴热的需求也有差别。

计算公式大概是这样:电伴热工程量 = 管道长度 ×(每米管道所需伴热功率 ×修正系数)。

这里的修正系数就比较复杂啦,它要考虑到保温材料的性能、管道的材质、环境温度的影响等等。

给您讲个我亲身经历的事儿吧。

有一次,我们接到一个工厂的项目,要给他们的化工管道安装电伴热。

那管道弯弯曲曲,长得像条大蟒蛇。

我们一开始按照常规的计算方法估算了工程量,结果安装好之后发现温度不够,达不到预期的效果。

后来仔细一研究,才发现是忽略了管道材质对散热的影响,修正系数没算对。

这可把我们折腾得够呛,又重新计算,重新采购材料,重新安装。

那几天,我们团队的小伙伴们忙得脚不沾地,累得腰酸背痛。

再说说每米管道所需伴热功率这个事儿。

不同的介质在管道里流动,需要的伴热功率也不同。

比如水和油,它们的比热容不一样,保持相同温度所需要的热量就不同。

这就要求我们在计算的时候,要对介质的特性有清楚的了解。

另外,电伴热的类型也有好几种,像自限温电伴热带、恒功率电伴热带等等,它们的性能和适用场景也不一样,这也会影响到工程量的计算。

总之,计算电伴热工程量可不是一件简单的事儿,需要综合考虑好多因素,一个不小心就可能出错。

所以啊,咱们得认真仔细,多做功课,才能保证工程的质量和效果。

希望我讲的这些能对您计算电伴热工程量有所帮助,让您在实际操作中少走弯路,顺顺利利完成任务!。

电伴热计算

电伴热计算

25
1 -1/4 32
1 -1/2 40
2
50
2-1/2 65
3
80
3-1/2 95
4
100
4-1/2 115
5
130
6
150
8
200
10 250
12 300
14 350
16 400
18 450
20 500
24 600
保温层厚度(mm/in)
10
15 25
1/2 3/4 1
8.86 6.73 5.74
35 1-1/2 4.59
10.34 12.31 14.77 17.06 19.69 23.13 27.56 31.01 34.45 37.90 41.83 49.22 63.16 77.76 91.70 100.40 114.2 128.1 141.9 169.6
7.87 9.02 10.83 12.30 14.11 16.57 19.36 21.82 24.12 26.41 29.04 33.96 43.15 52.99 62.18 68.08 77.27 86.46 95.81 114.2
C
---------
E -----
管道材料修正系数 安全系数
例 : 管 径 80mm, 管 道 长 度 100m, 管 材 为 碳 钢 , 介 质 为 原 油 , 维 持
温 度 50℃ , 环 境 最 低 温 度 -10℃ , 保 温 材 料 岩 棉 , 保 温 层 厚 度
25mm, 计 算 每 米 管 道 热 损 失 。
C1 = 1 E = 1.2
(查 表 三 “ 管 道 材 料 修 正 系 数 ” ) ( 一 般 取 值 为 1.2)

电伴热计算公式

电伴热计算公式

电伴热技术在北方架空燃气管道的应用2010-2-20李连星刘强摘要:比较了北方地区架空燃气管道的3种伴热方式,介绍了电热带及电伴热的工程应用。

关键词:架空燃气管道;电伴热;电热带;保温Application of Elcetric Tracing Technology to Northern Overhead Gas PipelineLI Lian-xing,LIU QiangAbstract:The three kinds of tracing modes of overhead gas pipeline in the northern region are compared,and the engineering applications of r ibbon heater and electric tracing are introduced.Key words:overhead gas pipeline;electric tracing;ribbon heater;ther mal insulation随着管道燃气的逐渐普及,在我国北方地区,由于受地形、房屋建筑结构等条件的制约,部分庭院燃气管道不能埋地敷设。

而北方地区的城市气源主要以人工煤气、液化石油气、液化石油气混空气等湿燃气为主,在冬季,庭院燃气管道明管敷设,导致管道内的湿燃气结露结冰,不仅影响管道的输送能力,还存在很大的安全隐患。

燃气管道本身是不具备发热能力的,单纯的保温不能解决以上问题。

要解决湿燃气的结露结冰问题,就需要对架空的燃气管道做伴热及保温处理。

1 伴热方式① 3种伴热方式的比较目前,管道的伴热方式有电伴热、蒸汽伴热、热水夹套管伴热3种。

蒸汽伴热和热水夹套管伴热因受热源的影响和制约较大,不适用于小区庭院燃气管道伴热。

而电伴热热源方便灵活,热效率可达80%~90%,是热效率最高的一种热保护方式,具有运行可靠、不需经常维修等优点,适用于小区庭院燃气管道伴热。

电伴热计算公式

电伴热计算公式

管道热损失计算公式:Q(w)=2 π * λ *L*(tr-tu)/ln(D/d)式中:D(m)= 管道加保温层的外径( 单位m)d(m) = 管道外径( 单位m)π =3.14λ = 绝热层导热系数(w/m. ℃)L(m)= 管道长度( 单位m)tr( ℃)= 管道内部流体要保持温度( 单位℃)tu( ℃)= 外界环境最低温度( 单位℃)计算管道所需要的热负荷QtQt=Q(w)*n式中:n 保温材料的保温系数(见下表):fsd 保温系数导热常数(W/m ℃)玻璃纤维1.00.036矿渣棉1.060.038矿渣毯1.200.043发泡塑料1.170.042聚氨酯0.670.024每个阀门需要的发热电缆长度等于每米管道所需要的电缆长度与散热系数的乘积。

各种阀门的散热系数如右表:每个阀门需要的发热电缆长度等于每米管道所需要的电缆长度与散热系数的乘积。

闸门1.3蝶阀,节流阀0.7球阀0.8球心阀1.2各种阀门的散热系数如右表:Q=(To-Ta)/[0.5*D1*ln(D1/Do)/λ+1/αS]式中:Q—以每平方米绝热层外表面积表示的热损失量,(W/ ㎡)To—罐体外表面温度(℃无衬里时,取介质的正常运行温度;有内衬时,按有外保温层存在的条件下进行传热计算确定;Ta—环境温度,(℃)运行期间平均气温;D1—绝热层外径(m)Do—罐体外经(m)λ—绝热层导热系数,(W/m* ℃)αS—绝热层外表面向周围环境的放热系数,(W/㎡*℃)αS=1.163*(10+6W )W为当地年平均风速,无风速时αS取11.63箱体热损失量计算公式:Q=(To-Ta)/(δ/λ+1/αS)(W/㎡)式中δ—绝热层厚度(m)其余同上。

电伴热带热效力计算

电伴热带热效力计算

电伴热带热效力一、电伴热原理简介自控温电热带是由导电聚合物和两条平行金属导线及绝缘层构成。

其特点是导电聚合物具有很高的电阻正温度系数特性,且相互并联;能随被加热体系的温度变化自动调节输出功率,自动限制加热的温度。

电热带接通电源后,电流由一根线芯经过导电材料到另一线芯而形成回路。

电能使导电材料升温,其电阻随即增加,当芯带温度升至某值之后,电阻大到几乎阻断电流的程度,其温度不再升高,与此同时电热带向温度较低的被加热体系传热。

电热带的功率主要受控于传热过程,随被加热体系的温度自动调节输出功率。

二、性能参数:1.温度范围:最高维持温度65℃,最高承受温度105℃2.施工温度:最低-60℃3.热稳定性:由10℃至99℃间来回循环300次后,热线发热量维持在90%以上。

4.工作电压:220V三、名词解释:1.PTC效应及PTC材料:PTC效应即电阻正温度系数效应(Positive Temperature coefficienT),特指材料电阻随温度升高而增大,并在某一温区急剧增大的特性。

具有PTC效应的材料称为PTC材料。

2.标称功率:额定电压下,在一定保温层内以电缆伴热的管道温度为10℃时,每米温控伴热电缆输出的稳态电功率。

3.温控指数:温度每升高1℃时,电缆输出功率的下降值或温度每下降1℃时,电缆输出功率的增加值。

4.温控伴热电缆(自控温电热带)维持温度:它分为三种温度区范围:低温、中温、高温系列最高维持温度分别为70±5℃,105±5℃,135±5℃。

5.最高维持温度:用一定型号的电缆伴热某一体系时,能使体系维持到的最高温度。

它是一个相对参数,与体系的热损失大小有关,与伴热电缆的最高表面温度有关。

若设计得当,可使体系维持在从最高维持温度到环境温度之间的任度。

若单位时间内温控伴热电缆向体系传递的热量等于体系向环境传递的热量,体系的温度便得以维持不变。

四、管线伴热工艺参数:1.介质:2.维持温度℃3.环境最低温度℃4.最高操作温度:a.连续操作温度 b.扫线操作温度5.管材6.管径mm7.管道长度m8.保温材料9.保温层厚度mm10.环境:a.室内或室外b.地面或埋地c.防爆或非防爆d.防腐或非防腐11.电压五、散热量计算已知;管径分别是2″、3″、4″、6″,管材为碳钢,介质为水,维持温度5℃,环境最低温度-20℃,保温材料岩棉,保温层厚度50mm,分别计算每米管道热损失。

电伴热计算书

电伴热计算书
第二步:从表 1 查出管道散热量(QB),如果管道在室内,将 QB 乘上 0.9。 取 QB=15.10
第三步:将第二步算出的 QB 乘上表 1 左下角的保温系数,求得 QT=QB×f 以瓦特/米表 示。伴热的目的就是补偿 QT。
QT=QB×f=15.10×1.06=16w/m
表 1.管道散热量(QB)
TC,管道最高持续性的操作温度(℃)。取 45℃ Ti,管道最高偶然性的操作温度(℃)。取 45℃ QT,管道在 TM 温度时每米的散热量。 第一步:先根据管道最高持续性及偶然性的操作温度来选择热线系列(如下表)
根据管道最高持续性操作温度 TC=45℃及偶然性的操作温度 Ti=45℃。发现 BTV 产品 可用
自控热线 系列
BTV QTV XTV
热线最高耐温范围 持续性的
65℃ 110℃ 121℃
偶然性的 85℃
215℃
第二步:选择电压 热线电压级别: 1.中国电压是 220V,所以选择 220V 级别的热线。 第三步:从下表中来选择热线的功率类别,表的横轴是管道维持温度,纵轴是热线安装 在管道上时每料放出的热量,选择时要确认放热量要等于或大于管道散热量 QT。由于 自控热线的热量随环境温度而变化,所以每类热线都是一条向右下倾斜的曲线。
33.70 51.50 69.90 108.20 18.30 28.10 34.50 53.50
保温材料:
保温系数:
导热常数(w/m℃)
玻璃纤维(Class Fibre)
1.0
0.036
矿渣棉(Mineral or rock wool)
1.06
0.038
矿渣毯(Mineral Fiber Blanket)
保温层厚 度
(mm) 20
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电伴热带热效力一、电伴热原理简介自控温电热带是由导电聚合物和两条平行金属导线及绝缘层构成。

其特点是导电聚合物具有很高的电阻正温度系数特性,且相互并联;能随被加热体系的温度变化自动调节输出功率,自动限制加热的温度。

电热带接通电源后,电流由一根线芯经过导电材料到另一线芯而形成回路。

电能使导电材料升温,其电阻随即增加,当芯带温度升至某值之后,电阻大到几乎阻断电流的程度,其温度不再升高,与此同时电热带向温度较低的被加热体系传热。

电热带的功率主要受控于传热过程,随被加热体系的温度自动调节输出功率。

二、性能参数:1.温度范围:最高维持温度65℃,最高承受温度105℃2.施工温度:最低-60℃3.热稳定性:由10℃至99℃间来回循环300次后,热线发热量维持在90%以上。

4.工作电压:220V三、名词解释:1.PTC效应及PTC材料:PTC效应即电阻正温度系数效应(Positive Temperature coefficienT),特指材料电阻随温度升高而增大,并在某一温区急剧增大的特性。

具有PTC效应的材料称为PTC材料。

2.标称功率:额定电压下,在一定保温层内以电缆伴热的管道温度为10℃时,每米温控伴热电缆输出的稳态电功率。

3.温控指数:温度每升高1℃时,电缆输出功率的下降值或温度每下降1℃时,电缆输出功率的增加值。

4.温控伴热电缆(自控温电热带)维持温度:它分为三种温度区范围:低温、中温、高温系列最高维持温度分别为70±5℃,105±5℃,135±5℃。

5.最高维持温度:用一定型号的电缆伴热某一体系时,能使体系维持到的最高温度。

它是一个相对参数,与体系的热损失大小有关,与伴热电缆的最高表面温度有关。

若设计得当,可使体系维持在从最高维持温度到环境温度之间的任度。

若单位时间内温控伴热电缆向体系传递的热量等于体系向环境传递的热量,体系的温度便得以维持不变。

四、管线伴热工艺参数:1.介质:2.维持温度℃3.环境最低温度℃4.最高操作温度:a.连续操作温度 b.扫线操作温度5.管材6.管径mm7.管道长度m8.保温材料9.保温层厚度mm10.环境:a.室内或室外b.地面或埋地c.防爆或非防爆d.防腐或非防腐11.电压五、散热量计算已知;管径分别是2″、3″、4″、6″,管材为碳钢,介质为水,维持温度5℃,环境最低温度-20℃,保温材料岩棉,保温层厚度50mm,分别计算每米管道热损失。

Q = q ×Δt ×K ×C ×E(w/m)Q -----每米管道的散热量(W/m)q -----管道的散热量(1℃/m时)TW -----维持温度TH -----环境最低温度Δt -----TW –THK -----保温材料导热系数C -----管道材料修正系数E -----安全系数(1)、计算温差Δt = TW –TH = 5-(-20)= 25(2)、计算每米管道的散热量K = 0.044 (查表一“保温材料导热系数”)q1 = 7.05q2 = 9.03q3 = 10.83q4 = 14.6 (查表二“每米管道1℃温差时的热损失”)C1 = 1 (查表三“管道材料修正系数”)E = 1.2 (一般取值为1.2)Q 1= q1×Δt×K × C × E =7.05×25×0.044×1×1.2= 9.306 W/m即,每米管道热损失为9.306 W<25W (25W为我方提供的电伴热带的功率)Q 2= q2×Δt×K × C × E =9.03×25×0.044×1×1.2= 11.9196 W/m即,每米管道热损失为11.9196 W<25WQ 3= q3×Δt×K × C × E =10.83×25×0.044×1×1.2= 14.2956 W/m即,每米管道热损失为14.2956 W<25WQ 4= q1×Δt×K × C × E =14.6×25×0.044×1×1.2= 19.272 W/m即,每米管道热损失为19.272 W<25W综上:在上述四种尺寸管道所用的电伴热提供的功率均大于损失的热量,即在-20℃环境下管道中的温度仍然可以高于5℃以上。

在2″管道中的Δt最大可达到的值为:Δt1max=25/ (q1×K × C × E )=25/(7.05×0.044×1×1.2)=73.88 即当外界温度为-20℃时管道内的最高温度可达:73.88℃-20℃=53.88℃同理:Δt2max=25/(q2×K × C × E )=25/(9.03×0.044×1×1.2)=52.4 即当外界温度为-20℃时管道内的最高温度可达:52.4℃-20℃=32.4℃Δt3max=25/(q3×K × C × E )=25/(10.83×0.044×1×1.2)=43.72 即当外界温度为-20℃时管道内的最高温度可达:43.72℃-20℃=23.72℃Δt4max=25/(q4×K × C × E )=25/(14.6×0.044×1×1.2)=33.11 即当外界温度为-20℃时管道内的最高温度可达:33.11℃-20℃=13.11℃表一、保温材料的保温系数、导热系数(10℃时)表二、每米管道1℃温差的热损失表三电伴热带缠绕节距一、一、管线伴热1、1、工艺参数:介质维持温度℃环境最低温度℃最高操作温度:a.连续操作温度 b.扫线操作温度管材管径mm管道长度m保温材料保温层厚度mm环境: a.室内或室外 b.地面或埋地c.防爆或非防爆d.防腐或非防腐电压2、2、散热量计算Q = q ×Δt × K × C × E(w/m)Q ----- 每米管道的散热量 (W/m)q -----管道的散热量(1℃/m时)T W -----维持温度T H -----环境最低温度Δt ---- T W–T HK ----- 保温材料导热系数C--------- 管道材料修正系数E ----- 安全系数例:管径80mm,管道长度100m,管材为碳钢,介质为原油,维持温度50℃,环境最低温度 -10℃,保温材料岩棉,保温层厚度25mm,计算每米管道热损失。

(1)、计算温差Δt = T W–T H = 50-(-10)= 60(2)、计算每米管道的散热量K = 0.044 (查表一“保温材料导热系数”)q = 15.26 (查表二“每米管道1℃温差时的热损失”)C1 = 1 (查表三“管道材料修正系数”)E = 1.2 (一般取值为1.2)Q =q×Δt×K × C × E =15.26×60×0.044×1×1.2= 48.36 W/m即,每米管道热损失为48.36 W 。

每米管道1℃温差时的热损失q表二表三表四总 = Q × LQ --- 每米管道的散热量 (W/m) L --- 管道长度6、电伴热带预留长度 法兰: 管径的5倍 弯头: 管径的1.5倍 阀门: 管径的5倍 管架: 管径的3~5倍 电源接线盒: 预留1米 中间接线盒: 预留米0.5米7、电伴热带总长度8、电伴热带敷设方法管道单位长度的散热量(热损失)大于电伴热带额定功率时,即比值>1时,按下述方法敷设: a. 当比值大于1.5时,采用平行敷设方式,电伴热带长度为管道长度 × 电伴热带根数;b. 当比值1.1~1.5之间时,可采用缠绕敷设方式,缠绕节距见表三,电伴热带长度为管道长度 × 比值。

电伴热带缠绕节距 表三二、二、罐体伴热1、散热量计算Q总 = q ×Δt × K × S × D(W)Q总 ----- 罐体总散热量 (W)q -----散热量(W/m2时)T W -----维持温度(℃)T H -----环境最低温度(℃)Δt ---- 温差 T W–T HS ---- 罐体的表面积(m2)D ------- 安全系数2、热损失表每平方米罐体1℃温差时的热损失q 表四注;以上热损失基于10%的设计余量,导热系数为0.25三、三、特殊情况下的电伴热设计1、蒸汽扫线管道的伴热管道需蒸汽扫线时,因其温度高,伴热设计选型时为不损伤电伴热带,一般采用以下二种方式:a、选取可承受扫线温度耐温等级的电伴热产品,如MI电缆(最高伴热温度593℃,最高耐温700℃),但该产品适用于中长距离管线伴热;b、可采用双层保温层结构的方式以降低扫线温度对电伴热带的损伤,这种方式可使每毫米保温层降低扫线线温度10℃,设计保温层厚度按外层厚度计算。

2、塑料管道的伴热塑料管道因其耐温等级低,使用美国NELSON公司LT低温自调温系列电伴热带(配套铝胶带使用)比较合适,避免过热对管道的损伤。

设计时按常规计算,然后乘上调整系数0.65,即:每米管道伴热功率 = 每米管道的散热量 (W/m)×0.65。

相关文档
最新文档