离散数学_电子科技大学中国大学mooc课后章节答案期末考试题库2023年

合集下载

离散数学期末考试题及详细答案

离散数学期末考试题及详细答案

离散数学期末考试题及详细答案一、选择题(每题5分,共20分)1. 在离散数学中,下列哪个概念用来描述元素与集合之间的关系?A. 并集B. 交集C. 子集D. 元素答案:D2. 布尔代数中,下列哪个运算符表示逻辑“与”?A. ∨B. ∧C. ¬D. →答案:B3. 下列哪个命题的否定是正确的?A. 如果今天是周一,则明天是周二。

B. 如果今天是周一,则明天不是周二。

答案:B4. 在图论中,一个图的顶点数为n,边数为m,下列哪个条件可以保证该图是连通的?A. m > nB. m ≥ nC. m = nD. m > n-1答案:D二、填空题(每题5分,共20分)1. 在集合论中,一个集合的幂集包含该集合的所有______。

答案:子集2. 如果一个函数f: A → B是单射的,那么对于任意的a1, a2 ∈ A,如果a1 ≠ a2,则f(a1) ≠ f(a2)。

这种性质称为函数的______。

答案:单射性3. 在图论中,一个图的直径是指图中任意两个顶点之间的最短路径的最大值。

如果一个图的直径为1,则该图被称为______。

答案:完全图4. 一个布尔表达式可以表示为一系列逻辑运算符和变量的组合。

布尔表达式(A ∧ B) ∨ (¬ A ∧ C)的真值表中,当A为真,B为假,C为真时,整个表达式的值为______。

答案:真三、简答题(每题10分,共30分)1. 请简述什么是图的哈密顿回路,并给出一个例子。

答案:哈密顿回路是图中的一个回路,它恰好访问每个顶点一次。

例如,在一个完全图中,任意一个顶点出发,依次访问其他顶点,最后回到出发点的路径就是一个哈密顿回路。

2. 请解释什么是二元关系,并给出一个二元关系的例子。

答案:二元关系是定义在两个集合上的一个关系,它关联了第一个集合中的元素和第二个集合中的元素。

例如,小于关系是实数集合上的一个二元关系,它关联了每一对实数,如果第一个数小于第二个数。

离散数学期末试题及答案完整版

离散数学期末试题及答案完整版

离散数学期末试题及答案HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】326《离散数学》期末考试题(B )一、填空题(每小题3分,共15分)1.设,,},,{{b a b a A =?},则-A ? = ( ),-A {?} = ( ),)(A P 中的元素个数=|)(|A P ( ).2.设集合A 中有3个元素,则A 上的二元关系有( )个,其中有( )个是A 到A 的函数.3.谓词公式))()(())()((y P y Q y x Q x P x ⌝∧∃∧→∀中量词x ∀的辖域为( ), 量词y ∃的辖域为( ).4.设}24,12,8,6,4,3,2,1{24=D ,对于其上的整除关系“|”,元素( )不存在补元.5.当n ( )时,n 阶完全无向图n K 是平面图,当当n 为( )时,n K 是欧拉图. 二.1. 若n B m A ==||,||,则=⨯||B A ( ),A 到B 的2元关系共有( )个,A 上的2元关系共有( )个.2. 设A = {1, 2, 3}, f = {(1,1), (2,1), (3, 1)}, g = {(1, 1), (2, 3), (3, 2)}和h = {(1, 3), (2, 1), (3, 1)},则( )是单射,( )是满射,( )是双射.3. 下列5个命题公式中,是永真式的有( )(选择正确答案的番号). (1)q q p p →→∧)(; (2))(q p p ∨→; (3))(q p p ∧→; (4)q q p p →∨∧⌝)(; (5)q q p →→)(.4. 设D 24是24的所有正因数组成的集合,“|”是其上的整除关系,则3的补元( ),4的补元( ),6的补元( ).5. 设G 是(7, 15)简单平面图,则G 一定是( )图,且其每个面恰由( )条边围成,G 的面数为( ).三.1.设}}{},,{{c b a A =,}}{},,{},{{c c b a B =,则)(=⋃B A ,)(=⋂B A ,)()(=A P .2.集合},,{c b a A =,其上可定义( )个封闭的1元运算,( )个封闭的2元运算,( )个封闭的3元运算.3.命题公式1)(↑∧q p 的对偶式为( ).4.所有6的因数组成的集合为( ).5.不同构的5阶根树有( )棵.四、(10分)设B A f →:且C B g →:,若g f 是单射,证明f 是单射,并举例说明g 不一定是单射.五、(15分)设},,,{d c b a A =,A 上的关系)},(),,(),,(),,(),,(),,(),,(),,(),,{(c d b d a d c c b c a c c a b a a a R =,1.画出R 的关系图R G .2.判断R 所具有的性质.3.求出R 的关系矩阵R M .六、(10分)利用真值表求命题公式))(())((p q r r q p A →→↔→→=的主析取范式和主合取范式.七、(10分) 边数30<m 的简单平面图G ,必存在节点v 使得4)deg(≤v . 八、(10分) 有六个数字,其中三个1,两个2,一个3,求能组成四位数的个数.《离散数学》期末考试题(B)参考答案一、1. {{a , b }, a , b , ?}, {{a , b }, a , b },16.2.92, 27.3.)()(x Q x P →, )()(y P y Q ⌝∧.4. 2, 4, 6, 12.5.4≤,奇数.二、1.22,2,m mn mn ., g , g . ,2,4.,不存在,不存在. 5.连通,3,10.三、1. }}{},,{},,{},{{c c b b a a B A =⋃,}}{{c B A =⋂,{)(=A P ?, {{a , b }}, {{c }}, {{a , b }, {c }}}.2.27933,3,3. 3.0)(↓∨q p .4.{-1,-2,-3,-6,1,2,3,6}. .四、证 对于任意A y x ∈,,若)()(y f x f =,则))(())((y f g x f g =,即))(())((y g f x g f =. 由于g f 是单射,因此y x =,于是f 是单射.例如取},,{},3,2,1(},,{γβα===C B b a A ,令)}2,(),1,{(b a f =,)},3(),,2(),,1{(ββα=g ,这时)},(),,{(βαb a g f = 是单射,而g 不是单射.五、解 1. R 的关系图R G 如下:2.(1)由于R b b ∉),(,所以R 不是自反的. (2)由于R a a ∈),(,所以R 不是反自反的.(3)因为R b d ∈),(,而R d b ∉),(,因此R 不是对称的. (4)因R a c c a ∈),(),,(,于是R 不是反对称的.(5)经计算知R c d a d c c b c a c c a b a a a R R ⊆=)},(),,(),,(),,(),,(),,(),,(),,{( ,进而R 是传递的.综上所述,所给R 是传递的.3.R 的关系矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=0111011100000111R M .六、解 命题公式))(())((p q r r q p A →→↔→→=的真值表如下:由表可知,))(())((p q r r q p A →→↔→→=的主析取范式为A 的主合取范式为)()(r q p r q p A ⌝∨⌝∨∧∨⌝∨⌝=.七、证 不妨设G 的阶数3≥n ,否则结论是显然的. 根据推论1知,63-≤n m . 若G 的任意节点v 的度数均有5)deg(≥v ,由握手定理知n v m v5)deg(2≥=∑.于是m n 52≤,进而652363-⋅≤-≤m n m . 因此30≥m ,与已知矛盾. 所以必存在节点v 使得4)deg(≤v .八、解 设满足要求的r 位数的个数有a r 种,r = 0,1,2,…,则排列计数生成函数65432121211219619431x x x x x x ++++++=,因而38!412194=⋅=a .。

离散数学期末考试试题及答案

离散数学期末考试试题及答案

离散数学期末考试试题及答案一、选择题(每题3分,共30分)1. 设集合A={1, 2, 3, 4, 5},B={2, 4, 6, 8},则A∩B是()A. {1, 2, 3, 4, 5}B. {2, 4}C. {1, 3, 5}D. {2, 4, 6, 8}2. 下列关系中,哪个是等价关系?()A. 小于关系B. 大于等于关系C. 模2同余关系D. 整除关系3. 设P(x)是谓词逻辑公式,下列哪个命题与∀xP(x)等价?()A. ∃x¬P(x)B. ¬∀xP(x)C. ¬∃xP(x)D. ∃x¬P(x)4. 一个图的欧拉回路是指()A. 经过每一条边的路径B. 经过每一个顶点的路径C. 经过每一条边的环D. 经过每一个顶点的环5. 设G是一个无向图,下列哪个说法是正确的?()A. G的每个顶点的度数都相等B. G的每个顶点的度数都不相等C. G的任意两个顶点之间都有一条边D. G的任意两个顶点之间都不一定有边6. 下列哪个图是哈密顿图?()A. K3,3B. K5C. K4,4D. K67. 设G是一个具有n个顶点的连通图,则G的最小生成树至少包含()A. n个顶点B. n-1条边C. n+1条边D. 2n条边8. 下列哪个算法可以用来求解最短路径问题?()A. Dijkstra算法B. Kruskal算法C. Prim算法D. Floyd算法9. 设P和Q是两个命题,下列哪个命题与(P→Q)∧(Q→P)等价?()A. P∧QB. P∨QC. P↔QD. ¬P∨¬Q10. 设A是一个有限集合,A的幂集是指()A. A的所有子集B. A的所有真子集C. A的所有非空子集D. A的所有非空真子集二、填空题(每题3分,共30分)11. 设集合A={1, 2, 3, 4, 5},B={2, 4, 6, 8},则A-B=______。

12. 设P(x)是谓词逻辑公式,∃xP(x)表示“存在一个x使得P(x)成立”,那么∀x¬P(x)表示“______”。

国家开放大学电大《离散数学》期末题库及答案

国家开放大学电大《离散数学》期末题库及答案

最新国家开放大学电大《离散数学》期末题库及答案《离散数学》题库及答案一一、单项选择题(每小题3分,本题共15分)1.若集合A = (l,2,3,4),则下列表述不正确的是()•A.16AB. {1,2,3}CAC. (1.2.3J6AD. 0UA2.若R和R?是A上的对称关系,则中对称关系有(〉个・A. 1B. 2C. 3D. 43.设G为连通无向图,则])时,G中存在欧拉回路・A. G不存在奇数度数的结点B. G存在偶数度数的结点C. G存在一个奇数度数的结点D. G存在两个奇数度数的结点4.无向图G是棵树,边数是10,则G的结点度数之和是().A.20B. 9C. 10D. 115.设个体域为整数集,则公式V z3y(x+y = 0)的解释可为().A-存在一整数z有整数丁满足x+y = 0B.对任意整数z存在整数財满足x+y = 0C.存在一整数z对任意整数'满足工+y・0D.任意整数工对任意整数,满足x+y=0得分评卷人--------------- 二、填空題(毎小通3分,本題共15分)6.设集合A = {1.2,3),B = (2,3,4}.C=(3.4.5,则A (J (C - B )等于7-设 A = (2,3},B-{l,2}.C-{3,4}.从 A 到 B 的函ft/-{<2,2>,<3,1>}.从 B 到C 的函数R = <V1.3>,V2.4>),则Dom(g")等于.8.已知图G中共有】个2度结点,2个3度结点,3个4度结点,则G的边数是・9.设G是连通平面分别衰示G的結点数.边数和面数,u值为5/值为4,则r的值为・-10-设个体域D = (1.2.3,4hA(x)为七大于5”,则调词公式(Vz)AGr)的真值为11. 将语句“学生的主要任务是学习”翻译成命题公式. 12.将语句“今天天暗,昨天下雨.”翻译成命题公式.四、判斷说明題(判断各题正误,并说明理由.每小题7分,本题共1413. 空集的圳:集是空集. 14.完全图K,不是平面图.15.设集合A = <1,2,3,4}上的关系:R-«1.2>.<2.3>.<3,4>}.S = (<1.1>,<2,2>,<3,3>), 试计算(DR • S t (2)7? (3)r(J?nS).16.图 G=<V,E>.其中 V=S ,6,c,d}.E=((a,6),S,c),(a,d),(5,c),0,d),(c,d)},对应边的权值依次为2、3、4、5、6及7,试(1)画出G 的图形, (2)写岀G 的邻接矩阵;(3)求出G 权最小的生成树及其权值. 17.求PTQPR )的析取范式与主合取范式.18.试证明:r -1 (P-*Q) An R A(QfR)=>i P.试题答案及评分标准仅供參考一、单项选择题(毎小题3分,本题共15分)l.C2.D3. A4. A5. B2OZZ«r-2O23^ttM三、逻辑公式翻译(毎小題6分,本题共】2分)分)五、计鼻16(每小JS 12分,本贓共36分)六、证明85(本楚共8分)2022集・2U23年股*二、壊空題(每小题3分,本题共15分)6. {1,2,3,5)7. {2,3}(或 A)8.109.110. 假(或F,或0)三、逻辑公式B!译(毎小题6分,本題共12分)11.设P :学生的主要任务是学习. 则命题公式为:P.12.设今天夭晴,Q :昨天下雨. 则命题公式为:PAQ.四、判断说明題(每小題7分,本题共14分)13.借误.空集的專集不为空集,为{0}. 14. 错误.完全图K,是平面图, 如K,可以如下图示嵌入平面.五、计算题(每小题12分,本題共36分)15. 解:(!)/? • S = (V1,2>,V2,3>* (2)J?-* = «2,1>,<3,2>,<4,3>}» (3)r(RnS)={Vl,l>,V2,2>,V3,3>,V4,4>} 16. 解.(DG 的图形表示为:《7分)(2)邻接矩阵:(3分)(6分)(2分)(6分) (2分) (6分)(3分)(4分) (8分)2022 集-2U23 年股*(3)粗线与结点表示的是最小生成树,(10 分)权值为9 (12分)17.解:P-(QAR)PV(QAR) 析取范式(2分)PVQ)A(q PVR) (5 分)g PVQ〉V(RA")A("VR) (7 分)PVQ)V(R A-i R)A(i PVR)V(QAr Q) (9 分)«(n PVQVR) A("VQV")A(i P VRVQ)A("VRVr Q)⑴分)PVQVR) A(i PVQV-i R) A(n P Vn QVR) 主合取范式 (12 分)六、证明JH(本■共8分)18.证明:(1)n □ (P-*Q) P(1 分)(2)P-*Q T(1)E (3 分)(3)(Q々) P(4 分)(On R P(5 分)(5>-| Q T(3)(4)7 (6 分)(6)n P T(2)(5)r (8 分)说明:(1)因证明过程中,公式引用的次序可以不同,一般引用前提正确得1分,利用两个公式得.出有效结论得1或2分,最后得岀靖论得2或1分.(2)另,可以用真值表验证.《陽散数学〉题库及答案二的关系R = {<=,3>M£A,3£B,且工+ » = 5}.则R=( ).A・(V1,2>,V1,3>,V2,3>} B. (VI,4>,V2,3>,V3,2>}C. (<1,1>,<2,2>,<3,2>}D. (<3.2>,<2,4>,<3,4»2.若集合A = {a,6,c,d},则下列表述正确的是( )•B. (a}£AD・("匕A2DZZ 邮-2023 邮3.设个体域为整数集期公式(七)(功)(工一,・2)的解释可为()•A.存在一整数1有整数,満足工一》=2R存在一整散工对任意整數:,満足工一>・2G对任一整数工存在整数:y满足上一y=2D.任一整数]对任意幣数》满足x-y-24.”阶无向完全图K.的边數及每个结点的度数分别是()・A. n(n —1)与mB. n(n —1)与C.n — 1 与nD. n(n —1)/2 与“一】5.设G为连通无向ffl.MC 〉时,G中存在欧拉回路•A.G不存在奇数度数的靖点B・G存在一个奇数度數的靖点C.G存在两个奇数度数的结点D.G存在偶数度数的结点得分|评卷人二、壊空順(毎小H 3分.本顕共15分)6.设集合A = {x|x是小于4的正整数).用集合的列挙法A=・7.设 A = U,2),B-{a.6}.C-{l,2).从 A 到 B 的函»/= {<1 .a>.<2,6>).从 B 到C的函数g-«a.2>,<6,l>),则复合函数g./- ・8.设G = <V,E>是一个图,结点度数之和为30,MG的边数为・9.设G是具有r,个結点责条边4个面的连通平面图.JRn+4-2-・10.设个体域D-(2,3.4},A(x )为—小于3■,则调词公式< Vx)A(x>的真值为得分评卷人三、遂梅公式翻译(毎小題6分,本■共12分)11-将语句•如果今天下頂•那么明天的比賽就要延期译成命,公式.12.将语句•地球是圆的,太阳也是圆的.”翻洋成命題公式.得分呼卷人----- 四、判断说明題(判斷各IH正讓•井说明理由.毎小願7分.本■共 14 分)13.设A = {a,6.c.</}.R-«a.6>,<6,a>,<a ,a>,<b,b> ,<(.€>}.则R是等价关系.2OZZ«r-2O23^ttM14.<Vz)(P(x)AQ(y»-R(x)中量伺V 的辖域为(PGr〉AQ(y)).得分评卷人-------------- 五、计算题(每小題12分,本題共36分)15.设集合A^{a,b,c}t B^{b t c,d}t试计算(DAUB; (2) A-Bi(3MXB.16.设G = VV,E>,V= {vi. v a. vj»v4).E =* ((vi»)» (vi»v s)» (t>i»v4). (v,,v>)»(V1 ,。

最新离散数学期末考试试题与答案[1]课件ppt

最新离散数学期末考试试题与答案[1]课件ppt

19. (5分) 已知公理 A: (pq) ((qp) (pq)) B: pp∨q
C: pp D: (pr) ((qr) ((p∨q) r)) E: p∧qp 证明定理: p(p∨p)
证明:
(1) pp∨q
公理B
(2) pp∨p
代入
(3) (pr) ((qr) ((p∨q) r))
公理D
(4) (pp) ((pp) ((p∨p) p)) 代入
∑d(v) ≥1+2(|V|-1)=2|E|+1, 这与结论 ∑ d(v) =2|E| 矛盾! 矛盾说明 T 不止
一片树叶。
12. (8分) (G, ·)是一个群,取定u ∊ G. ∀g1,g2∊G,定义: g1*g2= g1·u-1·g2. 证明: (G,*)是群。
证明: (1) 封闭性 (2) 可以结合性 (3) 幺元 e*=u. 事实上, g*e*=g*u=g·u-1·u=g·e=g e**g=u*g=u·u-1·g=e·g=g (4) 逆元 对于∀g∊G, 在代数运算*下的逆元记为g*-1 于是, g*-1=u·g-1·u
所以,根据连通的定义知:G的补图一定连通 。
9. (4分) 一个有奇数条边、偶数个顶点的欧拉图,但不是哈 密尔顿图。
10 (6分) 画出K4,4,判断K4,4是否平面图. 否!
11. (5分) 证明: 多于一个顶点的树,至少有两片树叶。
证明:设 T=(V,E)是一棵树,若T中最多只有一片树叶, 则有
g*a*g-1H,
g*a*g-1K, 从而有g*a*g-1HK, 故HK是G的正规子群。
14. (4分) 已知(G, *),(A, △)是两个群,f: G→A是群同态的。
证明: (1) f(eG)=eA (eG G是幺元, eA A是幺元). (2) ∀g∊G, f(g-1)=(f(g))-1.

离散数学期末考试题及答案

离散数学期末考试题及答案

离散数学期末考试题及答案一、选择题(每题2分,共20分)1. 在集合论中,空集表示为:A. {0}B. {1}C. {}D. Ø答案:D2. 命题逻辑中,下列哪个是合取命题的真值表?A. P | Q | P ∧ QB. P | Q | P ∨ QC. P ∧ Q | P ∨ QD. P ∧ Q | ¬(P ∨ Q)答案:A3. 函数f: A → B是单射的,那么f的逆函数:A. 一定存在B. 一定不存在C. 可能存在D. 以上都不对答案:C4. 关系R是自反的,那么对于所有a∈A,以下哪个命题一定为真?A. (a, a) ∈ RB. (a, a) ∉ RC. (a, a) ∈ R或(a, a) ∉ RD. (a, a) ∈ R且(a, a) ∉ R答案:A5. 在图论中,下列哪个不是图的基本术语?A. 顶点B. 边C. 子集D. 路径答案:C6. 命题p: “如果x是偶数,则x能被4整除”的否定是:A. 如果x是偶数,则x不能被4整除B. 如果x不是偶数,则x不能被4整除C. 如果x不是偶数,则x能被4整除D. 如果x是偶数,则x不能被4整除或x不是偶数答案:A7. 有向图G中,如果存在从顶点u到顶点v的有向路径,则称v是u 的:A. 祖先B. 后代C. 邻居D. 连接点答案:B8. 在命题逻辑中,下列哪个命题是永真命题?A. (P ∧ ¬P) ∨ (P ∨ ¬P)B. (P ∧ ¬P) ∧ (P ∨ ¬P)C. (P ∨ ¬P) ∧ (¬P ∨ P)D. (P ∧ ¬P) ∧ (¬P ∧ P)答案:C9. 以下哪个选项是等价命题?A. P ∧ (Q ∨ R) ≡ (P ∧ Q) ∨ (P ∧ R)B. P ∨ (Q ∧ R) ≡ (P ∨ Q) ∧ (P ∨ R)C. P ∨ ¬P ≡ ¬P ∧ PD. P ∧ ¬P ≡ ¬P ∨ P答案:A10. 树是无环连通图,以下哪个是树的属性?A. 至少有一个环B. 至少有两个顶点C. 至少有一个顶点D. 至少有一个边答案:B二、填空题(每空2分,共20分)11. 集合{1, 2, 3}的幂集含有__个元素。

离散数学期末考试题及答案

离散数学期末考试题及答案一、单项选择题(每题2分,共20分)1. 集合A={1,2,3},集合B={2,3,4},则A∩B等于多少?A. {1,2}B. {2,3}C. {3,4}D. {1,4}答案:B2. 命题“若x>0,则x^2>0”的逆否命题是?A. 若x^2≤0,则x≤0B. 若x^2>0,则x>0C. 若x≤0,则x^2≤0D. 若x≤0,则x^2>0答案:C3. 在图论中,一个图是连通的当且仅当?A. 存在一个顶点到所有其他顶点的路径B. 存在一个顶点到所有其他顶点的回路C. 图中没有孤立的顶点D. 图中至少有两个顶点答案:A4. 以下哪个选项是二元关系的自反性质?A. 对于所有元素x,(x, x)∉RB. 对于所有元素x,(x, x)∈RC. 对于所有元素x,y,(x, y)∈R且(y, x)∈RD. 对于所有元素x,y,z,(x, y)∈R且(y, z)∈R则(x, z)∈R5. 以下哪个命题是真命题?A. 所有的马都是白色的B. 有些马是白色的C. 没有马是白色的D. 所有的马都不是白色的答案:B6. 以下哪个选项是等价命题?A. p∧q和p∨qB. p∧q和¬p∨¬qC. p∧¬q和¬p∨qD. p∧q和¬p∧¬q答案:D7. 在集合论中,以下哪个操作是幂集?A. 并集B. 交集C. 对称差D. 包含所有子集的集合答案:D8. 以下哪个选项是图的路径?A. 一条边B. 一个顶点C. 一系列顶点和边,使得每对连续的顶点由一条边连接D. 一个环答案:C9. 以下哪个选项是命题逻辑中的合取?B. p∧qC. ¬pD. p→q答案:B10. 以下哪个选项是图的连通分量?A. 一个顶点B. 一条边C. 图的一个极大连通子图D. 图的一个极大不连通子图答案:C二、填空题(每题2分,共20分)1. 集合{1,2,3}的子集个数为__7__。

离散数学期末考试题及详细答案

离散数学期末考试题及详细答案一、选择题(每题5分,共20分)1. 下列哪一项是图论中的基本概念?A. 集合B. 函数C. 映射D. 顶点答案:D2. 在逻辑中,下列哪一项表示合取?A. ∨B. ∧C. →D. ¬答案:B3. 以下哪个命题是真命题?A. p ∧ ¬pB. p ∨ ¬pC. p → ¬pD. ¬p → p答案:B4. 在集合论中,下列哪个符号表示集合的交集?A. ∪B. ∩C. ⊆D. ⊂答案:B二、填空题(每题5分,共20分)1. 如果一个图是无环的,则称该图为________。

答案:树2. 在布尔代数中,逻辑或运算的符号是________。

答案:∨3. 如果一个函数f: A → B,则称A为函数f的________。

答案:定义域4. 一个集合的子集个数是2的该集合元素个数次方,这个结论被称为________。

答案:幂集定理三、简答题(每题10分,共30分)1. 请简述图的邻接矩阵和邻接表的定义。

答案:邻接矩阵是一个二维数组,其元素表示图中两个顶点之间是否存在边。

邻接表是图的一种表示方法,其中每个顶点对应一个链表,链表中存储的是与该顶点相邻的顶点。

2. 什么是哥德尔不完备性定理?答案:哥德尔不完备性定理表明,在任何包含基本算术的一致形式系统内,都存在这样的命题:这个命题既不能被证明为真,也不能被证明为假。

3. 请解释什么是二元关系,并给出一个例子。

答案:二元关系是定义在两个集合上的一个子集,它包含所有满足特定条件的有序对。

例如,整数集合上的大于关系就是一个二元关系。

四、计算题(每题15分,共30分)1. 给定一个集合A={1,2,3,4},请计算集合A的幂集。

答案:集合A的幂集是{∅, {1}, {2}, {3}, {4}, {1,2}, {1,3}, {1,4}, {2,3}, {2,4}, {3,4}, {1,2,3}, {1,2,4}, {1,3,4},{2,3,4}, {1,2,3,4}}。

电大《离散数学》2022-2023期末试题及答案

电大《离散数学》2022-2023期末试题及答案
一、单项选择题(每小题3分,本题共15分)
1.若集合A={ a,{a}},则下列表述正确的是( ).
A.{a}⊆A B.{{{a}}}⊆A
C.{a,{a}}∈A D.∅∈A
2.命题公式(P∨Q)的合取范式是( )
A.(P∧Q)B.(P∧Q)∨(P∨Q)
C.(P∨Q)D.⌝(⌝P∧⌝Q)
3.无向树T有8个结点,则T的边数为( ).
A.6 B.7
C.8 D.9
4.图G如图一所示,以下说法正确的是( ).
A.a是割点B.{b,c}是点割集
C.{b, d}是点割集D.{c}是点割集
图一
5.下列公式成立的为( ).
A.⌝P∧⌝Q ⇔P∨Q B.P→⌝Q⇔⌝P→Q
C.Q→P⇒ P D.⌝P∧(P∨Q)⇒Q
二、填空题(每小题3分,本题共15分)
6.设集合A={2, 3, 4},B={1, 2, 3, 4},R是A到B的二元关系,


R≤
>

x
=且
<
,
x
{y
y
B
}
x
A
y
则R的有序对集合为.
7.如果R是非空集合A上的等价关系,a ∈A,b∈A,则可推知R中至少包含
等元素.
8.设G=<V, E>是有4个结点,8条边的无向连通图,则从G中删去条边,可以确定图G的一棵生成树.
9.设G是具有n个结点m条边k个面的连通平面图,则m等于
1。

大学离散数学期末考试题库和答案

大学离散数学期末考试题库和答案一、单项选择题(每题2分,共20分)1. 在集合论中,以下哪个符号表示“属于”?A. ∈B. ∉C. ⊆D. ⊂答案:A2. 如果A和B是两个集合,那么A∪B表示什么?A. A和B的交集B. A和B的并集C. A和B的差集D. A和B的补集答案:B3. 以下哪个命题是真命题?A. ∀x∈N, x^2 > xB. ∃x∈N, x^2 = x + 1C. ∀x∈N, x^2 ≥ xD. ∃x∈N, x^2 < x答案:C4. 在图论中,一个无向图的边数为E,顶点数为V,那么这个图的生成树的边数是多少?A. EB. V-1C. VD. E-1答案:B5. 以下哪个算法是用于解决旅行商问题(TSP)的?A. 动态规划B. 贪心算法C. 分支限界法D. 回溯法答案:D6. 在逻辑中,以下哪个符号表示“蕴含”?A. ∧B. ∨C. →D. ↔答案:C7. 以下哪个是二进制数?A. 1010B. 2A3C. 12BD. ZYX答案:A8. 在关系数据库中,以下哪个操作用于删除表中的行?A. SELECTB. INSERTC. UPDATED. DELETE答案:D9. 以下哪个是布尔代数的基本运算?A. 并集B. 交集C. 差集D. 所有以上答案:D10. 在离散数学中,以下哪个概念用于描述两个集合之间的关系?A. 函数B. 映射C. 序列D. 所有以上答案:D二、多项选择题(每题3分,共15分)11. 以下哪些是集合的基本运算?A. 并集B. 交集C. 差集D. 补集答案:ABCD12. 在图论中,以下哪些是图的基本类型?A. 无向图B. 有向图C. 完全图D. 二分图答案:ABCD13. 在逻辑中,以下哪些是命题逻辑的基本连接词?A. 与(∧)B. 或(∨)C. 非(¬)D. 蕴含(→)答案:ABCD14. 在关系数据库中,以下哪些是SQL的基本操作?A. SELECTB. INSERTC. UPDATED. DELETE答案:ABCD15. 在离散数学中,以下哪些是组合数学的基本概念?A. 排列B. 组合C. 二项式系数D. 图论答案:ABC三、填空题(每题3分,共30分)16. 如果集合A={1, 2, 3},集合B={2, 3, 4},那么A∩B=______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

离散数学_电子科技大学中国大学mooc课后章节答案期末考试题库2023年
1.公式的主合取范式为以下哪一个?(以编码形
式表达)
答案:
2.若有前提集合,则可推出
以下哪个结论?
答案:
3.给定论域
,在该赋值下,公式的真值为?
答案:
1
4.根据自然演绎法,以下选项哪一个是公式
的有效结论?
答案:
5.以下哪一个不是集合A = {∅,1,{b}} 的幂集 P(A)中的元素?
答案:
{b}
6.设 R = {< 1,4 >,< 2,1 >,< 2,3 >,< 3,1 >,< 4,2 >,< 4,3 >} 是集合A = {1,2,3,4} 上的
二元关系。

则R不具备哪种性质?
答案:
传递
7.设 A = {< a,b > |a,b 均为正整数} , 在 A 上定义二元关系∼ 为:< a,b >∼< c,d >
当且仅当 ad = bc,则此二元关系为( )?
答案:
等价关系
8.集合 A = {1,6,9,12,18,36},⩽为整除关系。

则其子集 B={6,12,18} 的极大元,
极小元,上界,下
界分别为?(以;分隔)
答案:
12,18;6;36;1,6
9.设函数, 则以下哪一项是复合函数
答案:
10.设图 G 有 n 个结点,n+1 条边,且每个结点的度数都不超过 3,则G中至少
有()个度数等于 3 的结点?
答案:
2
11.有向图G如下图所示,则图G中长度为4的通路和回路数各为多少条?
答案:
15;3
12.某城市拟在六个区之间架设有线电话网,其网点间的距离如下列有权矩阵给
出,则架设线路的最优方案的线路总长度为()。

答案:
18
13.判断以下命题哪个为真?
答案:
若A-B=B-A,则有A=B
14.设,下列哪个是A的划分?
答案:
{{1,2,7},{3,5,10},{4,6,8},{9}}
15.“今有 a,b,c,d,e,f,g 共 7 人,已知下列事实:a 会讲英语;b 会讲英语和汉语;
c 会讲英语,意大利语;
d 会讲日语和汉语;
e 会讲德语和意大利语;f会讲
法语和日语;g 会讲法语和德语。

试问这 7 人如何排座位(圆桌),才
能使每个人和他左右两边的人交谈?”这个问题可采用以下哪种特殊图来解决?
答案:
哈密顿图。

相关文档
最新文档