内燃机设计课程设计

内燃机设计课程设计
内燃机设计课程设计

目录

一柴油机基本参数选定 (2)

1.1柴油机设计指示 (2)

1.2柴油机基本结构参数选用 (2)

二近似热计算 (3)

2.1燃料燃烧热化学计算 (3)

2.2换气过程计算 (3)

2.3压缩过程计算 (4)

2.4燃烧过程计算 (4)

2.5膨胀过程计算 (7)

2.6示功图绘制 (7)

2.7柴油机性能指标计算 (8)

三连杆尺寸的确定、建模以及制图 (8)

四动力计算 (10)

4.1 活塞位移、速度、加速度 (10)

4.2 活塞连杆作用力分析 (11)

4.3 曲柄销载荷和连杆轴承载荷 (12)

参考文献 (13)

附表 (13)

一、柴油机基本参数选定

1.1、 柴油机设计指示

1、功率Pe

有效功率是柴油机基本性能指标。Pe 由柴油机的用途选定,任务书指定所需柴油机有效功率Pe 为66.2KW 。 2、转速n

转速的选用既要考虑被柴油机驱动的工作机械的需要,也要考虑转速对柴油机自身工作的影响。本设计中的柴油机为1050rpm 。 3、冲程数τ

本设计的柴油机采用四冲程,即τ=4. 4、平均有效压力Pem

平均有效压力Pem 表示每一工作循环中单位气缸工作容积所做的有效功,是柴油机的强化指标之一。查表去本柴油机的Pem=0.61Mpa 5、有效燃油消耗率be

这是柴油机最重要的经济性指标。影响柴油机经济性的因素很多,在设计中要仔细分析。四冲程非增压柴油机215[g/(kw ·h)]~285[g/(kw ·h)]。 6、可靠性和寿命

可靠性和寿命是车用柴油机的基本要求之一,设计时必须提出具体指标,但本课程设计从略。

此外,设计指标还可能包括造价、排污、噪声等方面的因素。

1.2、柴油机基本结构参数选用

由有效功率计算公式:τ

30e n

V i P P s em ???=

可知由于Pe 、Pem 、n 、τ已选定,则柴油机的总排量s V i ?=12.4,下一步应选定柴油机的基本结构参数:气缸直径d 、活塞行程S 、缸数i 及其它一些参数。 1、气缸直径d

气缸直径d 的选取影响柴油机的尺寸和重量,还影响柴油机的机械负荷和热负荷。为了系列化,常选用固定的缸径系列。任务书规定了车用柴油机的气缸直径d=146mm 。 2、活塞行程S

增大活塞行程S 使活塞平均速度Vm=S ×n/30提高,机械负荷加大,一般车用柴油机的Vm ≤14米/秒;同时S 也是柴油机基本结构指标S/d 的决定因素,车用柴油机的S/d=1.0~1.3,取S/d=1.2则暂时取S=175.2mm 。 3、气缸数i 及气缸排列方式

由于设计任务书已指明d 和S 的值,因而满足功率要求可通过改变气缸数i 实现。

S 4

d 2

π=

Vs =2.9可以得到i=4则Vs=3.1。实际4

2

d Vs

S π=

=185.2mm ,所以i=4,S=185.2,直列。

4、连杆长度L 与曲柄连杆比λ=R/L

连杆长度加大,会使柴油机总高度增加;虽然连杆摆角减小,侧压力减小,但效果不明显;而且连杆重量加大,往复运动质量惯性力加大。因而尽量采用短连杆,查参考表取

本机L=290mm 由2S R =得R=92.6mm ,L

R

=λ=0.319可是λ值在1/3~1/5之间,符合要求。

5、气缸中心距l 0及其与气缸直径之比l 0/d

l 0/d 影响柴油机的长度尺寸和重量指标,设计时力求缩小l 0/d 的值。l 0/d 值的影响因素可从曲轴中心线方向的尺寸分配和气缸上部的尺寸分配两方面分析,一般其值为 1.2~1.6。参考样机l 0的表选取本机为134mm ,已校核。 6、压缩比εc

选用压缩比εc 也就是选用燃烧室容积。选用压缩比时要考虑柴油机的经济性能、工作可靠性、冷启动性能等。任务书给定车用柴油机的εc =15.8.

二、近似热计算

柴油机工作过程热计算是对柴油机各工作过程中工质的状态参数、主要性能指标进行计算,并绘出示功图。通过热计算可以分析各工作过程的影响因素,找出提高动力性和经济性的途径,又为动力计算、结构设计提供数据。柴油机实际循环热力计算有近似热计算(简单计算法)和模拟热计算(电算法)二种。本设计要求进行近似热计算。

2.1、燃料燃烧热化学计算

1、理论空气量L 0

??

? ??-+=3241221.010O H c g g g L (千摩尔/千克 柴油)

燃料采用轻柴油87.0=c g ,126.0=H g ,004.0o =g

轻柴油低热值 H u =41860千焦/千克

求得kg Kml L /4946.00= 2、新鲜空气量M 1

8230.00a 1==L M ? (千摩尔/千克)

其中 a ? ——过量空气系数,8.12.1a ~=?,取其为1.6 3、燃烧产物M 2

8230.032

4g 12=++=o

H g M M (千摩尔/千克) 4、理论分子变更系数μ0

04.11

2

0==M M μ 5、实际分子变更系数μ1 0381.105

.0105

.004.1101=++=++=

r r γγμμ

其中,γr ——残余废气系数,γr =0.03~0.06,取其为0.05

2.2、换气过程计算

1、排气压力(气缸内废气压力)P r

4.0~3.0=r P (Mpa )取其为0.36

2、气缸内排气温度(残余废气温度)T r

T r = 970~1170(K )取其为1100 3、进气终点压力P a

095.0~075.0=a P (Mpa )取其为0.09 4、进气终点温度T a

350~320=a T (K )取其为340 5、充量系数(充气效率)c ?

8223.011

1=+-=

r

a d r r c c

c T T P P γεε?

其中:

9.0~8.0=a d r r T T P P 之间,9.08.0~=c ?,验证得8088.0=a

d r r T T

P P ,所以都符合要求. 2.3、压缩过程计算

1、平均多变压缩指数n 1

n 1=1.34~1.39取其为1.36

2、压缩过程中任意曲轴转角cx ?时的压力cx P (画示功图时用)

1

)(

n cx

ca a cx V V P P =(MPa ) 其中:V ca ——进气终点气缸容积。

3321031.31

41m S

d V V c c c c

a ca -?=?-=-=

εεπ

εε V cx ——对应于cx ?时的气缸容积。 c cx cx cx V R d V ++

-=

)sin 2

cos 1(4

22?λ

(m 3

式中:R ——曲柄半径,R=S/2=93.6mm ; λ——曲柄连杆比,λ=R/L=3.19。 3、压缩终点充量的状态参数

压力: 84075.38.1509.036.11

=?==n c a cb P P εMPa 温度: 323.91858.134036.01

1=?==-n c

a c

b T T εK

2.4、燃烧过程计算

1、热量利用系数ζZ

热量利用系数ζZ 表示燃烧热量被工质吸收多少的程度。由于不完全燃烧、传热损失、高温分解、节流损失等因素,燃料燃烧所发出的热量中只有一部分被工质吸收。

燃烧终点的热量利用系数ζZ 在此范围内选取:ζZ =0.80~0.88取其为0.84。 2、燃烧最高压力P Z

按结构强度及寿命要求选取,本设计中=Z P 5~9Mpa ,取其为6。 3、压力升高比λ'

56.1==

'cb

Z

P P λ 在8.1~4.1='λ的范围内。 4、燃烧最高温度Z T

1)工质的平均等容摩尔热容m v C )(μ和平均等压摩尔热容间有如下关系:

313.8)()(+=m v m p C C μμ[kJ/(kmol ·K)]

工质的平均等压摩尔热容m p C )(μ按下列方法计算: (1)查图法:由下图按过量空气系数查出。

(2)查表插值计算法:(摘自《柴油机设计手册(上)》) a ? T (K ) 1.0 1.2 1.4 1.6 1.8 2.2 2.6

3.0

673 32.100 31.736 31.472 31.284 31.112 30.886 30.723 30.601 29.797 873

32.963 32.565 32.272 32.050

31.862 31.577 31.401 31.275 30.413

1073 33.838 33.419 33.063 32.845 32.649 32.364 32.176 32.021 31.037 1273 34.625 34.135 33.854 33.595 33.365 33.034 32.825 32.678 31.606 1473 35.341 34.843 34.466 34.194 33.959 33.645 33.419 33.239 34.121 1673 35.977 35.441 35.077 34.813 34.541 34.198 33.963 33.787 32.586 1873 36.547 35.981 35.567 35.261 35.023 34.667 34.399 34.231 32.988 2073 37.045 36.463 36.082 35.768 35.462 35.094 34.813 34.646 33.344 2273 37.408 36.870 36.467 36.103 35.852 35.454 35.178 34.981 33.658

2)燃烧方程

Z m pZ cb m pcb r a z T C T C L H )()]1(313.8)[()

1(10μμλμγ?ξμ=-'+++

其中:m pcb C )(μ——压缩终点新鲜空气和残余废气混合气的平均等压摩尔热容,按下列方法进行计算:

313.8)()(+=m vcb m pcb C C μμ=30.6342

05

.019172.2305.02414.221)()()(+?+=+''+'=

r m

v r m v m vcb C C C γμγμμ=22.3212

式中:m v C )('μ——在cb T 温度下,空气的平均等容摩尔热容。可按=a ?∞求出m p C )('μ,再由:313.8)()(-'='m p m v C C μμ=30.6342-8.313求出其为22.214。

m

v C )(''μ——在cb T 温度下,残余废气的平均等容摩尔热容。可按a ?值求出m

p C )(''μ,再由:313.8)()(-''=''m v m v C C μμ=32.2302=8.313求出其为23.9172。 m pZ C )(μ——在Z T 温度下燃烧产物的平均等压摩尔热容。 3)燃烧最高温度Z T 的计算

反复试算,当z T =2000K 时 方程两边的值相差在5%以内 即满足了要求。 5、燃烧终点的体积Z V 和初期膨胀比ρ

初期膨胀比:4493.1323

.91856.12000

0381.11=??==cb Z T T λμρ 燃烧终点容积:

44100361.3100949.24493.1--?=??==c Z V V ρ

一般:7.1~1.1=ρ 可知其符合要求。

2.5、膨胀过程计算

1、平均多变膨胀指数

30.1~25.12=n 取n=1.28 2、膨胀过程中任意曲轴转角bx ?时的气体压力bx P

n V V P P bx

Z Z bx 2

)(

= bx V 的计算方法与压缩过程中的cx V 类似. 3、后期膨胀比δ

9018.104493

.18.15====ρεδc Z b V V 4、膨胀过程终点状态参数

压力:2819.09018.106

28.12===

n P P Z b δ

温度:5437.10249018.10200028.012===

-n T T Z b δ

2.6、示功图绘制

1、理论示功图绘制

根据各过程计算结果可以绘制出柴油机实际循环的理论示功图,其中,燃烧过程按等容——等压过程绘制。

理论示功图的理论循环指示功1L '按下式计算:

=???

?????-----'+-'-='--s c c c a V n n n n n P L )11(11)11(1)1(111121121εδρλρλεε 3.00878 按示功图上纵横坐标比例:压力值/格,容积值/格,可以算出1L '对应的方格数o S 。 2、实际示工图绘制

理论示功图没有考虑下列因素的影响,因而必须进行修正得到实际的示功图:

1)没有考虑进排气过程。虽然泵气损失并入机械损失,不计入指示功,但为了示功图完整,根据进气终点压力a P 和排气压力r P 近似画出进排气过程线。

2)点火提前,喷油提前的影响:压力急剧升高应该从上止点前就开始。

3)燃烧规律的影响:燃烧过程压力线应连续、圆滑,燃烧最高压力应出现在上止点后10°左右。

4)排气阀提前开启的影响:在下止点前压力就开始下降,即压力线圆滑过渡到排气线。整个过程的换气也应修圆。

因此有以下数据 取排气迟闭角020 进气迟闭角040 喷油提前角016 排气提前角060进气提前角030。在实际示工图中根据这些数据修圆。

修圆后实际示功图的循环指示功比理论示功图小。计算因修圆而减少的方格数1S ,即可求出示功图的丰满系数f ?。

1

0S S S f -=

? 一般,99.0~92.0=f ?,经检查得98.0=f ?符合要求。 3、?-P 示功图的绘制

由V P -示功图转换成?-P 示功图。 作图法转换:

图中的偏移量42

104.24

21-?=?

?=?d r V πλ 图见坐标纸

4、气体压力列表

按曲轴转角5°间隔,气体压力g P 随曲轴转角?的变化表格,在动力计算中列出。

2.7、柴油机性能指标计算

1、平均指示压力im P

7652.0)11(11)11(1)1(11112121=???

?

????-----+-'-='=--n n n n n P V L P c c c a f s i f im εδλρρλεε?? 2、指示功i P 、指示热效率i η和指示耗油率i b

0242.834

301050

41.37652.030=????=???=

τn i V P P s im i kW

%43.45808

.036.041860313

.87652.011006.14946.0313

.80=??????==c d u im d a i P H P T L ??η

3.1891036003

=??=u

i i H b ηg/(kW ·h)

3、机械效率m η

m η的选取是热计算的关键。四冲程非增压柴油机的85.0~78.0=m η之间,取其为0.8。 4、有效功率e P 、有效热效率e η、平均有效压力em P 及有效油耗率e b

2.668.00242.83=?=?=m i e P P η 61.08.07952.0=?=?=m im em P P η

363.0=?=m i e ηηη 625.236==m i e b b η

四冲程非增压柴油机=e b 215~285[g/(kw ·h)],4.0~3.0=e η。计算出的e P 和em P 与任务书给定的e P 和计算开始时假定的em P 的误差不允许超过5%,由以上数据可知符合要求。

三、连杆尺寸的确定、建模及制图

一、连杆长度L (中心距)

L由之前确定的数据可得为290mm。

二、连杆小头

缸径D为146mm

小头内径d取0.3D等于44mm

小头厚度b为1.0d等于44mm

外径d2取1.2d等于58mm

三、连杆杆身

H取0.3D等于44mm

B为H/1.6等于28mm

查表可得凹槽深度为11mm

四、连杆大头

查表得D1可取0.6D等于88mm

螺孔中心距L1取1.25D1等于110mm

H1=0.52D=50mm

H2=0.52D=50mm

D2=0.5L1=55mm

B2=58mm

五、连杆螺栓

dh=0.12D=17取M16为连杆大头螺栓尺寸符号如下图

图3.1

六、连杆的CATIA建模

根据尺寸建立模型如下

图3.1 七、二维图及标注 见CAD 大图

四、动力计算

课程设计中进行动力计算的目的:掌握柴油机动力计算的方法;确定有关零件的运动、受力情况和轴承载荷情况。要求按曲轴5°间隔计算,由计算结果画曲线图。

4.1、活塞位移、速度、加速度

对于活塞位移、速度和加速度的计算,由于周期性,只计算0~360度即可。

()()?

??

???-+-=βλ?cos 11cos 1R x

ββ?ω

cos )

sin(+=R v

???

???++=β?λββ?ω3

22

cos cos cos )cos(R a

其中:)sin arcsin(?λβ=。注意:4/1>λ加速度曲线应有四个极值点。 数据见附表,其曲线如下图:

一、位移曲线

图4.1 二、速度曲线

图4.2

三、加速度曲线

图4.3

4.2、活塞连杆作用力分析

1、计算公式 ①基本作用力 气体力 ()

4)2

d P P P g g π?'-=

其中 :

?

P 取自然计算结果,即修正后的实际缸内压力值,也就是?-P 图中的压力值,

每个5度曲轴转角取一个。

g P '

为曲轴箱内的气体压力,近似取100千帕

运动零件惯性力

活塞组换算质量: 实际质量

p

m =4.078kg

连杆组换算质量: 按两质量系统考虑 小头换算质量:kg m l

l m c b

ca 8449.2==

大头换算质量:kg m l

l m c a

cb 2331.1==

往复运动惯性力 : a

m m a m P ca p j j )(+-=-= a 是活塞运动的加速度。

连杆大头离心惯性力 ?==2331.12ωR m P cb rc ②连杆作用力 设

a

m m P P P P ca p g j g )(+-=+= 则有:

连杆小头气缸中心线方向作用力 a

m P p g -

垂直气缸中心线方向(侧压力)

β

tg P P N ?=,其中)sin arcsin(?λβ=

连杆大头曲柄旋转方向(切向力)

ββ?cos )sin(+=P

T

曲柄法向(法向力)

2

cos )

cos(ωββ?R m K P P

Z cb rc -=-+= 习惯上令: ββ?cos )cos(+=P

K

根据计算结果画出

j

P 、

N

P 、T 、K 随?的变化曲线。如下图所示

图4.4

4.3、曲柄销载荷和连杆轴承载荷

曲柄销载荷

曲柄销上作用有切向力T 和法向力Z ,rc

P K Z -=,由作图法画出曲柄销载荷图。

如下图所示

图4.5 连杆轴承载荷

用坐标变换法计算:

)cos()sin(β?β?+++='Z T Z )sin()cos(

β?β?+-+='Z T T 根据计算结果画出连杆轴承载荷图,如下图所示。

图4.6

参考文献

[1] 周龙保.内燃机学.2版.北京:机械工业出版社,2005.

[2] 袁兆成.内燃机设计.1版.北京:机械工业出版社,2008. [3] 吴兆汉.内燃机设计.1版.北京:北京理工大学出版社,1990

[4] 柴油机设计手册编写委员会.柴油机设计手册上册.1版.北京:中国农业机械出版社,

1984.

[5] 许锋,满长忠.内燃机制造工艺教程.1版.大连:大连理工大学出版社,2006 附表

见EXCEL 表格

机械原理课程设计单缸四冲程内燃机

机械原理课程设计说明书题目:单缸四冲程内燃机机构设计及其运动分析 二级学院机械工程学院 年级专业 13材料本科班 学号 学生姓名 指导教师朱双霞 教师职称教授

目录 第一部分绪论 (2) 第二部分设计题目及主要技术参数说明 (3) 2.1 设计题目及机构示意图 (3) 2.2 机构简介 (3) 2.3 设计数据 (4) 第三部分设计内容及方案分析 (6) 3.1 曲柄滑块机构设计及其运动分析 (6) 3.1.1 设计曲柄滑块机构 (6) 3.1.2 曲柄滑块机构的运动分析 (7) 3.2 齿轮机构的设计 (11) 3.2.1 齿轮传动类型的选择 (12) 3.2.2 齿轮传动主要参数及几何尺寸的计算 (13) 3.3 凸轮机构的设计 (13) 3.3.1 从动件位移曲线的绘制 (14) 3.3.2 凸轮机构基本尺寸的确定 (15) 3.3.3 凸轮轮廓曲线的设计 (16) 第四部分设计总结 (18) 第五部分参考文献 (20) 第六部分图纸 (21)

第一部分绪论 1.本课程设计主要内容是单缸四冲程内燃机机构设计及其运动分析,在设计计算中运用到了《机械原理》、《理论力学》、《机械制图》、 《高等数学》等多门课程知识。 2. 内燃机是一种动力机械,它是通过使燃料在机器内部燃烧,并将其放出的热能直接转换为动力的热力发动机。通常所说的内燃机是指活塞式内燃机。活塞式内燃机以往复活塞式最为普遍。活塞式内燃机将燃料和空气混合,在其气缸内燃烧,释放出的热能是气缸内产生高温高压的燃气。燃气膨胀推动活塞做功。再通过曲柄连杆机构或其他机构将机械功输出,驱动从动机械工作。内燃机的工作循环由进气、压缩、燃烧和膨胀、排气等过程组成。这些过程中只有膨胀过程是对外做功的过程。其他过程都是为更好的实现做功过程而需要的过程。四冲程是指在进气、压缩、膨胀和排气四个行程内完成一个工作循环,此间曲轴旋转两圈。进气行程时,此时进气门开启,排气门关闭;压缩行程时,气缸、内气体受到压缩,压力增高,温度上升;膨胀行程是在压缩上止点前喷油或点火,使混合气燃烧,产生高温、高压,推动活塞下行并做功;排气行程时,活塞推挤气缸内废气经排气门排出。此后再由进气行程开始,进行下一个工作循环。

柴油机设计说明书.doc11

镇江高专 ZHENJIANG COLLEGE 毕业设计(论文) 基于柴油机拆装的零件设计与数控编程 Based on disassembly of parts engine design and NC programming 系名:机械工程系 专业班级: 学生姓名: 学号: 指导教师姓名: 指导教师职称: 二○一一年九月

目录 第一章R175A柴油机的工作原理 (1) 1.1 柴油机的概述 (1) 1.2 柴油机的工作原理 (1) 1.2.1 进气冲程 (2) 1.2.2 压缩冲程 (2) 1.2.3 燃烧膨胀冲程 (3) 1.2.4 排气冲程 (3) 第二章曲轴概述 (4) 2.1 曲轴的作用 (4) 2.2 曲轴的组成 (5) 2.2.1主轴颈 (5) 2.2.2连杆轴颈 (6) 2.2.3曲柄 (6) 2.2.4自由端(前端) (6) 2.2.5功率输出自由端(后端) (6) 第三章曲轴的加工工艺 (7) 3.1 一般曲轴的加工工艺 (7) 3.2 零件设计与工艺分析 (8) 3.2.1零件材料选择 (8) 3.2.2零件几何尺公差及技术要求的确定 (9) 3.3 确定生产类型 (10) 3.3.1确定毛坯种类 (10) 3.3.2确定铸件余量及形状 (10) 3.4 曲轴加工工艺过程设计 (10) 3.4.1选择表面加工方法 (10) 3.4.2确定工艺过程方案 (11)

3.5选择加工设备与工艺装备 (13) 3.5.1选择机床 (13) 3.5.2选择夹具 (13) 3.5.3选择刀具 (13) 3.5.4选择量具 (14) 3.6 确定工序尺寸 (14) 致谢 (18) 参考文献 (19)

活塞式空气压缩机课程设计

4L-208型活塞式空气压缩机的选型及设计 () 摘要:随着国民经济的快速发展,压缩机已经成为众多部门中的重要通用机械。压缩机是压缩气体提高气体压力并输送气体的机械,它广泛应用于石油化工、纺织、冶炼、仪表控制、医药、食品和冷冻等工业部门。在化工生产中,大中型往复活塞式压缩机及离心式压缩机则成为关键设备。本次设计的压缩机为空气压缩机,其型号为D—42/8。该类设备属于动设备,它为对称平衡式压缩机,其目的是为生产装置和气动控制仪表提供气源,因此本设计对生产有重要的实用价值。活塞式压缩机是空气压缩机中应用最为广泛的一种,它是利用气缸内活塞的往复运动来压缩气体的,通过能量转换使气体提高压力的主要运动部件是在缸中做往复运动的活塞,而活塞的往复运动是靠做旋转运动的曲轴带动连杆等传动部件来实现的。 关键词:活塞式压缩机;结构;设计;强度校核;选型 1.1压缩机的用途 4L—20/8型空气压缩机(其外观图见下页),使用压力0.1~1.6Mpa(绝压)排气量20m3 /min,可用于气动设备及工艺流程,适用于易燃易爆的场合。 该种压缩机可以大幅度提高生产率,工艺流程用压缩机是为了满足分离、合成、反应、输送等过程的需要,因而应用于各有关工业中。因为活塞式压缩机已得到如此广泛的应用的需要,故保证其可靠的运转极为重要。气液分离系统是为了减少或消除压缩气体中的油、水及其它冷凝液。 本机为角度式L型压缩机,其结构较紧凑,气缸配管及检修空间也比较宽阔,基础力好,切向力也较均匀,机器转速较高,整机紧凑,便于管理。 本机分成两列,其中竖直列为第一列,水平列为第二列,两列夹角为90度,共用一个曲拐,曲拐错角为0度。

四冲程内燃机机械原理课程设计说明书

四冲程内燃机机械原理课程设计说明书 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

X X 大学 机械原理课程设计说明书 四冲程内燃机设计 院(系)机械工程学院 专业机械工程及自动化 班级××机械工程×班 学生姓名××× 指导老师××× 年月日 课程设计任务书 兹发给×××班学生×××课程设计任务书,内容如下: 1.设计题目:四冲程内燃机设计 2.应完成的项目: (1)内燃机机构运动简图1张(A4) (2)内燃机运动分析与动态静力分析图1张(A3) (3)力矩变化曲线图1张(A4) (4)进气凸轮设计图1张(A4) (5)工作循环图1张(A4) (6)计算飞轮转动惯量 (7)计算内燃机功率 (8)编写设计说明书1份 3.参考资料以及说明: (1)机械原理课程设计指导书 (2)机械原理教材 4.本设计任务书于20××年 1月4日发出,应于20××年1月15日前完成,然后进行答辩。

指导教师签发 201×年 12 月31日

课程设计评语: 课程设计总评成绩: 指导教师签字: 201×年1月15日

目录 摘要 (1) 第一章绪论 (2) 1.1 课程设计名称和要求 (2) 1.2 课程设计任务分析 (2) 第二章四冲程内燃机设计 (4) 2.1 机构设计 (4) 2.2 运动分析 (7) 2.3 动态静力分析 (11) 2.4 飞轮转动惯量计算 (16) 2.5 发动机功率计算 (18) 2.6 进排气凸轮设计 (18) 2.7 工作循环分析 (19) 设计小结 (21) 参考文献 (22)

摘要 内燃机是一种动力机械,它是通过使燃料在机器内部燃烧,并将其放出的热能直接转换为动力的热力发动机。四冲程内燃机是将燃料和空气混合,在其气缸内燃烧,释放出的热能使气缸内产生高温高压的燃气。燃气膨胀推动活塞作功,把曲轴转两圈(720°),活塞在气缸内上下往复运动四个行程,驱动从动机械工作,完成一个工作循环的内燃机。本课程设计是对四冲程内燃机的运动过程进行运动分析、动态静力分析,计算飞轮转动惯量、发动机功率等,设计一款四冲程内燃机。 关键词:四冲程内燃机;运动分析;动态静力分析

四冲程内燃机设计

机械原理课程设计指导书 四冲程内燃机设计 一.设计任务 1.机构设计 根据行程速比系数K及已知尺寸确定机构的主要尺寸,并绘制机构运动简图1张(A4)。 2.运动分析 图解求出连杆机构的位置、速度与加速度,绘制滑块的位移、速度与加速度曲线,完成运动分析图1张(A2)。 3.动态静力分析 通过计算和图解,求出机构中各运动副的约束反力及应加于曲柄OA的平衡M(每人负责完成5~6个位置),完成动态静力分析图1张(A1)。 力矩 b 4.计算并画出力矩变化曲线图1张(A3方格纸)。 5.计算飞轮转动惯量F J。 6.计算发动机功率。 7.用图解法设计进、排气凸轮,完成凸轮设计图1张(A3)。 8.绘制内燃机的工作循环图1张(A4)。 9.完成设计说明书(约20页)。 ●分组及组内数据见附表1; ●示功图见附表2; ●组内成员分功见附表3; ●课程设计进程表见附表4; ●四冲程内燃机中运动简图见附图1。

二.设计步骤及注意问题 1. 确定初始数据 根据分组情况(附表1),查出设计初始数据。 活塞行程 H = (mm ) 活塞直径 D= (mm ) 活塞移动导路相对于曲柄中心的距离 e= (mm ) 行程速比系数 K= 连杆重心2c 至A 点的距离 2AC l = (mm ) 曲柄重量 1Q = (N ) 连杆重量 2Q = (N ) 活塞重量 3Q = (N ) 连杆通过质心轴2c 的转动惯性半径c ρ 2c ρ= (m 2m ) 曲柄的转速 n 1= (rpm ) 发动机的许用速度不均匀系数 [δ]= 曲柄不平衡的重心到O 点的距离 OC l =OA l (mm ) 开放提前角: 进气门:-10°;排气门: -32° 齿轮参数: m =3.5(mm ); α=20°;a h *=1;25.0*=C 2Z =' 2Z =14; 3Z ='3Z =72 ;1Z =36

内燃机设计课程设计大作业

第一部分:四缸机运动学分析 绘制四缸机活塞位移、速度、加速度随曲轴转角变化曲线(X -α,V -α,a -α)。 曲轴半径r=52.5mm 连杆长度l=170mm, 连杆比31.0==l r λ 1、位移:)]2cos 1(4 1 )cos 1[(αλα-+-=r x 2、速度:)2sin 2 (sin αλ αω+ =r v 3、加速度:)2cos (cos 2αλαω+=r a

第二部分:四缸机曲柄连杆机构受力分析 1、初步绘制四缸机气缸压力曲线(g F -α),绘制活塞侧击力变化曲线(N F -α),绘制连杆力变化曲线(L F -α),绘制曲柄销上的切向力(t F ),径向力(k F )的变化曲线(-α),(-α)。 平均大气压MPa p 09839.098.39kPa 0== 缸径D=95mm 则 活塞上总压力 6 010 )(?-=A P P F g g 24 D A π = 单缸活塞组质量:kg m h 277.1= 连杆组质量: 1.5kg =l m 则 往复运动质量:l h j m m m 3.0+= 往复惯性力:)2cos (cos 2αλαω+-=-=r m a m F j j j )sin arcsin(αλβ=又 合力:g j F F F += 侧击力:βtan F F N = 连杆力:β cos F F L = 切向力:)sin(βα+=L t F F 径向力:)cos(βα+=L k F F t F k F

2.四缸机连杆大头轴承负荷极坐标图,曲柄销极坐标图 连杆大头集中质量产生的离心力:2 227.0ωωr m r m F l rL == 连杆轴颈负荷: qy qx p F F arctan =α 连杆轴承负荷: ?+++=180βαααq P )sin(p P px F F α= 2m rL L q F F F +=k rL qx F F F -=t qy F F =q p F F -=)(p p py con F F α=

机械毕业设计说明书

机械毕业设计说明书 【篇一:机械类毕业设计说明书】 河北工业大学 毕业设计说明书 作者:杲宁学号: 090365 学院:机械工程学院 系(专业):机械设计制造及其自动化 题目:药板装盒机结构设计 指导者:张建辉副教授 (姓名)(专业技术职务) 评阅者: (姓名)(专业技术职务) 2013年 6 月 4 日 毕业设计(论文)中文摘要 毕业设计(论文)外文摘要 ? 目录 1 引言(或绪论)???????????????????????? 1 1.1课题研究的目的与意义?????????????????????? 1 1.2 本课题国内外研究现状和发展趋势????????????????? 1 1.3 本课题主要研究内容??????????????????????? 3 1.4 药板装盒机工艺流程分析????????????????????? 3 2 总体方案确定??????????????????????????4 3 药板装盒机详细结构设计 ????????????????????6 3.1 总体结构组成及其工作原理???????????????????? 7 3.2 主要技术参数的确定??????????????????????? 10 结 论 ???????????????????????????????20 参考文献??????????????????????????????21 致谢??????????????????????????????22 【篇二:机械制造毕业设计说明书模板】 (中文题目) (二号、黑体、居中,段后空一行)

摘要(小四号、黑体):离心式压缩机在国民生产中占有重要地位。可用于化肥、制药、制氧及长距离气体增压输送等装置。本次设计 的主要工作包括:确定合成氨工段循环离心压缩机的结构形式、主 体结构尺寸,并确定主要零、部件的结构尺寸及其选型。首先进行 强度和稳定性计算,主要进行了筒体、端盖的壁厚计算、水压试验 应力校核以及叶轮、轴的强度校核。其次,对这些零部件进行结构 设计。整个设计过程都是依据设计规范和标准进行的,设计结果满 足工程设计要求。关键词(小四号、黑体):离心压缩机;叶轮; 结构设计;应力校核;转子轴(英文题目) .engineering design results meet the design requirements. key words: centrifugal compressor; impeller; structural design;stress check;rotor shaft 目录 1 前言 (1) 1.1本次毕业设计课题的目的、意义 (1) 1.2 合成氨工艺简介 (1) 2 离心式压缩机概况 (3) 2.1离心压缩机的优缺点 (3) 2.2离心压缩机的结构组成 (3) 2.3离心压缩机的发展趋势 (4) 3 离心式压缩机选型及计算依据 (5) 3.1离心式压缩机的气动热力学 (5) 3.1.1连续方程 (5) 4 离心压缩机设计和选型计算 (7) 4.1工艺条件 (7) 4.2容积多变指数和压缩性系数的计算 (7) 4.2.1确定混合气体的分子量和气体常数 (7) 4.2.2容积多变指数和压缩系数的确定 (8) 4.3离心压缩机的热力计算 (8) 4.3.1压缩机级数确定 (8) 5 结论 (10) 符号说明 (11) 参考文献 (12) 致谢 (13)

活塞杆课程设计说明书

机械制造工艺学 课程设计说明书 设计题目: 活塞杆机械加工工艺规程设计学院:机电工程学院 班级:机械设计制造及其自动化二班学生:王开勇

学号:20092428 指导教师:付敏副教授 目录 1 零件的分析 (1) 1.1零件结构工艺性分析 (1) 1.2 零件的技术要求分析 (1) 2 毛坯的选择 (2) 2.1毛坯的选择及毛坯制造方法的选择 (2) 2.2毛坯形状及尺寸的确定 (2) 3 工艺路线的拟定 (2) 3.1 定位基准的选择 (2) 3.2零件表面加工方案的选择 (3) 3.3加工顺序的安排 (3)

3.3.1加工阶段的划分 (4) 3.3.2工序的集中与分散 (4) 3.3.3机械加工顺序的安排 (4) 3.3.4热处理工序的安排 (4) 3.3.5辅助工序的安排 (5) 4 工序设计 (6) 4.1 机床和工艺装备的选择 (6) 4.2工序设计 (6) 结论 (11) 参考文献 (12)

1 .零件的分析 1.1零件结构的工艺性分析 (1)00.002550φ-mm ×770mm 自身圆度公差为0.005mm (2)左端3926M g ?-螺纹与活塞杆00.002550φ-mm 中心线的同轴度公差为φ0.05mm (3) 1:20圆锥面轴心线与活塞杆00.002550φ-mm 中心线的同轴度公差为φ0.02mm (4) 1:20圆锥面自身圆跳动公差为0.005mm (5) 1:20圆锥面涂色检查,接触面积不小于80% (6) 00.002550φ-mm ×770mm 表面渗氮,渗氮层深度0.2-0.3表面硬度62一 65HRC 1.2零件的技术要求分析 (1)活塞杆在使用过程中,承受交变载荷作用, 00.0025 50φ-mm ×770mm 处有 密封装置往复摩擦表面,所以该处工艺要求硬度高又耐磨。 活塞杆采用38CrMoAlAn 材料, 00.0025 50φ-mm ×770mm 部分经过调质处理和表 面渗碳处理,芯部硬度为23-32HRC,表面渗氮层深度0.2-0.3mm,表面硬度62-65HRC ,所以活塞杆既有一定的韧性,又具有较好的耐磨性。 (2) 活塞杆结构比较简单,长径比大,属于细长轴类零件。刚性较差,为了保证加工精度,在车削时要粗车、精车分开,而且粗、精车一律使用跟刀架,以减少加加工时工件变形,在加工两端螺纹时使用中心架。 (3)在选择定位基准时,为了保证零件同轴度公差及各部分的相互位置精度,

(完整)四冲程内燃机-机械原理课程设计说明书

(完整)四冲程内燃机-机械原理课程设计说明书 编辑整理: 尊敬的读者朋友们: 这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)四冲程内燃机-机械原理课程设计说明书)的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。 本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)四冲程内燃机-机械原理课程设计说明书的全部内容。

X X 大学 机械原理课程设计说明书 四冲程内燃机设计 院(系)机械工程学院 专业机械工程及自动化 班级××机械工程×班 学生姓名××× 指导老师××× 年月日 课程设计任务书 兹发给×××班学生×××课程设计任务书,内容如下: 1.设计题目:四冲程内燃机设计 2.应完成的项目: (1)内燃机机构运动简图1张(A4) (2)内燃机运动分析与动态静力分析图1张(A3) (3)力矩变化曲线图1张(A4)

(5)工作循环图1张(A4) (6)计算飞轮转动惯量 (7)计算内燃机功率 (8)编写设计说明书1份 3.参考资料以及说明: (1)机械原理课程设计指导书 (2)机械原理教材 4.本设计任务书于20××年 1月4日发出,应于20××年1月15日前完成,然后进行答辩。 指导教师签发 201×年 12 月31日

课程设计评语: 课程设计总评成绩: 指导教师签字: 201×年1月15日

目录 摘要 (1) 第一章绪论 (2) 1.1 课程设计名称和要求 (2) 1.2 课程设计任务分析 (2) 第二章四冲程内燃机设计 (4) 2.1 机构设计 (4) 2.2 运动分析 (7) 2.3 动态静力分析 (11) 2.4 飞轮转动惯量计算 (16) 2.5 发动机功率计算 (18) 2.6 进排气凸轮设计 (18) 2.7 工作循环分析 (19) 设计小结 (21) 参考文献 (22)

发动机毕业设计

发动机毕业设计 【篇一:汽车发动机毕业设计】 成人与继续教育学院 毕业设计(论文) 课题大众帕萨特w8型汽车发动机制 造工艺分析 专业机械设计 学历层次本科 学生姓名韩璐 学生学号指导教师姚国强 接受任务日期:年月日 完成设计(论文)日期:年月日 学生姓名:韩璐 班级: 10机械设计s1 毕业设计(论文)任务书 一、毕业设计(论文)的任务和具体要求: 摘要: 改革开放以后中国的车辆分布发生了本质的变化?车辆的社会化和 私家车的大量发展使汽车维修业走向社会化并促使汽车维修业从产 品型行业向服务型行业过渡按照市场化的要求形成了一个社会化的、资金和技术密集型的、相对独立的行业。分析我国汽车维修行业的 现状以及汽车维修行业的发展方向从而总结出日后汽车维修行业人 才所应具备的能力。而发动机是汽车最重要的组成部分,是汽车的核 心部件之一由于高负荷、高参数发动机的工况条件更加苛刻引起发 动机机件的损伤和失效从而影响发动机的可靠运行。要认识发动机,首先就要了解发动机的构成,并知道它的生产工艺、生产材料及制 造的方法。发动机是汽车的心脏,只有先了解发动机,才能更好的 驾驭汽车。 [关键词] 1、发动机的构成 2、生产过程和工艺过程 3、加工流程 及其工艺分析 【key words】:1、the consist of engine. 2、the production process and the process 3、analysis of machining processes and process 二、毕业设计(论文)说明书应包含的内容

目录 摘要…………………………………………………………………………… 2 关键词 (2) 一、w8型汽车发动机的构成-------------------------------------------------------------4 二、w8型汽车发动机的成产过程和工艺过程---------------------------------------7 三、w8型汽车发动机的加工流程及其工艺分析----------------------------------12 结束语………………………………………………………………………… 13 参考文献 (1) 5 三、毕业设计结束应提交的内容: 四、其他要求: 五、毕业设计(论文)的期限: 自年月日至年月日 指导老师 日期 毕业设计(论文)说明书 (一)毕业设计(论文)题目: 大众帕萨特w8型汽车发动机制造工艺分析 analysis of the volkswagen passat w8 automobile engine manufacturing process (二)毕业设计(论文)要解决的问题和使用的原始数据: 1、w8型汽车发动机的构成 2、w8型汽车发动机的生产过程和工艺过程 3、w8型汽车发动机的加工流程及其工艺分析 (三)毕业设计(论文)的内容: 一、w8型汽车发动机的构成 发动机是将某一种型式的能量转换为机械能的机器,其作用是将液体或气体燃烧的化学能通过燃烧后转化为热能,再把热能通过膨胀转化为机械能并对外输出动力。

汽车制造工艺学课程设计活塞设计说明书(精)

山东农业大学 机械与电子工程学院 汽车制造工艺学课程设计 课程名称:汽车制造工艺学设计课题:活塞零件的机械加工工艺规程的编制 指导老师:吕钊钦 专业:车辆工程班级: 3班姓名:高超学号: 20120667 2014年 12月 11日 序言 本次设计内容涉及了机械制造工艺及机床夹具设计、金属切削机床、公差配合与测量等多方面的知识。 活塞加工工艺规程及其夹具设计是包括零件加工的工艺设计、工序设计以及专用夹具的设计三部分。在工艺设计中要首先对零件进行分析,了解零件的工艺再设计出毛坯的结构,并选择好零件的加工基准,设计出零件的工艺路线;接着对零件各个工步的工序进行尺寸计算,关键是决定出各个工序的工艺装备及切削用量;然后进行专用夹具的设计,选择设计出夹具的各个组成部件,如定位元件、夹紧元件、引导元件、夹具体与机床的连接部件以及其它部件;计算出夹具定位时产生的定位误差,分析夹具结构的合理性与不足之处,并在以后设计中注意改进。 关键词:工艺、工序、切削用量、夹紧、定位、误差。 目录 序言 (3) 一. 零件分析 (4)

1.1 零件作用 (4) 1.2零件的工艺分析 (5) 二. 工艺规程设计 (6) 2.1确定毛坯的制造形式 (6) 2.2基面的选择 (7) 2.3制定工艺路线 (10) 2.4机械加工余量、工序尺寸及毛坯尺寸的确定 (11) 2.5确定切削用量及基本工时 (13) 三夹具设计 (16) 3.1问题的提出 (16) 3.2定位基准的选择 (17) 3.3定位误差分析 (19) 3.4夹具设计及操作简要说明....................................20 总结 (21) 参考文献…………………………………………………………22 (附)机械加工工艺过程卡片 *1套 机械加工工序卡片 *1套 绪论 我国的汽车行业正在飞速发展,汽车的动力部分也在不断改进,内燃机作为一种可移动的动力源已广泛应用于生产和生活的各个领域。活塞是内燃机的关键零

机械原理内燃机课程设计

电算的源程序(MATLAB) 1.滑块的位移源程序 x1=0:0.05:4*pi; %x1--原动件的角度变量 b=150; %b--原动件的长度 c=200; %c--连杆的长度 k=b/c; l=150*cos(x1)+sqrt(200^2-(150*sin(x1).^2)) %l--连杆的位移plot(x1,l); title('滑块的位移图像') xlabel('\it角度','FontSize',8) ylabel('位移大小','FontSize',8) 2.滑块的速度源程序 x1=0:0.05:4*pi; %x1--原动件的角度变量 b=150; %b--原动件的长度 c=200; %c--连杆的长度 k=b/c; w=(2*pi*650)/60; %w--原动件的角速度x2=asin(-k*sin(x1)); %x2--连杆的角度 v=b*w*sin(x1-x2)./cos(x2); plot(x1,v); title('滑块的速度图像') xlabel('\it角度','FontSize',8) ylabel('速度大小','FontSize',8) 3.滑块的加速度源程序:

x1=0:0.05:4*pi; %x1--原动件的角度变量 b=150; %b--原动件的长度 c=200; %c--连杆的长度 k=b/c; w=(2*pi*650)/60; %w--原动件的角速度x2=asin(-k*sin(x1)); %x2--连杆的角度 a=b*(w^2)*(cos(x1-x2)./cos(x2)+k*cos(x1).^2./cos(x2).^3); plot(x1,a); title('滑块的加速度图像') xlabel('\it角度','FontSize',8) ylabel('加速度大小','FontSize',8) 4.从动件滚子的位移源程序: e=5; %凸轮的偏心距 r=35; %凸轮的基圆半径 u=0:0.001:360; s0=sqrt(r^2-e^2); s1=(4*(1-cos(pi*u/50))).*(0<=u & u<50); %凸轮推程运动阶段 s2=8.*(u>=50&u<55); %远休止阶段 s3=4*(1+cos(pi*(u-55)/50)).*(u>=55&u<105); %凸轮回程阶段 s4=0.*(u>=105&u<=360); %近休止阶段 s=s1+s2+s3+s4; plot(u,s); axis([0,360,0,15]); title('滚子的运动线图'); xlabel('角度');

汽车发动机缸体机械加工工艺与工装设计--毕业设计说明书正文综述

1 绪论 1.1 课题背景及目的 随着我国经济的发展,国内对汽车的需求迅速增长,如何提高汽车产品零部件的生产效率和加工质量,对汽车行业的发展至关重要。发动机缸体是汽车五大部件之一,其生产效率和加工质量直接关系到汽车的生产效率和性能。因此,在汽车行业中,如何提高发动机缸体生产效率和加工质量是一项重要的研究课题。 通过对汽车发动机缸体机械加工工艺规程和机械加工工艺装备设计,掌握机械工程产品开发的关键技术。验证、加深、巩固和扩大已学过的专业基础理论和部分专业知识,了解和掌握本专业的实际生产知识,为以后的工作打下基础。考察先进制造技术在实际生产中的应用情况,掌握本专业的发展动态。 1.2国内外研究状况 1.2.1 汽车发动机缸体加工的现状与趋势 1.2.1.1 汽车发动机缸体加工的现状 从国内外的资料来看,目前,汽车发动机缸体的生产大致有以下几种形式: (1).以传统的组合机床自动线为基础的柔性化改造这种以提高传统的组合机床自动化程度的技术改造已取得了相当的进展,传统的组合机床在移植了计算机数控技术之后,组合机床的柔性化程度得到很大提高; (2).以加工中心为主体的准柔性生产线这里提出的是一种以加工中心为主体,以普通机床和组合机为辅的“准柔性生产线”方案; (3).适用于多品种、大批量生产的柔性传输生产线(FTL)和柔性制造系统(FMS)。 1.2.1.2 汽车发动机缸体加工的趋势 国外发动机缸体的加工技术经历了由刚性自动化到数控或加工中心加工,再发展到柔性制造生产线、柔性制造系统和敏捷柔性生产线制造。20 世纪90 年代初,由于技术的进步,出现了高速加工中心等先进机床,产生了敏捷柔性自动线。这种敏捷柔性自动线大大增强了汽车发动机生产厂推行的“中品种、大批量、低、投资适度等优点,各工业发达国家广泛应用于汽车五大零部件的生产中。如德国成本”的新生产方式来适应市场的能力,因而在汽车工业中得到广泛的应用。敏捷柔性自动线具有适应市场能力强

内燃机课程设计

课程设计说明书 2011年12月

目录一.柴油机工作过程的热力学分析 1.原始参数及选取参数 2.热力分析计算参数 二.活塞组的设计 1.概述 2.活塞的选型 3.活塞的基本设计 3.1活塞的主要尺寸 3.2活塞头部设计 3.3活塞销座的设计 3.4活塞裙部及其侧表面形状设计 3.5活塞与缸套的配合间隙 3.6活塞重量 3.7活塞强度计算 4.活塞的冷却 5.活塞的材料及工艺 6.活塞销的设计 6.1活塞销的结构及尺寸 6.2轴向定位 6.3活塞销和销座的配合 6.4活塞销的强度校核 6.5活塞销材料及强化工艺 7.活塞环的设计 7.1活塞环的选择 7.2活塞环主要参数选择

7.3活塞环的材料选择及成型方法 7.4活塞环的间隙 7.5环槽尺寸 三.连杆组的设计 1.概述 2.连杆的结构类型 3.连杆的基本设计 3.1主要尺寸比例 3.2连杆长度 4.连杆小头设计 4.1连杆小头结构 4.2小头结构尺寸 4.3连杆衬套 5.连杆杆身 6.连杆大头 6.1连杆大头结构 6.2大头尺寸 6.3大头定位 7.连杆强度的计算校核 7.1连杆小头 7.2连杆杆身 7.3连杆大头 8.连杆螺栓的设计 四.曲轴组的设计 1. 曲轴的概述 1.1曲轴的工作条件和设计要求

1.2曲轴的结构型式 1.3曲轴的材料 2. 曲轴的主要尺寸确定 2.1主轴颈 2.2曲柄销 2.3曲柄臂 2.4曲轴圆角 2.5提高曲轴疲劳强度方法 3. 曲轴油孔位置 4. 曲轴端部结构 5. 曲轴平衡块 6. 曲轴的轴向定位 7. 曲轴疲劳强度计算 7.1强度计算已知条件 7.2强度计算已知曲轴载荷 7.3 圆角疲劳强度校核 7.4 油孔疲劳强度校核 8.飞轮的设计 五.参考文献

曲轴飞轮设计毕业设计说明书

第一章前言 此设计的机器是392柴油机,这种柴油机多用于农用车和轻型轿车。此机为直列四冲程,水冷直喷柴油机,吸气方式为自然吸气,12小时标定功率为22KW(2400r/min),燃油消耗率须低于242g/(kw *h)。从目前的轻型轿车和农用车市场看,柴油机是一个发展趋势,由于用户对汽车动力性的可靠性及排放法规的限制,柴油机在市场上的地位在不断护大,三缸柴油机是农用车和轻型轿车的首选,功率足,体积小,可以满足用户的需求。从研究角度来说,三缸柴油机既有多缸机的结构复杂特点,又有单缸机的结构紧凑特点,研究三缸机的题既可以解决多缸机上的一些问题也可以解决单缸机的问题。从多方面讲三缸柴油机是很有研究和设计价值的。 我设计的题目是曲轴飞轮组。曲轴是内燃机最主要的部件之一。它的尺寸参数在很大程度上决定并影响着内燃机的整体尺寸和重量,内燃机的可靠性和寿命也在很大程度上取决于曲轴的强度。因此,设计新型内燃机或老产品进行改造时必须对曲轴强度进行严格的安全校核[1]。近年来随着发动机动力性和可靠性要求援不断提高,曲轴的工作条件越来越不好,曲轴的强度问题也越来越复杂。对曲轴强调确定的方法有两种:试验研究和分析计算[2]。此外,曲轴的平衡也是曲轴设计时的一个重要问题,既要满足平衡又要减小平衡重质量。 飞轮主要有以下作用:1、储存动能,使曲轴转速均匀;2、驱动辅助装置;3、正时调整角度用。飞轮的设计原则是,的质量尽可能小的前提下具有足够的转动惯量,因而轮缘常做的宽厚。在进行曲轴飞轮组设计时曲轴的强度、平衡、飞轮的平衡都是需要注意的问题,其中曲轴的强度是较困难的,需发在低成本的情况下,用普通材料合理进设计结构和工艺,使曲轴满足强度要求。曲轴飞轮组是发动机正常工作的保证,对其进行研究,进行合理地设计,可以满足现代发动机的要求。

冲程内燃机机械原理课程设计说明书

机械原理课程设计说明书 四冲程内燃机设计 院(系)机械工程学院 专业机械工程及自动化 班级××机械工程×班 学生姓名××× 指导老师××× 年月日 课程设计任务书 兹发给×××班学生×××课程设计任务书,内容如下:1.设计题目:四冲程内燃机设计 2.应完成的项目: (1)内燃机机构运动简图1张(A4) (2)内燃机运动分析与动态静力分析图1张(A3) (3)力矩变化曲线图1张(A4) (4)进气凸轮设计图1张(A4) (5)工作循环图1张(A4) (6)计算飞轮转动惯量 (7)计算内燃机功率 (8)编写设计说明书1份 3.参考资料以及说明: (1)机械原理课程设计指导书

(2)机械原理教材 4.本设计任务书于20××年 1月4日发出,应于20××年1月15日前完成,然后进行答辩。 指导教师签发 201×年 12 月31日

课程设计评语: 课程设计总评成绩: 指导教师签字: 201×年1月15日

目录 摘要 (1) 第一章绪论 (2) 1.1 课程设计名称和要求 (2) 1.2 课程设计任务分析 (2) 第二章四冲程内燃机设计 (4) 2.1 机构设计 (4) 2.2 运动分析 (7) 2.3 动态静力分析 (11) 2.4 飞轮转动惯量计算 (16) 2.5 发动机功率计算 (18) 2.6 进排气凸轮设计 (18) 2.7 工作循环分析 (19) 设计小结 (21) 参考文献 (22)

摘要 内燃机是一种动力机械,它是通过使燃料在机器内部燃烧,并将其放出的热能直接转换为动力的热力发动机。四冲程内燃机是将燃料和空气混合,在其气缸内燃烧,释放出的热能使气缸内产生高温高压的燃气。燃气膨胀推动活塞作功,把曲轴转两圈(720°),活塞在气缸内上下往复运动四个行程,驱动从动机械工作,完成一个工作循环的内燃机。本课程设计是对四冲程内燃机的运动过程进行运动分析、动态静力分析,计算飞轮转动惯量、发动机功率等,设计一款四冲程内燃机。 关键词:四冲程内燃机;运动分析;动态静力分析

四冲程内燃机设计机械原理课程设计报告书

目录 一、四冲程内燃机的运动分析及总体设计思路 (1) 二、绘制内燃机机构简图 (3) 三、绘制连杆机构位置图 (4) 四、作出机构15个位置的速度和加速度多边形 (4) 五、动态静力分析 (8) 六、计算飞轮转动惯量(不计构件质量) (14) 七、计算发动机功率 (16) 八、对曲柄滑块进行机构部分平衡 (17) 九、排气凸轮(凸轮Ⅱ)的轮廓设计 (17) 十、四冲程工作内燃机的循环图 (24) 参考文献 (26) 一、四冲程内燃机的运动分析及总体设计思路 根据设计任务书,我们需要解决以下问题:凸轮的参数是多少?如何能让机构正常循环工作?为了解决这个问题,我们需要对整个机构从运动及力学的角度分析。 首先,需要明确四冲程内燃机的工作原理:内燃机是通过吸气、压缩、燃烧、排气四个过程不断重复进行的。如果在四个冲程里完成吸气、压缩、做功(燃烧、膨胀)、排气的循环动作,就叫做四冲程。相应的内燃机叫四冲程内燃机。 第一冲程,即吸气冲程。这时曲轴向下转动,带动活塞向下,同时通过齿轮带动凸轮向下旋转,是凸轮的突起部分顶开进气阀门,雾状汽油和空气混合的燃料被吸入气缸。 第二冲程,即压缩冲程。曲轴带动活塞向上,凸轮的突起部分已经转两个过去,进气阀门被关闭,由于凸轮只转了1/4周,所以排气阀门仍然处于关闭状态。活塞向上运动时,将第一冲程吸入的可燃气体压缩,被压缩的气体的压强达到0.6~1.5兆帕,温度升高到300摄氏度左右。 第三冲程是做功冲程。在压缩冲程末火花塞产生电火花,混合燃料迅速燃烧,温度骤然升高到2000摄氏度左右,压强达到3~5兆帕。高温高压烟气急剧膨胀,推动活塞向下做功,此时曲柄转动半周而凸轮转过1/4周,两个气阀仍然紧闭。 第四冲程是排气冲程。由于飞轮的惯性,曲柄转动,使活塞向上运动,这时由于凸轮顶开排气阀,将废气排出缸外。 四个冲程是内燃机的一个循环,每一个循环,活塞往复两次,曲柄转动两周,进排气

毕业设计说明书

摘要 变速器用来改变发动机传到驱动轮上的转矩和转速,为了使汽车在不同速度下行驶,变速器应设有多个档位,包括空挡和倒档。机械式手动变速器是传统的汽车传动系统,由于其结构简单、体积小、制造成本低、便于装配和修理,传动效率高等优点,一直沿用至今。作为传动机构的重要部件,对变速器的设计都遵循着统一的目标,那就是力求简单和方便。变速器的性能直接体现出整车性能的高低,特别是燃油经济性的好坏。所以变速器的设计质量的高低一直是汽车行业竞争的焦点。 本设计针对乘用车两轴式机械变速器。根据乘用车的外形、轮距、轴距、最小离地间隙、最小转弯半径、车辆重量、满载重量以及最高车速等参数,结合选择的适合于该乘用车的发动机型号可以得出发动机的最大功率、最大扭矩、排量等重要的参数。结合某些乘用车的基本参数,选择适当的主减速比。根据上述参数,计算出变速器的相关参数,进行合理性的设计。 关键词:变速器;传动机构;传动比;齿轮;轴;同步器 ABSTRACT To change the engine used to spread transmission of torque and wheel speed, in order to make car travel at different speeds, transmission should be a number of stalls, including neutral and reverse. Mechanical transmission is a traditional manual transmission car, because of its simple structure, small size, low manufacturing cost, ease of assembly and repair, high transmission efficiency, are still in use. Transmission mechanism as an impotant component, the design of transmission line with the goal of reunification, it is simple and convenient. Transmission performance of the vehicle directly reflects the level of performance, especially fuel economy is good or bad. Therefore, the design of transmission quality has been the focus of competition in the automotive industry. The design for the two-axis mechanical transmission cars. Form the basis of passenger cars, Tread, wheelbase, minimum ground clearance, minimum turning radius, vehicle weight, loaded weight and parameters such as maximum speed, combined with the suitable selection of the cars engine engine models can be drawn maximum power, maximum torque, displacement and other important parameters. Combination of some basic parameters of passenger cars, to choose the appropriate reduction ratio of the Lord. Based on the above parameters to calculate the transmission of the relevant parameters for a reasonable design. Key words:Transmission;Transmission mechanism; Transmission ratio;Gear;Axis; Synchronizer

汽车发动机活塞销的选材与热处理工艺课程设计

1 汽车发动机活塞销的零件图如下 Y///////////////A V///////////////A-------- 苇------ * 80^0,1 耳 图1汽车发动机活塞销零件尺寸图 连杆

2 服役条件与性能分析 活塞销(英文名称:Piston Pin),是装在活塞裙部的圆柱形销子,它的中部穿过连杆小头孔,用来连接活塞和连杆,把活塞承受的气体作用力传给连杆。为了减轻重量,活塞销一般用优质合金钢制造,并作成空心。塞销的结构形状很简单,基本上是一个厚壁空心圆柱。其内孔形状有圆柱形、两段截锥形和组合形。圆柱形孔加工容易,但活塞销的质量较大;两段截锥形孔的活塞销质量较小,且因为活塞销所受的弯矩在其中部最大,所以接近于等强度梁,但锥孔加工较难。本次设计选用内孔为原形的活塞销。 服役条件:(1)高温条件下承受周期性强烈冲击和弯曲、剪切作用(2)销表面承受较大的摩擦磨损。 失效形式:由于承受周期性的应力,使其发生疲劳断裂和表面严重磨损。性能要求:(1)活塞销在高温条件下承受很大的周期性冲击负荷,且由于活塞销在销孔内摆动角度不大,难以形成润滑油膜,因此润滑条件较差。为此活塞销必须有足够的刚度、强度和耐磨性,质量尽可能小,销与销孔应该有适当的配合间隙和良好的表面质量。在一般情况下,活塞销的刚度尤为重要,如果活塞销发生弯曲变形,可能使活塞销座损坏;(2)具有足够的冲击韧性;(3)具有较高的疲劳强度。 3 技术要求 活塞销技术要求: ①活塞销全部表面渗碳,渗碳层深度为0.8?1 . 2mm渗碳层至心部组织应 均匀过渡,不得有骤然转变。 ②表面硬度58?64 HRC,同一个活塞销上的硬度差应w 3 HRC。 ③活塞销心部硬度为24 ?40 HRC。 ④活塞销渗碳层的显微组织应为细针马氏体,允许有少量均匀分布的细小粒状碳化物,不得有针状和连续网状分布的游离碳化物存在。心部的针状应是低碳马氏体及铁素体。

相关文档
最新文档