电磁感应线框题
电磁感应专题线框类

图7
(1)线框穿越磁场过程中发出的热. (2)全程通过 a 点截面的电荷量. (3)在坐标系中画出线框从开始下落到 dc 边穿出磁 场的速度与时间的图象.
解析 (1)因为线框 abcd 进入磁场时,v1= 2gh=2 m/s 产生的电动势 E=BLv1=0.2 V E 安培力 FA=BIL=BLR=1 N FA=mg,故线框在磁场中匀速运动,由能量关系可知发 出热量为 Q=mg2L=0.1×10×2×0.1 J=0.2 J (2)因为 ab 与 dc 切割磁感线产生的电动势和电流是 E E=BLv1,I=R E2L BLv12L 2BL2 所以通过 a 点电荷量 Q=It=R v = Rv = R =1 C 1 1
由能量守恒定律得 3 1 2 1 Q=mg×2Lsin θ+(2mv -2mv′2) 3 15m3g2R2sin2θ =2mgLsin θ+ 32B4L4 mgRsin θ 答案 (1) B2L2 (2)3gsin θ 3 15m3g2R2sin2θ (3)2mgLsin θ+ 32B4L4源自方法提炼 即 Q = WA .
如图8所示边长为l的正方形导线框质量为m由距磁场h高处自由下落其下边ab进入匀强磁场后线圈开始做减速运动直到其上边cd刚刚穿出磁场时速度减为ab边刚进入磁场时的一半磁场的宽度也为l则线框穿越匀强磁场过程中发出的焦耳热为a2mglb2mglmghc2mglmghd2mgl217解析设刚进入磁场时的速度为刚穿出磁场时的速度v线框自开始进入磁场到完全穿出磁场共下落高度为2l
求解焦耳热的途径
(1)感应电路中产生的焦耳热等于克服安培力做的功, (2)感应电路中电阻产生的焦耳热等于电流通过电阻做 的功,即 Q=I2Rt. (3)感应电流中产生的焦耳热等于电磁感应现象中其他 形式能量的减少,即 Q=ΔE 他.
2024年高考物理二轮热点模型电磁感应中的导体框模型(解析版)1

电磁感应中的导体框模型目录类型1 线框穿越磁场过程的图像问题类型2 线框穿越磁场过程的动力学及能量问题类型3 线框穿越磁场过程的动量与电荷量问题1.线框模型研究的是线框穿越匀强磁场时发生的电磁感应过程。
高考试题通过此模型对电磁感应过程中的电路、动力学、功能关系进行考查,在求解此类问题时,要注意分析清楚线框进入磁场和离开磁场时的运动情况和受力情况。
2.解决线框模型问题的两大关键(1)分析电磁感应情况:弄清线框在运动过程中是否有磁通量不变的阶段,线框进入和穿出磁场的过程中,才有感应电流产生,结合闭合电路欧姆定律列方程解答。
(2)分析线框的受力以及运动情况,选择合适的力学规律处理问题:在题目中涉及电荷量、时间以及安培力为变力时应选用动量定理处理问题;如果题目中涉及加速度的问题时选用牛顿运动定律解决问题比较方便。
类型1 线框穿越磁场过程的图像问题 1如图所示,有一边长为L 的正方形线框abcd ,由距匀强磁场上边界H 处静止释放,下降过程中ab 边始终与磁场边界平行,且ab 边刚进入匀强磁场区域时恰好能做匀速直线运动。
匀强磁场区域宽度也为L 。
ab 边开始进入磁场时记为t 1,cd 边出磁场时记为t 2,忽略空气阻力,从线框开始下落到cd 边刚出磁场的过程中,线框的速度大小v 、加速度大小a 、ab 两点的电压大小U ab 、线框中产生的焦耳热Q 随时间t 的变化图像可能正确的是()【答案】C【解析】: 线框在磁场上方H 处开始下落到ab 边开始进入磁场过程中线框做匀加速运动;因线框ab 边刚进入匀强磁场区域时恰好能做匀速直线运动,可知线框直到cd 边出磁场时也做匀速运动,选项A 、B 错误。
线框ab 边进入磁场的过程:E =BLv ,则U ab =34BLv ;ab 边出磁场后cd 边在磁场中运动的过程:E=BLv ,则U ab =14BLv ;线框进入磁场和出离磁场过程中电动势相同,均为E =BLv ,时间相同,则产生的热量相同,故选项C 正确,D 错误。
电磁感应线框题

1、如图所示,正方形闭合导线框的质量可以忽略不计,将它从如图所示的位置匀速拉出匀强磁场。
若第一次用0.3s时间拉出,外力所做的功为;第二次用时间拉出,外力所做的功为,则()A. B.C. D.2、如图所示,空间存在两个磁场,磁感应强度大小均为B,方向相反且垂直纸面,MN、PQ为其边界,OO’为其对称轴。
一导线折成变长为的正方形闭合回路abcd,回路在纸面内以恒定速度v o向右运动,当运动到关于OO’对称的位置时A.穿过回路的磁通量为零B.回路中感应电动势大小为C.回路中感应电流的方向为顺时针方向D.回路中ab边与cd边所受安培力方向相同3、如图所示,在光滑水平面上直线MN右侧有垂直于水平面的匀强磁场,一个电阻为R的矩形线框abcd受到水平向左的恒定拉力作用,以一定的初速度向右进入磁场,经过一段时间后又向左离开磁场。
在整个运动过程中ab边始终平行于MN。
则线框向右运动进入磁场和向左运动离开磁场这两个过程中()A.通过线框任一截面的电量相等B.运动的时间相等C.线框上产生的热量相等D.线框两次通过同一位置时的速率相等4、如图所示,竖直面内的虚线上方是一匀强磁场B,从虚线下方竖直上抛一正方形线圈,线圈越过虚线进入磁场,最后又落回到原处,运动过程中线圈平面保持在竖直面内,不计空气阻力,则:()A.上升过程中克服磁场力做的功大于下降过程中克服磁场力做的功B.上升过程中克服磁场力做的功等于下降过程中克服磁场力做的功C.上升过程中克服重力做功的平均功率大于下降过程中重力的平均功率D.上升过程中克服重力做功的平均功率等于下降过程中重力的平均功率5、如图所示,闭合导线框的质量可以忽略不计,将它从如图所示的位置匀速拉出匀强磁场.若第一次用0.3 s时间拉出,外力所做的功为W1,通过导线截面的电荷量为q1;第二次用0.9 s时间拉出,外力所做的功为W2,通过导线截面的电荷量为q2,则( )A.W1<W2,q1<q2 B.W1<W2,q1=q2C.W1>W2,q1=q2 D.W1>W2,q1>q26、如图所示,空间存在一个有边界的条形匀强磁场区域,磁场方向与竖直平面(纸面)垂直,磁场的宽度为l。
高考回归复习—电磁感应之线框模型(word 含答案)

高考回归复习—电磁感应之线框模型1.如图所示,倾角θ为30的光滑斜面上,有一垂直于斜面向下的有界匀强磁场区域PQNM,磁场区域宽度L=0.1m.将一质量m=0.02kg、边长L=0.1m、总电阻R=0.4Ω的单匝正方形闭合线圈abcd由静止释放,释放时ab边水平,且到磁场上边界PQ的距离也为L,当ab边刚进入磁场时,线圈恰好匀速运动,g=10m/s2,求:(1)ab边刚进入磁场时,线圆所受安培力的大小F安方向;(2)ab边刚进入磁场时,线圈的速度及磁场磁感应强度B的大小;(3)线圈穿过磁场过程产生的热量Q.2.如图所示,水平虚线L1、L2之间是匀强磁场,磁场方向水平向里,磁场区域的高度为h。
竖直平面内有一质量为m的直角梯形线框,底边水平,其上下边长之比为5:1,高为2h。
现使线框AB边在磁场边界L1的上方h高处由静止自由下落(下落过程底边始终水平,线框平面始终与磁场方向垂直),当AB边刚进入磁场时加速度恰好为0,在DC边刚进入磁场前的一段时间内,线框做匀速运动.求:(1)求AB边刚进入磁场时线框的速度与CD边刚进入磁场时的速度各是多少?(2)从线框开始下落到DC边刚进入磁场的过程中,线框产生的焦耳热为多少:(3)DC边刚进入磁场时,线框加速度大小为多少?3.如图所示,“凸”字形硬质金属线框质量为m,相邻各边互相垂直,且处于同一竖直平面内,ab边长为l,cd边长为2l,ab与cd平行,间距为2l。
匀强磁场区域的上下边界均水平,磁场方向垂直于线框所在平面。
开始时,cd边到磁场上边界的距离为2l,线框由静止释放,从cd边进入直到ef、pq边进入磁场前,线框做匀速运动。
在ef、pq边离开磁场后,ab边离开磁场之前,线框又做匀速运动。
线框完全穿过磁场的过程中产生的热量为Q。
线框在下落过程中始终处于原竖直平面内,且ab、cd边保持水平,重力加速度为g。
求:(1)线框ab边将离开磁场时做匀速运动的速度大小是cd边刚进入磁场时的几倍;(2)磁场上下边界间的距离H。
电磁感应中的线框问题

1、如图所示,用质量为m、电阻为R的均匀导线做成边长为l的单匝正方形线框MNPQ,线框每一边的电阻都相等。
将线框置于光滑绝缘的水平面上。
在线框的右侧存在竖直方向的有界匀强磁场,磁场边界间的距离为2l,磁感应强度为B。
在垂直MN边的水平拉力作用下,线框以垂直磁场边界的速度v匀速穿过磁场。
在运动过程中线框平面水平,且MN边与磁场的边界平行。
求:(1)线框MN边刚进入磁场时,线框中感应电流的大小;(2)线框MN边刚进入磁场时,M、N两点间的电压U MN;(3)在线框从MN边刚进入磁场到PQ边刚穿出磁场的过程中,水平拉力对线框所做的功W。
(1)线框MN边在磁场中运动时,感应电动势(3分)线框中的感应电流(3分)(2)M、N两点间的电压(3分)(3)线框运动过程中有感应电流的时间(3分)此过程线框中产生的焦耳热Q = I 2Rt =(3分)2、根据能量守恒定律得水平外力做功W=Q=(3分)如图3-6-15 所示,质量为m、边长为l 的正方形线框,在竖直平面内从有界的匀强磁场上方由静止自由下落.线框电阻为R,匀强磁场的宽度为H(l<H),磁感应强度为B.线框下落过程中ab边始终与磁场边界平行且水平.已知ab边刚进入磁场和刚穿出磁场时线框都作减速运动,加速度大小都是g.求:(1)ab 边刚进入磁场与ab 边刚出磁场时的速度;(2)线框进入磁场的过程中产生的热量;(3)cd 边刚进入磁场时线框的速度.(1)ab 进入磁场和离开磁场时线框的速度为vE=Blv I=F安=Bil F安-mg=m·(g)v=(2)线框进入磁场产生的热量为Q-W安+mgH=mv2-mv2 Q=W安=mgH(3)从ab 刚进入磁场到cd 刚进入磁场的过程中mgl-W安=mv′2-mv2v′==3、如图甲所示,abcd是位于竖直平面内的正方形闭合金属线框,金属线框的质量为m,电阻为R.在金属线框的下方有一匀强磁场区域, MN和M′N′是匀强磁场区域的水平边界,并与线框的bc边平行,磁场方向与线框平面垂直.现金属线框由距MN的某一高度从静止开始下落,图乙是金属线框由静止开始下落到完全穿过匀强磁场区域瞬间的速度-时间图象,图像中坐标轴上所标出的字母均为已知量.求:(1)金属框的边长L;(2)磁场的磁感应强度B;(3)请分别计算出金属线框在进入和离开磁场的过程中所产生的热量Q1和Q2.(1)由图象可知,金属框进入磁场过程中是做匀速直线运动,速度为v1,运动时间为t2-t1………………1分所以金属框的边长…………………2分(2)在金属框进入磁场的过程中,金属框所受安培力等于重力…………2分……………1分解得………………2分(3)金属框在进入磁场过程中金属框产生的热为Q1,重力对其做正功,安培力对其做负功,由能量守恒定律得……………2分金属框在离开磁场过程中金属框产生的热为Q2,重力对其做正功,安培力对其做负功,由能量守恒定律得………………2分即:……………1分4、如图所示,一平直绝缘斜面足够长,与水平面的夹角为θ;空间存在着磁感应强度大小为B,宽度为L的匀强磁场区域,磁场方向垂直斜面向下;一个质量为m、电阻为R、边长为a的正方形金属线框沿斜面向上滑动,线框向上滑动离开磁场时的速度刚好是刚进入磁场时速度的1/4,离开磁场后线框能沿斜面继续滑行一段距离,然后沿斜面滑下并匀速进入磁场.已知正方形线框与斜面之间的动摩擦因数为μ.求:(1)线框沿斜面下滑过程中匀速进入磁场时的速度v2.(2)线框在沿斜面上滑阶段通过磁场过程中产生的焦耳热Q.(1)线框在沿斜面下滑匀速进入磁场的瞬间有-------------------------2分解得----------------------2分(2)由动能定理,线框从离开磁场到滑动到最高点的过程中----------------------2分线框从最高点滑下匀速进入磁场的瞬间----------------------2分----------------------1分由能量守恒定律----------------------2分----------------------1分5、如图所示,在距离水平地面h=0.8m的虚线的上方有一个方向垂直于纸面水平向内的匀强磁场。
电磁感应现象中的线框问题

汇报人:
目录
PRT One
添加目录标题
PRT Two
电磁感应现象概述
PRT Three
线框在磁场中的运 动问题
PRT Five
线框在磁场中的受 力问题
PRT Four
线框在磁场中的产 生感应电流问题
PRT Six
线框在磁场中的做 功问题
单击添加章节标题
电磁感应现象概述
伦兹力
洛伦兹力的方 向:与磁场方 向和线框速度
方向有关
线框在磁场中 变速运动的条 件:洛伦兹力 与线框质量、 速度、磁场强
度有关
线框在磁场中 变速运动的结 果:线框速度、 位置、磁场强 度等发生变化
线框在磁场中的转动问题
线框在磁场中的转动:线框在磁场中受到洛伦兹力作用产生转动 洛伦兹力:磁场对运动电荷的作用力方向与磁场和电荷速度的夹角有关 转动方向:洛伦兹力方向与线框转动方向相同 转动速度:洛伦兹力与线框质量、半径、磁场强度、电荷量有关 转动能量:洛伦兹力做功线框转动动能增加电能转化为机械能
安培力在实际生活中的应用
电磁铁:利用安培力产生磁力用于 电磁起重机、电磁制动器等设备
电磁流量计:利用安培力测量流体 流量用于工业生产、科学研究等领 域
添加标题
添加标题
添加标题
添加标题
电磁感应加热:利用安培力产生热 能用于电磁炉、电磁加热器等设备
电磁屏蔽:利用安培力屏蔽电磁干 扰用于电子设备、通信设备等领域
安培力的计算方法
安培力公式:F=BILsinθ
I:线框中的电流
θ:线框与磁场方向的夹角
安培力:线框在磁场中 受到的力
B:磁场强度
L:线框的长度
电磁感应线框问题
电磁感应线框问题————————————————————————————————作者:————————————————————————————————日期:电磁感应线框问题一、线框平动切割所谓线框平动切割,通常是指矩形线框平动进入磁场切割磁感线而产生电磁感应现象。
中学阶段通常讨论的是线框垂直磁感线平动切割。
1.水平平动切割例1.如图所示,Ⅰ、Ⅱ为两匀强磁场区域,Ⅰ区域的磁场方向垂直纸面向里,Ⅲ区域的磁场方向垂直纸面向外,磁感强度为B,两区域中间为宽为s的无磁场区域Ⅱ,有一边长为L(L>s)、电阻为R的正方形金属框abcd置于Ⅰ区域,ab 边与磁场边界平行,现拉着金属框以速度v向右匀速移动。
(1)分别求出ab边刚进入中央无磁场区域Ⅱ和刚进入磁场区域Ⅲ时,通过ab边的电流大小和方向。
(2)把金属框从Ⅰ区域完全拉入Ⅲ区域过程中拉力所做的功。
(93‘上海市高考试题)[分析](1)金属框以速度v向右做匀速直线运动时,当ab边刚进入中央无磁场区域时,由于穿过金属框的磁通量减小,因而在金属框中产生感应电动势,形成adcb方向的感应电流,其大小为I1=ε1/R=BLv/R.当ab边刚进入磁场区域Ⅲ时,由于ab,dc两边都切割磁感线而产生感应电动势,其大小为εab=εdc=BLv,方向相反,故两电动势所对应的等效电源在回路中组成串联形式,因此,在线框中形成了adcb方向的感应电流,其大小为:I2=(εab+εdc)/R=2BLv/R(2)金属线框从Ⅰ区域完全拉入Ⅲ区域过程中,拉力所做的功分为三个部分组成,其中一、三两部分过程中,金属框在外力作用下匀速移动的位移均为s,第二部分过程中金属框在外力作用下增速移动的距离为(L-s)。
因金属框匀速运动,外力等于安培力,所以W外=W安=W1+W2+W3又W1=F1s=BI1Ls=(B2L2v/R)sW2=2F2(L-s)=2BI2L(L-s)=[4B2L2v/R](L-s)W3=F3s=(B2L2v/R)s因此整个过程中拉力所做的功等于:W1+W2+W3=[4B2L2v/R](L-s/2)[评述]本题所要求解问题,是电磁感应中最基本问题,但将匀强磁场用一区域隔开,并将其反向,从而使一个常规问题变得情境新颖,增加了试题的力度,使得试题对考生思维的深刻性和流畅性的考查提高到一个新的层次。
电磁感应中的双导体棒和线框模型(解析版)
2024版新课标高中物理模型与方法电磁感应中的双导体棒和线框模型目录一.无外力等距双导体棒模型二.有外力等距双导体棒模型三.不等距导轨双导体棒模型四.线框模型一.无外力等距双导体棒模型【模型如图】1.电路特点棒2相当于电源;棒1受安培力而加速起动,运动后产生反电动势.2.电流特点:I =Blv 2−BLv 1R 1+R 2=Bl (v 2−v 1)R 1+R 2随着棒2的减速、棒1的加速,两棒的相对速度v 2−v 1变小,回路中电流也变小。
v 1=0时:电流最大,I =Blv 0R 1+R 2。
v 1=v 2时:电流 I =03.两棒的运动情况安培力大小:F 安=BIl =B 2L 2(v 2−v 1)R 1+R 2两棒的相对速度变小,感应电流变小,安培力变小.棒1做加速度变小的加速运动,棒2做加速度变小的减速运动,最终两棒具有共同速度。
4.两个规律(1)动量规律:两棒受到安培力大小相等方向相反,系统合外力为零,系统动量守恒.m 2v 0=(m 1+m 2)v 共(2)能量转化规律:系统机械能的减小量等于内能的增加量.(类似于完全非弹性碰撞)Q =12m 2v 20−12(m 1+m 2)v 2共两棒产生焦耳热之比:Q 1Q 2=R 1R 2;Q =Q 1+Q 25.几种变化:(1)初速度的提供方式不同(2)磁场方向与导轨不垂直(3)两棒都有初速度(两棒动量守恒吗?)(4)两棒位于不同磁场中(两棒动量守恒吗?)1(2023春·江西赣州·高三兴国平川中学校联考阶段练习)如图所示,MN 、PQ 是相距为0.5m 的两平行光滑金属轨道,倾斜轨道MC 、PD 分别与足够长的水平直轨道CN 、DQ 平滑相接。
水平轨道CN 、DQ 处于方向竖直向下、磁感应强度大小为B =1T 的匀强磁场中。
质量m =0.1kg 、电阻R =1Ω、长度L =0.5m 的导体棒a 静置在水平轨道上,与a 完全相同的导体棒b 从距水平轨道高度h =0.2m 的倾斜轨道上由静止释放,最后恰好不与a 相撞,运动过程中导体棒a 、b 始终与导轨垂直且接触良好,导轨电阻不计,重力加速度g 取10m/s 2。
电磁感应线框进出磁场(结合图象)问题(带答案)
(一)、矩形线框进出匀强磁场1.如图所示,在光滑的水平面上,有一垂直向下的匀强磁场分布在宽为L的区域内,现有一个边长为a(a<L)的正方形闭合线圈以速度v垂直磁场边界滑0 过磁场后速度变为v(v<v)那么:()0 L ×A.完全进入磁场时线圈的速度大于(v0v)/2 B..完全进入磁场时线圈的速度等于(v0v)/2 Va ×C.完全进入磁场时线圈的速度小于(v0v)/2×D.以上情况AB均有可能,而C是不可能的×2.如图(3)所示,磁感应强度磁场中匀速拉出磁场。
在其它条件不变的情况下为B的匀强磁场有理想界面,用力将矩形线圈从A、速度越大时,拉力做功越多。
B、线圈边长L1越大时,拉力做功越多。
C、线圈边长L2越大时,拉力做功越多。
D、线圈电阻越大时,拉力做功越多。
3.如图所示,为两个有界匀强磁场,磁感应强度大小均为B,方向分别垂直纸面向里和向外,磁场宽度均为L,距磁场区域的左侧L处,有一边长为L的正方形导体线框,总电阻为R,且线框平面与磁场方向垂直,现用外力F使线框以速度v匀速穿过磁场区域,以初始位置为计时起点,规定:电流沿逆时针方向时的电动势E为正,磁感线垂直纸面向里时磁通量Φ的方向为正,外力F向右为正。
则以下关于线框中的磁通量Φ、感应电动势E、外力F和电功率P随时间变化的图象正确的是(D)EΦt00t BBvBAFPtLLLLtCD4.边长为L的正方形金属框在水平恒力F作用下运动,穿过方向如图的有界匀强磁场区域.磁场区域的宽度为d(d>L)。
已知ab边进入磁场时,线框的加速度恰好为零.则线框进入磁场的过程和从磁场另一侧穿出的过程相比较,有()BLa A.产生的感应电流方向相反F B.所受的安培力方向相反b C.进入磁场过程的时间等于穿出磁场过程的时间D.进入磁场过程的发热量少于穿出磁场过程的发热量d5.如图8所示,垂直纸面向里的匀强磁场的区域宽度为2a,磁感应强度的大小为B。
电磁感应力电综合问题(5)——线框问题
电磁感应力电综合问题(5)——线框问题1.(多选)一质量为m、电阻为R、边长为L的正方形导线框静止在光滑绝缘水平桌面上,桌面上直线PQ左侧有方向竖直向下的匀强磁场I,磁感应强度大小为B,PQ右侧有方向竖直向上的匀强磁场Ⅱ,磁感应强度大小为2B,俯视图如图所示。
现使线框以垂直PQ的初速度v向磁场Ⅱ运动,当线框的三分之一进入磁场Ⅱ时,线框速度为,在这个过程中,下列说法正确的是()A.线框速度为时,线框中感应电流方向为逆时针方向C.线框中产生的焦耳热为B.线框速度为时,线框的加速度大小为D.流过导线横截面的电荷量为2.(多选)如图所示,在光滑水平面上,有竖直向下的匀强磁场,分布在宽度为L的区域内,两个边长均为a (a<L)的单匝闭合正方形线圈甲和乙,分别用相同材料不同粗细的导线绕制而成(甲为细导线),将线圈置于光滑水平面上且位于磁场的左边界,并使两线圈获得大小相等、方向水平向右的初速度v0,若甲线圈刚好能滑离磁场,则()A.乙线圈也刚好能滑离磁场B.两线圈进入磁场过程中通过导线横截面积电量相同C.两线圈完全进入磁场速度相同,等于v0/2D.甲线圈进入磁场过程中产生热量Q1与离开磁场过程中产生热量Q2之比为Q1:Q2=33.如图所示,一由均匀电阻丝折成的正方形闭合线框abcd,置于磁感应强度方向垂直纸面向外的有界匀强磁场中,线框平面与磁场垂直,线框bc边与磁场左右边界平行.若将该线框以不同的速率从图示位置分别从磁场左、右边界匀速拉出直至全部离开磁场,在此过程中()A.流过ab边的电流方向相反B.ab边所受安培力的大小相等C.线框中产生的焦耳热相等D.通过电阻丝某横截面的电荷量相等4.(2013·福建卷)如图,矩形闭合导体线框在匀强磁场上方,由不同高度静止释放,用t1、t2分别表示线框ab边和cd边刚进入磁场的时刻.线框下落过程形状不变,ab边始终保持与磁场水平边界线OO′平行,线框平面与磁场方向垂直.设OO′下方磁场区域足够大,不计空气的影响,则下列哪一个图象不可能反映线框下落过程中速度v随时间t变化的规律()5.(多选)(2017海南物理)如图,空间中存在一匀强磁场区域,磁场方向与竖直面(纸面)垂直,磁场的上、下边界(虚线)均为水平面;纸面内磁场上方有一个正方形导线框abcd,其上、下两边均为磁场边界平行,边长小于磁场上、下边界的间距。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、如图所示,正方形闭合导线框的质量可以忽略不计,将它从如图所示的位置匀速拉出匀强磁场。
若第一次用0.3s时间拉出,外力所做的功为;第二次用时间拉出,外力所做的功为,则()A. B.C. D.2、如图所示,空间存在两个磁场,磁感应强度大小均为B,方向相反且垂直纸面,MN、PQ为其边界,OO’为其对称轴。
一导线折成变长为的正方形闭合回路abcd,回路在纸面内以恒定速度v o向右运动,当运动到关于OO’对称的位置时A.穿过回路的磁通量为零B.回路中感应电动势大小为C.回路中感应电流的方向为顺时针方向D.回路中ab边与cd边所受安培力方向相同3、如图所示,在光滑水平面上直线MN右侧有垂直于水平面的匀强磁场,一个电阻为R的矩形线框abcd受到水平向左的恒定拉力作用,以一定的初速度向右进入磁场,经过一段时间后又向左离开磁场。
在整个运动过程中ab边始终平行于MN。
则线框向右运动进入磁场和向左运动离开磁场这两个过程中()A.通过线框任一截面的电量相等B.运动的时间相等C.线框上产生的热量相等D.线框两次通过同一位置时的速率相等4、如图所示,竖直面内的虚线上方是一匀强磁场B,从虚线下方竖直上抛一正方形线圈,线圈越过虚线进入磁场,最后又落回到原处,运动过程中线圈平面保持在竖直面内,不计空气阻力,则:()A.上升过程中克服磁场力做的功大于下降过程中克服磁场力做的功B.上升过程中克服磁场力做的功等于下降过程中克服磁场力做的功C.上升过程中克服重力做功的平均功率大于下降过程中重力的平均功率D.上升过程中克服重力做功的平均功率等于下降过程中重力的平均功率5、如图所示,闭合导线框的质量可以忽略不计,将它从如图所示的位置匀速拉出匀强磁场.若第一次用0.3 s时间拉出,外力所做的功为W1,通过导线截面的电荷量为q1;第二次用0.9 s时间拉出,外力所做的功为W2,通过导线截面的电荷量为q2,则( )A.W1<W2,q1<q2 B.W1<W2,q1=q2C.W1>W2,q1=q2 D.W1>W2,q1>q26、如图所示,空间存在一个有边界的条形匀强磁场区域,磁场方向与竖直平面(纸面)垂直,磁场的宽度为l。
一个质量为m、边长也为l的正方形导线框沿竖直方向运动,线框所在的平面始终与磁场方向垂直,且线框上、下边始终与磁场的边界平行。
t=0时刻导线框的上边恰好与磁场的下边界重合(图中位置I),导线框的速度为v0,经历一段时间后,当导线框的下边恰好与磁场的上边界重合时(图中位置Ⅱ),导线框的速度刚好为零,此后,导线框下落,经过一段时间回到初始位置I(不计空气阻力)。
则( )A.上升过程中,导线框的加速度逐渐减小B.上升过程中,导线框克服重力做功的平均功率小于下降过程中重力做功的平均功率C.上升过程中线框产生的热量比下降过程中线框产生的热量多D.上升过程中合力做的功与下降过程中合力做的功相等7、如图,均匀磁场中有一由半圆弧及其直径构成的导线框,半圆直径与磁场边缘重合;磁场方向垂直于半圆面(纸面)向里,磁感应强度大小为B0.使该线框从静止开始绕过圆心O、垂直于半圆面的轴以角速度ω匀速转动半周,在线框中产生感应电流。
现使线框保持图中所示位置,磁感应强度大小随时间线性变化。
为了产生与线框转动半周过程中同样大小的电流,磁感应电动势随时间的变化率的大小应为()A.B.C.D.8、如图甲所示,MN左侧有一垂直纸面向里的匀强磁场。
现将一边长为l、质量为m、电阻为R的正方形金属线框置于该磁场中,使线框平面与磁场垂直,且bc边与磁场边界MN重合。
当t=0时,对线框施加一水平拉力F,使线框由静止开始向右做匀加速直线运动;当t=t0时,线框的ad边与磁场边界MN重合。
图乙为拉力F随时间变化的图线。
由以上条件可知,磁场的磁感应强度B的大小为()A. B.C.D.9、如图所示,在光滑绝缘的水平面上有一个用一根均匀导体围成的正方形线框abcd,其边长为L,总电阻为R,放在磁感应强度为B.方向竖直向下的匀强磁场的左边,图中虚线MN为磁场的左边界。
线框在大小为F的恒力作用下向右运动,其中ab边保持与MN平行。
当线框以速度v0进入磁场区域时,它恰好做匀速运动。
在线框进入磁场的过程中,(1)线框的ab边产生的感应电动势的大小为E 为多少?(2)求线框a、b两点的电势差。
(3)求线框中产生的焦耳热。
10、如图所示,PQNM是表面光滑、倾角为30°的绝缘斜面,斜面上宽度为L的矩形区域P′Q′N′M′内存在垂直于斜面向下、磁感应强度为B的匀强磁场。
现将质量为m、边长为L的单匝正方形金属线框abcd放在斜面上,使其由静止开始沿斜面下滑。
若已知cd∥N′M′∥NM,线框开始运动时cd边与P′Q′的距离为2L,线框恰能做匀速运动通过磁场区域,重力加速度为g。
求:(1)线框的电阻。
(2)线框在通过磁场区域的过程中产生的热量。
11、如图所示,光滑斜面的倾角,在斜面上放置一矩形线框abcd,ab边长l1=1m,bc边的边长l2=0.6m,线框的质量m=1kg、电阻R=0.1,线框用细线通过定滑轮与重物相连,重物的质量M=2kg,斜面上ef线与gh线(ef//gh//pq//ab)间有垂直斜面向上的匀强磁场,磁感应强度B1=0.5T;gh线与pq线间有垂直斜面向下的匀强磁场,磁感应强度B2=0.5T,如果线框从静止开始运动,当ab边进入磁场时恰好做匀速直线运动ab边由静止开始运动gh线所用的时间为2.3s,取g=10m/s2,求:(1)ef线和gh线间的距离。
(2)ab边由静止开始至运动到gh线这段时间内线框中产生的焦耳热。
(3)ab边刚越来gh线瞬间线框的加速度。
12、如图所示,均匀正方形导体线框ABCD的边长为l=0.2m,每边的电阻为r=1.0Ω。
有理想边界的匀强磁场的宽d=0.4m,磁感应强度的大小为B=0.5T,方向垂直于线框平面。
现让线框以恒定的速度U。
磁场区域的左边进入磁场并通过磁场区域,速度的大小为v=10m/s,速度方向沿AB方向。
求:(不计线框所受的重力)(1)线框进人磁场的过程中,为维持线框做匀速直线运动,所需外力F的大小;(2)线框通过磁场区域的过程中,外力F所做的功W;(3)线框离开磁场的过程中,AD两点的电势差U AD。
13、一边长为L的正方形闭合金属导线框,其质量为m,回路电阻为R.图中M、N、P为磁场区域的边界,且均为水平,上下两部分磁场的磁感应强度均为B,方向如图所示. 图示位置线框的底边与M重合. 现让线框由图示位置由静止开始下落,线框在穿过N和P两界面的过程中均为匀速运动. 若已知M、N之间的高度差为h1,h2>L. 线框下落过程中线框平面始终保持竖直,底边结终保持水平,重力加速度为g. 求:(1)N与P之间的高度差h2;(2)在整个运动过程中,线框中产生的焦耳热.14、一个质量m=0.1kg的正方形金属框总电阻R=0.5Ω,金属框放在表面绝缘且光滑的斜面顶端(金属框上边与AA′重合),自静止开始沿斜面下滑,下滑过程中穿过一段边界与斜面底边BB′平行、宽度为d的匀强磁场后滑至斜面底端(金属框下边与BB′重合),设金属框在下滑过程中的速度为v,与此对应的位移为s,那么v2―s图象如图所示,已知匀强磁场方向垂直斜面向上,g=10m/s2。
(1)根据v2―s图象所提供的信息,计算出斜面倾角θ和匀强磁场宽度d.(2)金属框从进入磁场到穿出磁场所用的时间是多少?(3)匀强磁场的磁感应强度多大?15、如图所示,将边长为a、质量为m、电阻为R的正方形导线框竖直向上抛出,穿过宽度为b、磁感应强度为B的匀强磁场,磁场的方向垂直纸面向里,线框向上离开磁场时的速度刚好是进入磁场时速度的一半,线框离开磁场后继续上升一段高度,然后落下并匀速进入磁场,整个运动过程中始终存在着大小恒定的空气阻力f,且线框不发生转动.求:(1)线框在下落阶段匀速进入磁场时的速度v2;(2)线框在上升阶段刚离开磁场时的速度v1;(3)线框在上升阶段通过磁场过程中产生的焦耳热Q.16、某种超导磁悬浮列车是利用超导体的抗磁作用使列车车体向上浮起,同时通过周期性地变换磁极方向而获得推进动力.其推进原理可以简化为如图所示的模型:在水平面上相距b的两根平行直导轨间,有竖直方向等距离分布的匀强磁场B1和B2,且B1=B2=B,每个磁场的长都是a,相间排列,所有这些磁场都以速度v向右匀速运动.这时跨在两导轨间的长为a宽为b的金属框MNQP(悬浮在导轨正上方)在磁场力作用下也将会向右运动.设金属框的总电阻为R,运动中所受到的阻力恒为f,求:(1)列车在运动过程中金属框产生的最大电流;(2)列车能达到的最大速度;(3)简述要使列车停下可采取哪些可行措施?17、如图所示,边长为L的正方形导线框abcd,质量为m、电阻为R,垂直纸面向外的匀强磁场区域宽度为H(H>L).线框竖直上抛,cd边以的速度向上进入磁场,经一段时间, ab边以的速度离开磁场,再上升一段高度,然后落下并匀速进入磁场.不计空气阻力,整个运动过程中线框不转动.求线框(1)ab边向上离开磁场时的安培力;(2)向上通过磁场的过程中产生的焦耳热;(3)向上完全进入磁场过程中所通过横截面的电荷量.18、如图所示,足够长的粗糙斜面与水平面成θ=37°放置,在斜面上虚线aa’和bb’与斜面底边平行,且间距为d=0.1m,在aa’b’b围成的区域有垂直斜面向上的有界匀强磁场,磁感应强度为B=1T;现有一质量为m=10g,总电阻为R=1Ω,边长也为d=0.1m的正方形金属线圈MN PQ,其初始位置PQ边与aa’重合,现让金属线圈以一定初速度沿斜面向上运动,当金属线圈从最高点返回到磁场区域时,线圈刚好做匀速直线运动。
已知线圈与斜面间的动摩擦因数为μ=0.5,不计其他阻力,求:(取sin37°=0.6, cos37°=0.8)(1)线圈向下返回到磁场区域时的速度;(2)线圈向上离开磁场区域时的动能;(3)线圈向下通过磁场过程中,线圈电阻R上产生的焦耳热。
19、在光滑的水平地面上方,有两个磁感应强度大小均为B,方向相反的水平匀强磁场,如图所示,PQ为两个磁场的边界,磁场范围足够大。
一个半径为,质量为,电阻为R的金属圆环垂直磁场方向,以速度从如图所示位置向右运动,当圆环运动到直径刚好与边界线PQ重合时,圆环的速度为,则下列说法正确的是A.此时圆环中的电功率为B.此时圆形的加速度为C.此过程中通过圆环截面的电量为D.此过程中回路产生的电能为20、如图所示,在空中有一水平方向的匀强磁场区域,区域的上下边缘间距为h,磁感应强度为B。
有一宽度为b(b<h),长度为L、电阴为R、质量为m的矩形导体线圈紧贴磁场区域的上边缘由静止起竖直下落,当线圈的PQ边到达磁场下边缘时,线圈恰好开始做匀速运动。