二项式定理复习
二项式定理复习总结

二项式定理复习总结一、二项式定理的定义和公式推导1.定义:二项式定理是指对于任意实数a、b及非负整数n,有以下公式成立:(a+b)ⁿ=C(n,0)*aⁿ*b⁰+C(n,1)*aⁿ⁻¹*b¹+C(n,2)*aⁿ⁻²*b²+...+C(n,n-1)*a¹*bⁿ⁻¹+C(n,n)*a⁰*bⁿ其中,C(n,r)表示组合数,即从n个元素中选取r个元素的组合数。
2.公式推导:利用组合数的性质,可以对二项式定理进行推导。
首先,根据组合数的性质C(n,r)=C(n-1,r-1)+C(n-1,r),可以得到以下关系式:C(n,0)=1C(n,n)=1C(n,r)=C(n-1,r-1)+C(n-1,r)(r=1,2,...,n-1)将上述关系式代入二项式定理的公式中,可以得到:(a+b)ⁿ=C(n,0)*aⁿ*b⁰+C(n,1)*aⁿ⁻¹*b¹+C(n,2)*aⁿ⁻²*b²+...+C(n,n-1)*a¹*bⁿ⁻¹+C(n,n)*a⁰*bⁿ二、二项式定理的应用1.求二项式展开式:利用二项式定理,可以将一个数的n次方展开成多个项的和。
这在计算复杂的多项式、计算高次方等问题时非常有用。
例如,将(x+y)⁶展开,可以直接利用二项式定理的公式进行计算:(x+y)⁶=C(6,0)*x⁶*y⁰+C(6,1)*x⁵*y¹+C(6,2)*x⁴*y²+C(6,3)*x³*y³+C(6 ,4)*x²*y⁴+C(6,5)*x¹*y⁵+C(6,6)*x⁰*y⁶将组合数代入并进行计算,最终可以得到(x+y)⁶的展开式。
2.计算排列组合问题:二项式定理中的组合数C(n,r)可以表示从n 个元素中选取r个元素的组合数,因此可以应用于计算排列组合问题。
例如,班有10个学生,要从中选择5个学生组成一个小组,求不同小组的个数。
第3节 二项式定理--2025湘教版高中数学一轮复习课件(新高考新教材)

考向3三项展开式中的特定项(或系数)
例3(x2+x+y)5的展开式中,x5y2的系数为( C )
A.10
B.20
C.30
D.60
解析 (方法一)(x2+x+y)5 的展开式的通项为 Tr+1=C5 (x2+x)5-ryrFra bibliotek令 r=2,则
T3=C52 (x2+x)3y2.
又(x2+x)3 的展开式的通项为 Tk+1=C3 (x2)3-kxk=C3 x6-k,令 6-k=5,则 k=1.所以
3
1
(2)(2024·福建福州模拟)若(3 + 2 ) 的展开式中存在常数项,则正整数n
可以是( C )
2
A.3
B.5
C.6
1
2
解析 (3 + 2) 的展开式的通项为
2n-4r=0,解得
r= ,又
2
D.7
2 -
Tr+1=C (3 )
1
n-r 2n-4r
=3
C x ,令
所以
C2 ×22
=
56
,得(n-2)(n-3)=56,解得
3
1
n=10 或 n=-5(舍去),
10-5
所以 Tr+1=C10
( 2 )10-r(2x-2)r=2rC10
2
10-5
.令
=0,解得 r=2,所以展开式中的常
2
数项为第三项,T3=180.
(2)由
2 C10
2 C10
x 的系数为(-1)225-2C52 =80.
二项式定理复习(附答案)

二项式定理复习(配答案)Ltt一、 知识梳理1.二项式定理及其特例:(1)01()()n n n r n r r n nn n n n a b C a C a b C a b C b n N -*+=+++++∈ , (2)1(1)1n r r n n n x C x C x x +=+++++ . 2.二项展开式的通项公式:1r n r r r n T C a b -+=3.求常数项、有理项和系数最大的项时,要根据通项公式讨论对r 的限制;求有理项时要注意到指数及项数的整数性4 二项式系数表(杨辉三角)()n a b +展开式的二项式系数,当n 依次取1,2,3…时,二项式系数表,表中每行两端都是1,除1以外的每一个数都等于它肩上两个数的和5.二项式系数的性质:()n a b +展开式的二项式系数是0nC ,1n C ,2n C ,…,n n C .rn C 可以看成以r 为自变量的函数()f r ,定义域是{0,1,2,,}n ,例当6n =时,其图象是7个孤立的点(如图)(1)对称性.与首末两端“等距离”的两个二项式系数相等(∵m n mn nC C -=). (2)增减性与最大值:当n 是偶数时,中间一项2nnC 取得最大值;当n 是奇数时,中间两项12n nC-,12n nC+取得最大值.(3)各二项式系数和:∵1(1)1n r rn n n x C x C x x +=+++++ ,令1x =,则0122n r n n n n n nC C C C C =++++++ 二、 例题讲解1.展开(a+2b)5;并求第三项;第三项的二项式系数;第三项的系数。
解析:第三项的二项式系数,第三项系数40.2.数11100-1的末尾连续出现零的个数是( )A .0B .3C .5D .7【解析】11100-1=(10+1)100-1=0100C ×10100+1100C ×1099+…+99100C ×10+1-1=0100C ×10100+1100C ×1099+…+99100C ×10,末尾连续出现3个零.【答案】B3. (1)求展开式中x 3的系数;(2)求展开式中第四项的二项式系数及系数;(3)求展开式中的有理项;(4)求展开式中x 3的系数。
二项式定理-高考数学复习

=59.
目录
解题技法
赋值法的应用
(1)对形如( ax + b ) n ,( ax 2 + bx + c ) m ( a , b , c
∈R, m , n ∈N * )的式子求其展开式的各项系数之和,只
需令 x =1即可;
(2)对( ax + by ) n ( a , b ∈R, n ∈N*)的式子求其展开式各项
n ), g ( r )≠0,则:
(1) h ( r )=0⇔ Tr +1是常数项;
(2) h ( r )是非负整数⇔ Tr +1是整式项;
(3) h ( r )是负整数⇔ Tr +1是分式项;
(4) h ( r )是整数⇔ Tr +1是有理项.
目录
2. 两个常用公式
(1) C0 + C1 + C2 +…+ C =2 n ;
PART
2
目录
二项式中的特定项及系数问题
【例1】
1
(1)(2 x - )5的展开式中 x 的系数是(
A. -40
B. 40
C. -80
D. 80
)
1
解析:(1)(2 x - )5展开式的通项公式为 Tr +1= 5 (2 x )5
- r (- 1 ) r =(-1) r 25- r x 5-2 r ( r =0,1,…,5),令5
理数的项的个数是
16 2
,系数为有
5 .
解析:由二项展开式的通项公式可知 Tr +1= C9 ·
( 2 )9- r ·xr , r
∈N,0≤ r ≤9,当项为常数项时, r =0, T 1= C90 ·
( 2 )9·x 0=
( 2 )9=16 2 .当项的系数为有理数时,9- r 为偶数,可得 r =
高考数学复习:二项式定理

思维升华
(1)赋值法的应用 一般地,对于多项式(a+bx)n=a0+a1x+a2x2+…+anxn,令 g(x)=(a+bx)n, 则(a+bx)n 的展开式中各项的系数和为 g(1),(a+bx)n 的展开式中奇数项 的系数和为12[g(1)+g(-1)],(a+bx)n 的展开式中偶数项的系数和为12[g(1) -g(-1)].
自主诊断
2.(选择性必修第三册P31T4改编) 1x-
x10
的展开式中x2的系数等于
√A.45
B.20
C.-30
D.-90
k
因为展开式的通项为Tk+1=(1)k C1k0x 2
·x-(10-k)=(
1)k
C1k0
x
10
3 2
k
,
令-10+32k=2,得 k=8,
所以展开式中 x2 的系数为(-1)8×C810=45.
(x+y)8 展开式的通项为 Tk+1=Ck8x8-kyk,k=0,1,…,7,8. 令 k=6,得 T6+1=C68x2y6; 令 k=5,得 T5+1=C58x3y5, 所以1-yx(x+y)8 的展开式中 x2y6 的系数为 C68-C58=-28.
(2)若(x2+a)x+1x8 的展开式中 x8 的系数为 9,则 a 的值为__1___.
因为(x-2y)8 的展开式中含 x6y2 的项为 C28x6(-2y)2=112x6y2, 所以(x-2y)8的展开式中x6y2的系数为112.
(2)已知x-
a
5
x
的展开式中
x5
的系数为
A,x2
的系数为
B,若
A+B=11,
则 a=__±_1___.
x-
2025届高中数学一轮复习课件《二项式定理》ppt

高考一轮总复习•数学
第6页
二 二项式系数的性质 1.对称性:与首末两端“等距离”的两个二项式系数__相__等_____.
2.增减性与最大值:当 n 是偶数时,中间的一项_________取得最大值;当 n 是奇数时,
高考一轮总复习•数学
第8页
1.判断下列结论是否正确. (1)Crnan-rbr 是(a+b)n 的展开式中的第 r 项.( ) (2)通项公式 Tr+1=Crnan-rbr 中的 a 和 b 不能互换.( √ ) (3)(a+b)n 的展开式中某项的系数是该项中非字母因数部分,包括符号等,与该项的 二项式系数不同.(√ ) (4)若(3x-1)7=a7x7+a6x6+…+a1x+a0,则 a7+a6+…+a1 的值为 128.( )
或者其他量.
高考一轮总复习•数学
第19页
对点练 1(1)在2x-mx 6 的展开式中,若常数项为-20,则实数 m 的值为(
)
A.12
B.-12
C.-2
D.2
(2)(2024·湖北部分重点中学第二次联考)用 1,2,3,4,5 组成没有重复数字的五位数,其中
个位小于百位且百位小于万位的五位数有 n 个,则(1+x)3+(1+x)4+(1+x)5+…+(1+x)n
(3)(3
3-2)7 的展开式的通项
Tk+1=Ck7·(3
7-k
3)7-k·(-2)k=Ck7·3 3
·(-2)k(k=0,1,2,3,4,5,6,7),
高考一轮总复习•数学
第17页
要使第 k+1 项为有理数,则7-3 k∈Z,则 k 可取 有理项的求法.
高三一轮复习二项式定理.pptx

=15.
(2)含 x4 的项为 C38x5( a )3=C38a3x4, 3 x
∴C38a3=7,∴a=12.
第10页/共43页
(3)a=∫π20(sin2x2-12)dx=∫π20(1-c2os x-12)dx
=∫π20(-co2s x)dx=-12.此时二项式的展开式的通项为 Tr+1=
Cr9(-12x)9-r(-
第33页/共43页
考点二
二项式系数或各项系数和
【例2】 (1)设m为正整数,(x+y)2m展开式的二项式系数的最大值为a,(x+ y)2m+1展开式的二项式系数的最大值为b。若13a=7b,则m=( )
A.5 B.6 C.7 D.8
(2)在二项式 x2-1x n的展开式中,所有二项式系数的和是32,则展开式中各项 系数的和为( )
第23页/共43页
3.求证:3n>(n+2)·2n-1(n∈N*,n>2).
【证明】因为 n∈N*,且 n>2,
所以 3n=(2+1)n 展开后至少有 4 项.
(2
+
1)n
=
2n
+
C
1 n
·2n
-
1
+
…+
Cnn-1
·2 +
1≥2n
+
n·2n
-
1
+
2n
+
1>2n+n·2n-1=(n+2)·2n-1,
所以 T4=C36x3(-2)3=-160x3,所以 x3 项的系数为-160.
第29页/共43页
第30页/共43页
本部分内容讲解结束
按ESC键退出全屏播放
第31页/共43页
2.若(x-1)4=a0+a1x+a2x2+a3x3+a4x4,则a0+a2+a4的值为( )
二项式定理课件-2025届高三数学一轮复习

B.−
)
C.−
√
D.−
解析:因为只有第5项的二项式系数最大,
所以 = , −
的展开式的通项为+
= −
− ,
= ,1,2,
⋯ ,8,所以展开式中奇数项的二项式系数与相应奇数项的系数相等,偶
数项的二项式系数与相应偶数项的系数互为相反数,而展开式中第5项的
D.50
] 求解.
思路二:利用因式分解把 + − 转化为二项式
思路三:
+
)
−
求解.
− 表示5个因式 + − 的乘积,利用组合知识求解.
解析:方法一: + −
=[ − +
] ,
通项为+ = − −
逐项减1直到零;字母 按升幂排列,从第一项开始,次数由零逐项加1直
到 .
2.二项式系数的性质
若二项展开式的通项为+ = ⋅
( = , , , ⋯ , ), ≠ ,则
有以下常见结论:
(1) = ⇔ + 是常数项;
(2) 是非负整数 ⇔ + 是整式项;
的展开式中第2项和第6项的二项式系数相等,所
以 = ,解得 = .
−
展开式的通项为
−
+ =
−
=
⋅ −
⋅ − ⋅ − ,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
( 4 ) 项的系数最大的项
6 5 6 T7 C11x y
(5)项的系数最小的项
T6
5 6 5 C11x y
二项式定理 (a+b)n = Cn0 an +Cn1 an-1b +Cn2 an-2b2 +‥· + Cnk an-kbk + ‥· nnbn (n∈N*) +C 二项展开式的特点: (1)共有n+1项 (2)各项的次数都等于二项式的次数n (3)字母a按降幂排列,次数由n递减到0 字母b按升幂排列,次数由0增加到n (4)二项式系数为Cn0,Cn1,Cn2 ,… Cnk , … , Cnn是一组与二项式次数n有关的组合数, 与a,b无关
2 6
2.公式变用. 例2、求
(x
2
1 x
2
2)
3
展开式中的常数项.
解:一般有两种变形方法,其一变形 1 2 3 1 [( x ) 2] 为 ,其二变形为 ( x ) .后 2 x x 较简,其常数项即为第四项 T C 3 . 20
6
4
6
3.公式逆用
例3. 1 3 C n 9 C n 27 C n .... ( 1)
(
x
1
3
)
10
x
的展开式中有理项共有
( 1
3
C
( r) 10
r
10 r
)
r
x
C
( 1) x 10
r
r
10
4r 3
当 r 0 ,3,6 ,9时,所对应的项是有理项。故展开 式中有理项有4项。 5 x ( 2 3 x ) 的展开式中含 x (2)求 的项. 2 3 3 3 5 x C 6 2 ( 3 x ) 4320 x 解:
二项式定理复习课
基础训练
11 1.x y
展开式中有
项,通项Tr+1=
, 二项式系数最大的
项是
项是
,项的系数绝对值最大的项 是
,项的系数最小的项是
x)
4
,项的系数最大的
。
3 x 的项的系数是( ) .
2.在二项式 ( 2 x A.6 B.12
的展开式中,含 C.24 D.48
3.若展开式 ( x 1 ) n
(2 x 3)
4
a 0 a1 x a 2 x a 3 x a 4 x
2
3
4
。
(2)设
(1 2 x )
100
a 0 a 1 ( x 1) a 2 ( x 1 )
2
a100 ( x 1)
100
求 a 1 a 3 a 5 a 99 的值
x
3
的二项式系数之和为64, 则展开式的常数项为
.
4.若 1 x 3 a a x a x 2 a x 9 0 1 2 9
A、 1 5.
10
11
则 a1 a 2 a 9
( )
B、0
C、1
D、2
除以9的余数是 ( ) A.1 B.2 C.4 D.8
一般地, (a b) 展开式的二项式系数
n
C , C ,C 有如下性质:
(1) C C
m n nm n
0 n
1 n
n n
(对称性)
(2) C C
mቤተ መጻሕፍቲ ባይዱn
m 1 n
C
m n 1
n
(3)当n为偶数时, 2 最大 Cn
n 1
n 1
当n为奇数时, 2 =C 2 且最大 Cn n
(4)二项式系数和 C C C 2
x y
11
的展开式中,
(1)通项 T r 1
( 2 ) 二项式系数最大的项
Tr 1 (1)
T6
r
r 11 r r C11x y
二项式系数最大的项为中间两项
5 6 5 C11 x y , T7 6 5 6 C11 x y
(3)项的系数绝对值最大
的项
项的系数绝对值最大的项, 也是中间两项,T,T同(2) 6 7
1 2 3
n
3
n
c
n n
=
。
解:原式 =C C
0 n
1
( 3) n
1
C
2
( 3) n
2
C
3
( 3 ) .... n
3
C
3
( 3) n
n
(1 3 )
n
(2)
n
4.“赋值法” 求二项展开式中的系数 和
例4.(1)若 2 2 ( a 0 a 2 a 4 ) ( a1 a 3 ) 的值为 则
0 n 1 n n n n
二项式常见题型
题型一:二项式通项 公式的应用 (1)求二项展开式中的指定项 、特定项 (2)求二项展开式中的系数最大的项 题型二:求二项展开式中的系数和 题型三:有关整除问题 题型四:证明特殊的恒等式、不等式
1、公式正用. 例1.(1)求 项; 解: T
r 1