17-18-2本科高数第十二章
高等数学第十二章微分方程

x, y'
而 OM x2 y2 . 于是得微分方程
y x x2 y2 ,
y'
或
ydx (x x2 y2 )dy.
这是齐次方程。我们把 x 看作未知函数,把 y看作自
变量,并令 x v,则x yv, dx vdy ydv. y
代入上式得
y(vdy ydv) ( yv | y | v2 1)dy.
y
x
所以这是全微分方程。可取 x0 0, y0 0, 根据
公式(3),有u( x, y) 0x(5x4 3xy2 y3 )dx 0y y2dy
x5 3 x2 y2 xy3 1 y3.
2
3
于是,方程的通解为
x5 3 x2 y2 xy3 1 y3 C.
这就是方程(8)的通解。以初始条件代入上式,得
所以
M M
0 Ce 0 M0e
t
C ,
,
这就是所求铀的衰变规律。
例3 设降落伞从跳伞塔下落后,所受空气阻力与 速度成正比,并设降落伞离开跳伞塔时(t = 0)速度为零。 求降落伞下落速度与时间的函数关系。
解 设降落伞下落速度为 v(t).降落伞在空中下落时,
第十二章微分方程
第一微分方程的基本概念
一般地,凡表示未知函数的导数与自变量之间 的关系的方程,叫做微分方程。
微分方程中所出现的未知函数的最高阶导数 的阶数,叫做微分方程的阶。
例1 一曲线通过点(1,2),且在该曲线上任一 点处的切线的斜率为,求这曲线的方程。
解 根据导数的几何意义,可知所求曲线应满足
例2 列车在平直线路上以20米/秒(相当于 72公里/小时)的速度行驶;当制动时列车获得 加速度-0.4米/秒.问开始制动后多少时间列车才能 停住,以及列车在这段时间里行驶了多少路程?
高等数学(侯风波)第12章课件PPT

应 各 , 所 级 是 比 数 公 为 对 的 项 而 得 数 等 级 ,其 比 ∞ 1 1 q = p−1 <1 故 敛 于 当p >1 ,级 ∑ p 收 . , 收 , 是 敛 时 数 2 n= n 1
∞
证 我 利 定 分 几 意 加 证 . 们 用 积 的 何 义 以 明 n 1 调 级 部 和 n =∑ , 图 示 考 曲 和 数 分 S 如 所 . 察 线 k= k 1 1 y = , x =1 x = n+1和y =0所 y , x 围 的 边 形 面 成 曲 梯 的 积 S 1 与 影 示 阶 形 积A 阴 表 的 梯 面 n 1/2 之 的 系 间 关 ,
子 式 + u ∑u = +u +u +… u +…
n= 1 n 1 2 3
n
∞
为 数 无 级 , 称 项 数 其 第 称 常 项 穷 数 简 数 级 , 中 n项 un 称 一 项 通 . 为 般 或 项
例① 算 级 术 数 a +(a2 +d) +(a +2d) +… ( 1 +(n−1 d) + … ) + a 1 1
②等 级 ( 何 数 比 数 几 级 ) 2 a +aq+aq + +a qn−1 +… , … 1 1 1 1
《高等数学(下册)》 第12章

n
0 时, (i ,i )si 的极限即为曲线形构件的质量,即 i 1
n
M
lim 0
i 1
(i
,i )si .
上述例子是通过“分割、近似、求和、取极限”的方法来计算密度不均匀的曲
线形构件质量,对该过程进行提炼,便可得到对弧长的曲线积分的概念.
12.1.1 对弧长的曲线积分的概念与性质
2.概念与性质
定义 设 L 为 xOy 面内的一条光滑曲线弧,函数 f (x ,y) 在 L 上有界.在 L 上用任
意的 点 M1 ,M2 , ,Mn1 把曲线弧 L 分 割成 n 个小 弧段,记第 i 个 小弧段的 长度为
si (i 1,2 , ,n) ,并在 si 上任取一点 (i ,i ) si ,作乘积 f (i ,i )si ,并作和
x y
(t) , (t) ,(
t
),
若(t) , (t) 在[ , ] 上具有一阶连续导数且不同时为零,则曲线积分 f (x ,y)ds 存在, L
且
f (x ,y)ds f [(t) , (t)] 2 (t) 2(t)dt ( ) .
L
(12-1)
由以上定理可知,在计算对弧长的曲线积分时,只要将被积表达式中的 x ,y ,ds 依
12.1.1 对弧长的曲线积分的概念与性质
1.引例——曲线形构件的质量 为了方便理解,曲线形构件可理解为一根弯曲的金属细丝.若曲线形构件为均 匀质体,即其线密度为常数,则构件的质量就等于线密度与构件长度的乘积.若构 件为非均匀质体,则不能直接用上述方法来计算.一般情况下,由于工艺制造的原 因,曲线形构件多为非均匀质体,因此,可认为曲线形构件的线密度是变量.
最后,要取得功 W 的精确值,只需对上述式子求极限即可,即
高等数学第12章课后习题答案(科学出版社).

习题 12.11. 判断下列方程是几阶微分方程:;)1(2y x dxdy +=;042)2(2=+-⎪⎭⎫⎝⎛x dx dy dx dy x;052)3(322=+⎪⎭⎫⎝⎛-xy dx dy dx y d x 2334(4)2()1xy x y x y x '''++=+.解 (1)是一阶线性微分方程; (2)是一阶非线性微分方程; (3)是二阶非线性微分方程; (4)是二阶非线性微分方程.2. 指出下列各题中的函数是否为所给微分方程的解:(1)2xy y '=,25y x =; (2)0y y ''+=,3sin 4cos y x x =-; (3)20y y y '''-+=,2e x y x =; (4)2()0xy x y yy ''''++=,y x =. 解 (1)是; (2)是; (3)不是; (4)不是二阶非线性微分方程.3. 验证函数x C x y sin )(2+=(C 为任意常数)是方程0sin 2cot =--x x x y dxdy的通解, 并求满足初始条件0|2==πx y 的特解.解 要验证一个函数是否是方程的通解,只要将函数代入方程,看是否恒等,再看函数式中所含的独立的任意常数的个数是否与方程的阶数相同.将x C x y sin )(2+=求一阶导数,得dxdy,cos )(sin 22x C x x x ++= 把y 和dxdy代入方程左边得 x x x y dxdysin 2cot --x x x x C x x C x x x sin 2cot sin )(cos )(sin 222-+-++=.0≡ 因方程两边恒等,且y 中含有一个任意常数,故x C x y sin )(2+=是题设方程的通解. 将初始条件02==πx y 代入通解x C x y sin )(2+=中,得C +=402π .42π-=C 从而所求特解为 .s i n422x x y ⎪⎪⎭⎫⎝⎛-=π 4.写出由下列条件确定的曲线所满足的微分方程.(1) 一曲线通过原点,并且它在(,)x y 处的切线斜率等于2x y +; (2) 一曲线通过点(2,3),它在两坐标轴间的任一切线段均被切点所平分.解:由题意,2y x y '=+,00x y==解:设该曲线的方程为()y f x =,(,)x y 为其上任意一点,该点处的切线斜率为y ',过该点的切线方程为()Y y y X x '-=-。
高等数学习题册 第十二章 参考答案

1第十二章 无穷级数第一节 常数项级数的概念与性质1.填空: (1)1+1(-1)n n n -.(2)__0__.(3)111+-n , _1_. (4)11+-n a a ,1a a -.(5) 收敛 ,12-s u .(6) 发散_. 2.根据级数收敛与发散的定义判断下列级数的敛散性,如果收敛,则求级数的和:(1)解:级数的部分和为...n s +++1-.因为lim 1)n n n s →∞→∞=-=+∞,即部分和数列不存在极限,所以原级数发散. (2)解:将级数的一般项进行分解得211111()(1)(1)2111n u n n n n n ===-+--+-, 所以,级数的部分和为111111111[()+()()...()]213243511n s n n =--+-++--+1111(1)221n n =+--+. 因为11113lim lim (1)2214n n n s n n →∞→∞=+--=+, 即部分和数列存在极限,且极限值为34,根据定义可得,原级数收敛,且收敛于34.(3)解: 因为lim lim sin 6n n n n u π→∞→∞=不存在,根据收敛级数的必要性条件可知,级数的一般项极限不为零,则原级数必定发散.3.判断下列级数的敛散性,如果收敛,则求级数的和: (1)解:这是一个公比为34-的等比级数,因为314-<,所以收敛.其和为13343171()4u s q-===----. (2)解:这是公比为32-的等比级数,因为3>12-,所以发散.(3)解:因为1lim lim=0100+1100n n n n u n →∞→∞=≠,根据收敛级数的2必要性条件可知,原级数发散. (4)解:因为级数123nnn ∞=∑是公比为23的等比级数,所以收敛,而级数1131=3n n n n∞∞==∑∑是发散级数,根据收敛级数的性质可知,原级数发散.(5)解:原级数的一般项ln (1)-ln n u n n =+,所以原级数的部分和(ln 2-ln1)(ln 3-ln 2)...[(ln(1)-ln ]n s n n =++++ln(1)-ln1ln(1)n n =+=+,因为lim limln(1)n n n s n →∞→∞=+不存在,所以原级数发散.(6)解:原级数变形为111[()()]32n n n ∞=+∑,因为级数11()3nn ∞=∑和11()2n n ∞=∑均为公比1q <的等比级数,所以原级数收敛. 其和为113321121132s =+=--.(7)解:因为313lim =3lim()3lim011+(1+)(1+)n nn n n n nn n n e n n→∞→∞→∞==≠,根据收敛级数的必要条件可知,原级数发散.第二节 常数项级数的审敛法1.填空: (1) 收敛 .(2) 发散 ; 收敛 ;可能收敛也可能发散 . (3)1k <;1k >时,1k =.(4)1p >;1p ≤时.(5)发散 . (6)可能发散也可能收敛 . 2.选择:(1)D .(2)C .(3)B .(4)C .3.用比较审敛法及其极限形式判断下列级数的敛散性:(1)解:因为222+1++2lim lim 11+2n n n n n n n n→∞→∞==,而级数11n n∞=∑发散,根据比较审敛法的极限形式(或者极限审敛法),原级数一定发散.(2)解:因为2211(1)(21)limlim 1(1)(21)2n n n n n n n n →∞→∞++==++,而3 级数211n n∞=∑收敛,根据比较审敛的极限形式(或者极限审敛法),原级数一定收敛.(3)解:因为0sin 22n n ππ≤≤,而12n n π∞=∑是公比为12的等比级数,根据比较审敛法,原级数一定收敛.(4)解:当>1a 时,110<1n na a ≤+而11n n a∞=∑是公比为1<1a 的等比级数,根据比较审敛法,级数111nn a ∞=+∑一定收敛; 当0<1a <时,因为1lim=101nn a →∞≠+,根据级数收敛的必要性条件,级数111nn a ∞=+∑发散; 当=1a 时,原级数即112n ∞=∑,发散. (5*)解:因为ln (1+)(0,1)x x x x <≠-<<+∞,所以111ln =ln(1+)n n n n +<,即原级数为正项级数; 同时,111ln =ln ln(1)111n n n n n n +-=-->+++, 则:21111110<ln 1(1)n n n n n n n n+-<-=<++, 而211n n∞=∑收敛,所以原级数也收敛. 4.用比值审敛法判断下列级数的敛散性:(1)解:2+122(1)1113lim lim(1)1333n n n nn n n →∞→∞+=+=<,根据比值审敛法,原级数收敛.(2)解:135(2+1)2+1(+1)!limlim 2>1135(21)+1!n n n n n n n n →∞→∞⋅⋅⋅⋅⋅==⋅⋅⋅⋅⋅-,根据比值审敛法,原级数发散.4(3)解:+2+2+1+1(+1)tan+1122limlim 12tan 22n n n n n n n n n n ππππ→∞→∞=⋅=<,根据比值审敛法,原级数收敛.(4)解:1+12(1)!12(+1)lim 2lim()2lim <1112!(1+)n n n n n n n nnn n n n e n n n +→∞→∞→∞+===+, 根据比值审敛法,原级数收敛.5.用根值审敛法判别下列级数的敛散性:(1)解:1lim 12+12n n n n →∞=<,根据根值审敛法,原级数收敛. (2)解:1lim 01ln(+1)n n n →∞=<,根据根值审敛法,原级数收敛. (3)解:n b a, 当1ba<,即>a b 时,原级数收敛; 当>1ba ,即ab <时,原级数发散; 当1ba=,即=a b 时,原级数可能收敛也可能发散. 6.判别下列级数的敛散性: (1)解:10n n ==≠,根据收敛级数的必要条件可知,原级数发散.(2)解:原级数显然为正项级数,根据比较审敛法的极限形式,111lim =lim 1n n na b b aa n n→∞→∞+=+,所以原级数发散. (3)解:因为11lim 1>122nn n e n →∞⎛⎫+= ⎪⎝⎭, 所以原级数发散.7.判别级数的敛散性,若收敛,指出条件收敛还是绝对收敛: (1)解:因为11111(1)=33n n n n n n n ∞∞---==-∑∑,而1+11+113lim =lim <1333n n n n n n n n →∞→∞-=,所以级数113n n n ∞-=∑收敛,5因此原级数绝对收敛.(2)解:因为22(21)(21)cos 22n nn n n π++≤,又因为: 22+122(23)(23)12lim =lim 12(21)2(21)2n n n nn n n n →∞→∞++=<++,所以级数21(21)2nn n ∞=+∑收敛,因此原级数绝对收敛. (3)解:级数的一般项为:11(1)(1)10n n n u -=-+,因为1lim||lim(1)1010n n n n u →∞→∞=+=≠,所以原级数的一般项不趋近 于0,原级数发散. (4*)解:这是一个交错级数11(1)n n n u ∞-=-∑,因为级数1n ∞=-∑发散(见第一节习题2(1)),所以原级数不是绝对收敛,又因为:0n n =,1n n u u +-=---==-,根据莱布尼兹定理可知,原级数收敛且是条件收敛.8*.解:先讨论0x >的情形. 当=1x 时,级数为112n ∞=∑,显然发散;当0<<1x 时,级数为正项级数,利用比值审敛法,1221+122221lim =lim lim 111n n n n n n n n n n nu x x x x x u x x x ++++→∞→∞→∞++⋅==<++, 所以此时级数211+n nn x x ∞=∑收敛且是绝对收敛; 当1x >时,同样利用比值审敛法,2121+12222111lim =lim lim1111n n n n n n n nn u x x x x u x x x +++→∞→∞→∞+++==<++,6 所以此时级数211+nnn x x∞=∑收敛且是绝对收敛; 再看<0x 的情形.当1x =-,级数为1(1)2nn ∞=-∑,显然发散;当10x -<<和1x <-时,级数为21()(1)1nn n n x x ∞=--+∑,这是一个交错级数,对其一般项取绝对值得到正项级数21()1nnn x x ∞=-+∑,按照同样的方法可知21()1nnn x x∞=-+∑收敛,也即原级数绝对收敛; 而当0x =时,级数显然收敛且绝对收敛;综合得,原级数在1x =±时发散,其他均为绝对收敛. 9*.证明:设111(1)n n n a S ∞-=-=∑,若∑∞=-112n n a 收敛,设2121n n aS ∞-==∑,则122121111(1)n n n n n n n a a a S S ∞∞∞--====--=-∑∑∑,即21nn a∞=∑收敛,所以22-111(+)nn n n n aa a ∞∞===∑∑收敛,与11(1)n n n a ∞-=-∑条件收敛矛盾,所以∑∞=-112n n a 发散.因为11(1)n n n a ∞-=-∑条件收敛,所以∑∞=1n n a 发散.10*证明:因为222||0nnn n a b a b +≥≥,所以∑∞=1n nnba 收敛;因为2220()2||n n n nn n a b a b a b ≤+≤++,所以∑∞=+12)(n n nb a收敛;令1n b n =,因为∑∞=12n n b 收敛,所以∑∞=1n n n b a 收敛,即∑∞=1n n na 收敛.第三节 幂级数1.填空:(1)绝对收敛 ; 绝对收敛 .(2)1ρ;+∞;_0_.(3)_1_,7 (-1,1).(4)12=R R ;(5) (),R R -.2.选择:(1)B .(2)B . (3)A . (4)C . (5*)B (提示:令=1y x -,则1111(1)n n n n n n na x na y ∞∞++==-=∑∑21211=()n n n n n n yna yy a y ∞∞-=='=∑∑).(6)B .(7)D .3. 求下列幂级数的收敛域:(1)解:因为+11=lim lim 02(1)n n n na a n ρ→∞→∞==+,收敛半径为R =+∞,收敛域为(,)-∞+∞.(2)解:因为12121(1)(1)limlim 11(1)n n n n n na n a nρ++→∞→∞-+===-, 所以收敛半径1R =,收敛区间为(1,1)-;当1x =时,级数为211(1)nn n ∞=-∑,这是一个绝对收敛级数; 当1x =-时,级数为211n n∞=∑,这是一个收敛的正项级数; 综合得原级数的收敛域为[1,1]-.(3)解:121limlim 121n n n n a n a n +→∞→∞-==+1R ⇒=, 故当231x -<,即12x <<时级数绝对收敛,当1x =时,11(1)(1)12121n n n n n n ∞∞==--=--∑∑,级数发散,当2x =时, 1(1)21nn n ∞=--∑为收敛的交错级数,所以原级数的收敛域为(1,2].(4)解:这是一个缺奇次项的幂级数,直接使用比值审敛法得:1()lim ()n n n nu x u x +→∞=2222n x x =⋅=,8 所以当22<1x,即x <<时,级数绝对收敛;当22>1x时,即x >或<x -时,原级数发散;当x =时,级数为1n ∞=∑,发散;当x =时,级数为21(1)nn ∞=--∑,发散(见第一节习题2(1));所以,级数的收敛域为(-.(5*)解:因为+111111+231=limlim 111123n n n na n n a nρ→∞→∞+++⋅⋅⋅++=+++⋅⋅⋅+11lim(1)111123n n n→∞+=++++⋅⋅⋅+,因为正项级数11n n ∞=∑发散,因此111lim(1)23n n →∞+++⋅⋅⋅+=+∞,所以上述的=1ρ,即级数的收敛半径为1,收敛区间为(1,1)-.当1x =±时,级数为∑∞=+⋅⋅⋅+++1)131211(n n x n,因为 111=1()23n u n n+++⋅⋅⋅+→∞→∞, 所以发散,综合得原级数的收敛域为(1,1)-. 4.求下列幂级数的收敛域与和函数:(1)解:先求收敛域:利用比值审敛法可得454141()45lim lim =()41n n n n n nx u x n x u x x n +++→∞→∞+=+, 因此,当41x <,即||1x <时,级数收敛; 当1x =时,级数为141n n ∞=+∑,发散;当1x =-时,级数为1()41n n ∞=-+∑,发散,所以级数的收敛域为(1,1)-.9为求和函数,令410()=41n n x s x n +∞=+∑,两端同时求导得:4141440001()==,(1,1)41411-n n n n n n x x s x x x n n x ++∞∞∞===''⎛⎫⎛⎫'==∈- ⎪ ⎪++⎝⎭⎝⎭∑∑∑再两端同时积分得:400111+1()(0)=()==ln arctan 4121-xxx s x s s x dx dx x x x '-+-⎰⎰, 显然(0)=0s ,所以原级数的和函数为11+1()=ln arctan ,(1,1)412x s x x x x +∈--.(2)解:212121(22)lim lim 2n n n n n nu x n x u x n ++-→∞→∞+==, 故当211x x <⇒<时级数绝对收敛,当||1x >时,级数发散. 当1x =-时,21112(1)2n n n n n ∞∞-==-=-∑∑发散,当1x =时,12n n ∞=∑发散,⇒ 收敛域为(1,1)-.令211()2(0)0n n S x nxS ∞-==⇒=∑2212211()21xxn nn n x S t dt ntdt xx ∞∞-==⇒===-∑∑⎰⎰22222()(||1)1(1)x x S x x xx '⎛⎫⇒==< ⎪--⎝⎭. (3)解:先求收敛域:因为1(+1)(+2)limlim 1(+1)n n n n a n n a n n ρ+→∞→∞===, 所以收敛半径为1,明显当1x =±原级数发散,故级数的收敛域为(1,1)-;令1()(1)(0)0nn S x n n xS ∞==+⇒=∑,121111()(1)xx nn n n n n S t dt n n t dt nxxnx∞∞∞+-===⇒=+==∑∑∑⎰⎰222211(1)n n x x x x x x x ∞=''⎛⎫⎛⎫=== ⎪ ⎪--⎝⎭⎝⎭∑ 2232()(||1)(1)(1)x x S x x x x '⎛⎫⇒==< ⎪--⎝⎭.10(4)解:212121(21)lim lim (21)n n n n n nu x n x u x n ++-→∞→∞-==+,故当211x x <⇒<时级数绝对收敛, 当||1x >时,级数发散.当1x =-时, 12111(1)(1)(1)2121n n n n n n n +∞∞-==---=--∑∑为收敛的交错级数,当1x =时, 11(1)21n n n +∞=--∑为收敛的交错级数,⇒ 收敛域为[1,1]-.令1211(1)()(0)021n n n x S x S n +-∞=-=⇒=-∑, 122211()(1)1n n n S x x x∞+-='⇒=-=+∑ 201()(0)arctan 1xS x S dt x t ⇒-==+⎰()arctan (11)S x x x ⇒=-≤≤.第四节 函数展开成幂级数1.将下列函数展开成x 的幂级数,并求展开式成立的区间:(1)解:利用间接展开法.因为=0=,(,)!nxn x e x n ∞∈-∞+∞∑,所以ln ln 00(ln )(ln ),(,)!!xn n xa x ann n x a a a eex x n n ∞∞======∈-∞+∞∑∑.(2)解:利用间接展开法.因为1(1)ln(1)=,(1,1]1n n n x x x n ∞+=-+∈-+∑,所以 ln()=ln[(1)]ln ln(1)x xa x a a a a++=++110(1)ln ,(,](1)nn n n a x x a a n a∞++=-=+∈-+∑. (3*)解:利用间接展开法.因为2(1)(1)...(1)(1)1...,||12!!m nm m m m m n x mx x x x n ---++=++++<122(1)x x -=⋅+11357113135...,(1,1]224246x x x x x ⋅⋅⋅=-+-+∈-⋅⋅⋅. 注:当1=2m -时,在右端点处收敛.(4)解:利用间接展开法.因为20(1)cos =,(,)(2)!n nn t t x n ∞=-∈-∞+∞∑,所以22100000(1)(1)cos d =[]d d (2)!(2)!n nxxx n n n n t t t t t t t t n n ∞∞+==--=∑∑⎰⎰⎰ 212200(1)(1)=d ,(,)(2)!(2)!(22)n nxn n n n t t t x n n n ∞∞++==--=∈-∞+∞+∑∑⎰. 2. 解:111(1)=,(,)!nx x x x x e ee e e x n ∞-+-=-=⋅=∈-∞+∞∑.3.解:011111(2),(0,4)2422212n n n x x x x ∞==⋅=-∈---∑. 4.解:将sin x 变形为:1sin sin[()])cos()662626x x x x ππππ=-+=-+-, 利用sin x 和cos x 的展开式可得2-121211sin ()()...221!622!6(1))(),(,)622n!6n n n x x x x x x ππππ-=+---++⋅⋅--+-∈-∞+∞⋅.5.解:211=()34154x x x x x x ----+5(5)111=()531(5)414x x x +--⋅-+-+111005111=(1)(1)(5)(1)(1)(5)3344n n nn n n n n x x ∞∞+++==---+---∑∑, 其中第一个展开式的收敛域为|5|<1x -,第二个展开式的收敛域为|5|<14x -,所以原函数的展开式的收敛域为|5|<1x -,即46x <<.第五节 函数的幂级数展开式的应用1.利用函数的幂级数的展开式求下列各数的近似值: (1)解:根据ln (1+)x 的展开式可得:35111ln2(...)(11)135x x x x x x +=+++-<<-(见教材)12令1=51x x +-,解得2(1,1)3x =∈-,带入上述展开式可得 35793579212121212ln 52(...)335793333=+⋅+⋅+⋅+⋅,如果取前五项作为其近似值,则1113151751113151712121212||=2(...)111315173333r ⋅+⋅+⋅+⋅+1123112312114114114=2(1...)111391517399⋅⋅+⋅+⋅+⋅+1123112322444(1...)119399<⋅++++ 111111112212290.00384111153319<⋅⋅=⋅⋅≈-,符合误差要求,因此取前五项作为其近似值,即35793579212121212ln 52() 1.61335793333≈+⋅+⋅+⋅+⋅≈.(2)解:根据cos x 的幂级数展开式可得246111cos18cos1()()() (10)2!104!106!10ππππ==-+-+, 6-61() 1.335106!10π≈⨯,所以取前四项作为近似值,即 246111cos181()()()0.950992!104!106!10πππ=-+-≈.(3)解:根据cos x 的幂级数展开式可得2621cos 111...2!4!6!x x x x -=-++, 于是可得0.50.5262001cos 111d =(...)d 2!4!6!x x x x x x--++⎰⎰ 3511111111=()()...0.123272!24!326!52⋅-⋅⋅+⋅⋅+≈. 2.解:因为sin arctan x x 、的展开式分为可以写为:33sin ()3!x x x o x =-+,33arctan ()3x x x o x =-+,所以3333001()sin arctan 16lim lim 6x x x o x x x x x→→+-==.第七节 傅里叶级数1.填空:(1)其中的任何两个不同函数的乘积在区间[,]ππ-上的积分为130,相同函数的乘积在此区间上积分不为0 . (2)1()d f x x πππ-⎰,1()cos d (1,2,...)f x nx x n πππ-=⎰,1()sin d (1,2,...)f x nx x n πππ-=⎰. (3)02=0,()sin d n n a b f x nx x ππ=⎰.(4)1+π.(5)在一个周期内连续或者只有有限个第一类间断点 , 在一个周期内至多有有限个极值点 , 收敛 ,()f x , 左右极限均值.2.下列函数以π2为周期,且在[,)ππ-上取值如下,试将其展开成傅里叶级数:(1)解:先利用系数公式得出傅里叶级数.2220111()d d ()2x xx a f x x e x e e πππππππ---===-⎰⎰, 22212()(1)()cos ,( 1.2 (4)n e ea f x nxdx n n ππππππ----==⋅=+⎰, 2-2121(1)()sin ,(n=1,2...)4n n e e nb f x nxdx nππππππ+---==⋅+⎰, 所以,函数的傅里叶级数为2-22221(1)()(2cos sin )44nn e e e e f x nx n nx nππππππ-∞=---+-+∑. 再考虑其收敛性.易知函数满足收敛性定理的条件,其不连续点为(21)(0,1,2,...)x k k π=+=±±,在这些点处,上述的傅里叶级数收敛于左右极限的均值,即22(0)(0)22f x f x e e ππ-++-+=,在连续点处,傅里叶级数收敛于函数2()=xf x e ,因此2-22221(1)()(2cos sin )44nn e e e e f x nx n nx nππππππ-∞=---=+-+∑(,),(21)(0,1,2,...)x x k k π∈-∞+∞≠+=±±.(2)解:先根据系数公式求傅里叶级数.40113()d sin d 4a f x x x x ππππππ--===⎰⎰, 41131sin cos (2cos2cos4)cos 422n a x nxdx x x nxdx ππππππ--==-+⎰⎰, 根据三角函数系的正交性,仅当=2,=4n n 时,0n a ≠,易得142411,28a a =-=,由于4()sin f x x =是[,]ππ-的偶函数,故0n b =; 又因为函数4()sin f x x =是连续函数,所以可得:311()cos 2cos 4,<<828f x x x x =-+-∞∞.3.解:(1) ()()f x x x ππ=-<<作周期延拓的图象如下:其分段光滑,故可展开为傅里叶级数. 由系数公式得.当时,,,所以 11sin ()2(1)()n n nxf x x xππ∞+==--<<∑,为所求. (2)()(02)f x x x π=<<作周期延拓的图象如下:其分段光滑,故可展开为傅里叶级数. 由系数公式得.当时,011()d d 0a f x x x x ππππππ--===⎰⎰1n ≥11cos d d(sin )n a x nx x x nx n ππππππ--==⎰⎰11sin sin d 0|x nx nx x n n ππππππ--=-=⎰11sin d d(cos )n b x nx x x nx n ππππππ---==⎰⎰1112cos cos d (1)|n x nx nx x n n n ππππππ+---=+=-⎰220011()d d 2a f x x x x πππππ===⎰⎰1n ≥22011cos d d(sin )n a x nx x x nx n ππππ==⎰⎰15 ,,所以1sin ()2(02)n nxf x x x ππ∞==-<<∑,为所求. 4.解:要展开为余弦级数,需对函数进行偶延拓,即定义函数1cos 02()cos ,02x x f x x x ππ⎧≤≤⎪⎪=⎨⎪-≤≤⎪⎩,,并将1()f x 以2π周期延拓到整个数轴,得到偶函数()g x . 对()g x 进行傅里叶展开,显然有0n b =,且0024cos d 2x a x πππ==⎰,2024(1)cos cos d ()(=1,2,...)241nn x a nx x n n πππ-==--⎰,根据上述系数即可得到()g x 在整个数轴上的傅里叶展开式,由于()g x 连续,所以其傅里叶均收敛于()g x ,最后将展开式限制在[0,]π,既得()cos2xf x =的傅里叶展开式 2124(1)()cos ,[0,]41nn f x nx x n πππ∞=-=--∈-∑.4.解:将函数进行奇延拓,并求傅里叶系数:0(0,1,2,...)n a n ==,021sin [(1)1](1,2,...)42n n b nxdx n nπππ==---=⎰,因此函数()4f x π=的正弦级数展开式为11sin +sin 3sin 5...(0,)435x x x x ππ=++∈, 根据收敛性定理,在端点=0,=x x π处傅里叶级数收敛于零.令上式中的=2x π,即可得到1111 (4357)π=-+-+.第八节 一般周期函数的傅里叶级数1.填空:220011sin sin d 0|x nx nx x n n ππππ=-=⎰220011sin d d(cos )n b x nx x x nx n ππππ-==⎰⎰2200112cos cos d |x nx nx x n n n ππππ--=+=⎰16(1)-1()cos (0,1,2...)l n l n xa f x dx n l lπ==⎰-1()sin (1,2...)l n l n x b f x dx n l l π==⎰.(2)02()sin(n=1,2...)l n xf x dx l lπ⎰. 2.解:为展开为正弦级数,先将函数()f x 做奇延拓,其傅里叶系数为0(0,1,2,...)n a n ==;20222sin +(-)sin ll l n n x n xb x dx l x dx l l l lππ=⎰⎰224=sin2l n n ππ, 所以1()=sinn n n xf x b lπ∞=∑ 22224131517=(sin sin +sin sin +...)357l x x x xl l l l πππππ--, 由于()f x 连续,上述展开式对于任意的[0,]x l ∈均成立. 3.解:()2+||f x x =为偶函数,所以展为余弦级数,其系数为0(1,2,...)n b n ==,1002(2)d 5a x x =+=⎰,1222(cos 1)2(2)cos()(1,2,...)n n a x n x dx n n πππ-=+==⎰, 因为函数()2+||f x x =满足狄氏收敛定理,所以22152(cos 1)2||cos 2n n x n x n πππ∞=-+=+∑ 2225411(cos cos3cos5...)()235x x x x ππππ=-+++-∞≤≤∞. 令上式中的=0x ,可得2222111 (8135)π+++=,又2222222=11111111(...)(...)135246n n ∞=+++++++∑ 2222221111111(...)(...)4135123=+++++++所以22222=114111=(...)=36135n nπ∞+++∑.第十二章 自测题1.填空:17 (1)仍收敛于原来的和s .(2) 均收敛 ; 均发散 . (3)_1_;_2__.(4)34, 12, 34. 2.选择:(1)C .(2)A (提示:使用阿贝尔定理).(3)D (提示:ln ln ln 2ln ln 2ln 22()n n n e e n λλλλ--⋅--===). (4)B .(5)A . (6)C .3.判别下列级数的敛散性,若收敛指出绝对收敛或条件收敛: (1)解:根据正项级数的根值审敛法,有(!)lim n n n n →∞=+∞, 所以,原级数发散.(2)解:因为2211sin 4n n n π≤,而211n n∞=∑收敛, 所以原级数收敛且绝对收敛.(3)解:这是一个交错级数,由于(1)11=-ln -ln n n n n n n-≥,所以不是绝对收敛.因为111ln(1)ln n n n n-+-+-1ln(1)10(ln )[1ln(1)]n n n n n +-=<-+-+,且1lim=0ln n n n→∞-,根据莱布尼兹定理,级数收敛,即原级数条件收敛.(4*)解:根据比值审敛法,有1(1)lim ||lim ||1n pp n n n pa n n a a n a n +→∞→∞+⎛⎫== ⎪+⎝⎭, 所以,当||<1a 时,即11a -<<时,级数绝对收敛; 当||1a >,根据罗比达法则可知212+++ln (ln )lim lim lim(1)x x x p p p x x x a a a a a x px p p x --→∞→∞→∞=-, 因为p 是常数,有限次使用罗比达法则,可求出上述极限为无穷,因此lim np n a n→∞=∞,所以原级数发散;当1a =时,级数既为11pn n∞=∑,此时若01p <≤时,原级数18 发散,若1p >原级数收敛且绝对收敛;当1a =-时,级数既为1(1)npn n∞=-∑,此时,若01p <≤时,根据莱布尼兹定理可知,原级数条件收敛,若1p >时,根据比较审敛法可知,原级数绝对收敛.4.解:因为11113+(2)[3+(2)]1lim lim 3+(2)(1)[3+(2)]n n n n n nn n n n n n n n++++→∞→∞--+=-+-12[1+()]3lim 3112(1)[1+()]33n n nn +→∞-==+⋅⋅-,所以,级数的收敛半径为13,收敛区间为42(,)33--;在端点4=3x -处,级数为12(1)+()3nnn n ∞=-∑,因为级数11(1)21,()3n n n n n n ∞∞==-⋅∑∑均收敛,所以在此点处,原级数收敛; 在端点2=3x -处,级数为121+()3nn n ∞=-∑,因为级数11,n n ∞=∑发散,而121()3nn n∞=-⋅∑收敛,所以在此端点处,原级数发散; 综合得,原级数的收敛域为42[,)33--. 5.解:先利用比值审敛法求幂级数的收敛域.因为2+222(2+2)!lim =lim (2+2)(2+1)(2)!n n n n x x n n n xn →∞→∞=+∞, 所以级数的收敛域为(,)-∞+∞;令22420()1......(2)!2!4!(2)!n nn x x x x s x n n ∞===+++++∑, 则3521()+......3!5!(21)!n x x x s x x n -'=++++-,所以 234()()1......2!3!4!!nx x x x x s x s x x e n '+=+++++++=,19 即()()x s x s x e '+=,这是一个一阶线性微分方程,解之得1()+2x x s x ce e -=.又因为(0)1s =,带入求得常数12c =,所以幂级数的和函数为11()(,)22x xs x e e x -=+∈-∞+∞,.6.解:因为2ln(12)ln(1)ln(12)x x x x +-=-++,而11(1)ln(1)(11)n nn x x x n -∞=-+=-<≤∑,所以,=1ln(1)(11)nn x x x n∞-=--≤<∑,1=1(1)211ln(12)()22n n n n x x x n -∞-+=-<≤∑,于是得出原函数的展开式为12=1(1)2111ln(12)=()22n n n n x x x x n -∞--+--<≤∑.7.解:为展开为正弦级数,先将函数()f x 在[,0)π-上做奇延拓,再延拓到整个数轴,并求傅里叶系数0(0,1,2...)n a n ==, 02()sin d n b f x nx x ππ=⎰202sin d x nx x ππ=⎰221sincos (1,2,...)22n n n n n πππ=-=, 因此可得函数()f x 在[0,)π的傅里叶级数2=121()(sincos )sin ([0,),)222n n n f x nx x x n n πππππ∞=-∈≠∑, 由于3=2x π-为函数的不连续点,根据狄氏收敛性定理,和函数在3=2x π-处的值3()2s π-为左右极限的均值,即31()=24s ππ-,而5=4x π是函数的连续点,在此点处,收敛于(延拓后的)函数()f x ,即5()=04s π.8.考研题练练看:(1)C .解析:幂级数1(1)k kk ax ∞=-∑的收敛域中心为1x =,而20 =1(1,2,...)n n k k S a n ==∑无界表明1(1)k k k a x ∞=-∑在2x =发散,因此幂级数的收敛半径1R ≤,同时,根据莱布尼兹定理,数列{}n a 单减且收敛于0,表明1(1)kkk ax ∞=-∑在0x =收敛,因此幂级数的收敛半径1R ≥,综合得收敛半径为=1R ,因此选C . (2)A .解析:若1n n u ∞=∑收敛,则对其任意项加括号后仍收敛,其逆命题不一定成立,所以选A . (3)D .解析:=11(1)a n n ∞-∑绝对收敛,即1=121a n n∞-∑收敛,所以32α>,又由2=1(1)n a n n ∞--∑条件收敛可知12α≤<,所以选D .(4)C .解析:根据题意,将函数在[]1,1-展开成傅里叶级数(只含有正弦,不含余弦),因此将函数进行奇延拓:1,(0,1)2()1,(1,0)2x x f x x x ⎧-∈⎪⎪=⎨⎪-+∈-⎪⎩,其傅里叶级数以2为周期,则当()1,1x ∈-且()f x 在x 处连续时,()()S x f x =,所以 91111()()()()44444S S S f -=-=-=-=-.(5)D .解析:因为1P >时,=11P n n ∞∑收敛,且lim =lim 1Pn n n n Pa n a n →∞→∞存在,所以=1nn a∞∑收敛.(6)解:先求收敛域.222212(1)212+1lim lim 12+1(1)21n n n n n nxn n x x n x n +-→∞→∞--==<--,即11x -<<时级数绝对收敛;当=1x ±时,级数为1=1(1)21n n n -∞--∑,根据莱布尼兹定理,可知21此级数收敛,因此原级数的收敛域为[1,1]-.为求和函数,设112211=1(1)(1)()2121n n n n n n s x x x xn n --∞∞-=--==--∑∑, 令1211=1(1)()21n n n s x xn -∞--=-∑,则 1212112=1=1(1)1()=() (11)211n n n n n s x x x x n x -∞∞--'⎛⎫-'=-=-<< ⎪-+⎝⎭∑∑, 两端同时积分,得11201()(0)d arctan (11)1xs x s x x x x -==-<<+⎰,明显1(0)0s =,所以1()arctan (11)s x x x =-<<,既得()arctan (11)s x x x x =-<<,又因为=1x ±时,()arctan s x x x ,都有定义,且连续,所以()arctan (11)s x x x x =-≤≤.(7)B.(8)解:先求收敛域.22224(+1)4(+1)321lim 12(1)1443n n n n x x n n n →∞+++⋅⋅=<++++, 即11x -<<时级数绝对收敛;当=1x ±时,级数为2=044321n n n n ∞+++∑,发散,因此幂级数的收敛域为11x -<<.为求和函数,设2222=0=0443(21)2()==2121n nn n n n n S x x x n n ∞∞++++++∑∑,所以22=0=02()=(21)21nn n n S x n xx n ∞∞+++∑∑,令2212=0=02()=(21)()21nn n n S x n x S x x n ∞∞+=+∑∑,,对1()S x 两端积分得210=0()d =(21)d xx nn S x x n x x ∞+∑⎰⎰212=0= (11)1n n xx x x∞+=-<<-∑, 两端求导得212221()= (11)1(1)xx S x x xx '+⎛⎫=-<< ⎪--⎝⎭;22因为212=02()21n n xS x x n ∞+=+∑,两边求导得 222=02[()]2 (11)1n n xS x x x x ∞'==-<<-∑, 再对两端积分得22021()0(0) ln (11)11xxxS x S dx x xx +-⋅==-<<--⎰,所以211()ln((1,0)(0,1))1xS x x x x+=∈-⋃-, 又因为=0x 时,12(0) 1.(0)2S S ==,综合可得和函数为222111ln ,(1,0)(0,1)()1(1)3, 0x xx S x x xx x ⎧+++∈-⋃⎪=--⎨⎪=⎩. (9)(i)证明:由题意得1=1()n nn S x na x∞-'=∑,22=2=0()(1)(1)(2)n nn n n n S x n n a xn n a x ∞∞-+''=-=++∑∑,2(1)0n n a n n a ---=,2=(1)(2)(0,1,2...)n n a n n a n +∴++=, ()=()S x S x ''∴,即()()0S x S x ''-=.(ii) 解:()()0S x S x ''-=为二阶常系数齐次线性微分方程,其特征方程为210λ-=,从而特征根为1λ=±,于是其通解为12()x xS x C e C e -=+,由0(0)3S a ==,1(0)1S a '==得1212123121C C C C C C +=⎧⇒==⎨-+=⎩,,所以()2x x S x e e -=+. (10)解:(1)证明:由cos cos n n n a a b -=,及0,022n n a b ππ<<<<可得0cos cos 2n n n a a b π<=-<,所以02n n a b π<<<,由于级数1nn b∞=∑收敛,所以级数1nn a∞=∑也收敛,由收敛的必要条件可得lim 0n n a →∞=.(2)证明:由于0,022n n a b ππ<<<<,23 所以sin ,sin 2222n n n n n n n na b a b b a b a ++--≤≤2222sin sin cos cos 22222222n n nnn n n n n nn n n nn n n nn n n a b b a a a b b b b a b b a b a b b b b b +--==+--≤=<=由于级数1nn b∞=∑收敛,由正项级数的比较审敛法可知级数1nn na b ∞=∑收敛. (11)解:由于1lim1n n na a +→∞=,所以得到收敛半径1R =. 当1x =±时,级数的一般项不趋于零,是发散的,所以收敛域为()1,1-.令和函数)(x S =0(1)(3)n n n n x ∞=++∑,则2111()(43)(2)(1)(1)nn n nn n S x n n x n n x n x ∞=∞∞===++=++++∑∑∑211123"'3"'11(1)n n n n x x x x x x x x ∞∞++==⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭⎛⎫-⎛⎫=+= ⎪ ⎪---⎝⎭⎝⎭∑∑。
《高等数学》北大第二版第12章习题课.ppt

P y
Q x
是否成立判别 (*)是不是全微分方程
,若(*)不是全微
分方程,但
(x, y)[P(x, y)dx Q(x, y)dy] 0 是全微分方程
则称(x, y) 0为方程(*)的积分因子,常用观察法寻找 (*)的积分因子.
例 8 判别下列方程中哪些是全微分方程,并求全微分方程的通解
(1) (a 2 - 2xy - y 2 )dx - (x y)2 dy 0;
dp -2xp2 , dx
dp - p2
2 xdx,
dx
1 p
x2
C1 ,
代入f (0) 1,得C1 1,所以
1 1 x2, p
f (x) 1 1 x2
.
再积分,得
f (x) arctan x C2 , 代入f(0)=1,得C2=1,所求函数
f (x) arctanx 1.
例12 若连续函数f(x)满足
(2) eydx (xe y - 2 y)dy 0;
解 (1) P -2x - 2 y, Q -2(x y),
y
x
(1)是全微分方程
u(x, y) x (a 2 - 2xy - y 2 )dx y - (0 y)2 dy
0
0
a 2 x - x2 y - xy 2 - 1 y3 , 3
y[
(-2
y
3
-
)e
6 dy
y dy C]
y6[-2 y-3dy c] y4 Cy6
故原方程的通解为
x2 y4 Cy6.
例 7 求微分方程 y 1- x(y - x) - x3 ( y - x)2 通解.
解 原方程可写为 (y - x) -x(y - x) - x3 ( y - x)2
高数同济第七版-高数第十二章重点内容

第十二章基本知识点一.判断数项级数的敛散性1. 正项级数∑∞=1nn u ,当n u →0时,(1) 用比较审敛法,比较判别法的极限形式 (2) 用比值审敛法⎪⎩⎪⎨⎧=><=+∞→失效1发散1收敛1lim1ρρρρnn n u u2. 交错级数n nn u ∑∞=-1)1(,用莱布尼茨判别法,若满足以下条件, 01>≥+n n u u则收敛0lim =∞→n n u3. 任意项级数∑∞=1设n n u 为收敛级数,收敛若1∑∞=n n u ∑∞=1称n n u 绝对收敛,发散若1∑∞=n n u ∑∞=1称n n u 条件收敛4.注意:对于常用的几何级数、调和级数、P 级数,要牢记其性质,对于一些比较复杂的题,要巧用拆项相消等技巧二.幂级数求收敛半径和收敛域(讨论端点)1. 对标准型幂级数)0(0≠∑∞=n n nn a x a 先求收敛半径 , 再讨论端点的收敛性 .2.对非标准型幂级数(缺项或通项为复合式) 求收敛半径时直接用比值法或根值法, 也可通过换元化为标准型再求 .三.把f(x)展开成幂级数1. 直接展开法:利用泰勒公式2. 间接展开法:利用幂级数的性质及已知展开式的函数3. 常用函数的幂级数展开式:)(!1∞<<-∞=•∑∞=x x n enn x)11()1(1)1()1(ln 111≤<--=+-=+•∑∑∞=-+∞=x x nx n x nnn n n n)()!12()1(sin 120∞<<-∞+-=•+∞=∑x x n x n n n)()!2()1(cos 20∞<<-∞-=•∑∞=x xn x nn n四.傅里叶级数1. 周期为 2π 的函数的傅里叶级数及收敛定理)sin cos (2)(1x n b x n a a x f n n n++=∑∞=)间断点(≠x⎰-=πππx x n x f a n d cos )(1...),2,1,0(=n其中⎰-=πππx x n x f b n d sin )(1...),2,1(=n注意:若0x 为间断点,则级数收敛于2)()(00+-+x f x f2. 周期为 2π 的奇、偶函数的傅里叶级数奇函数→正弦函数 偶函数→余弦函数3. 在 [0, π] 上函数的傅里叶展开 作奇周期延拓 ,展开为正弦级数 作偶周期延拓 ,展开为余弦函数4. 周期为2l 的函数的傅里叶级数展开公式=)(x f 20a()lxn b lxn a n nn ππsincos 1++∑∞= (x ≠间断点)=n a x lxn x f llld cos)(1π⎰-,...)1,0(=n 其中 =n b x lxn x f llld sin)(1π⎰-,...)2,1(=n 当f (x )为奇(偶)函数时,为正弦(余弦)级数.5.给出[-l ,l )上函数,函数展开成傅里叶级数(先做周期延拓,然后展开)。
高数大一第十二章知识点

高数大一第十二章知识点最近,我正在学习高数大一的第十二章知识点。
这一章主要涵盖了曲线的切线与法线、函数的极值与最值、曲线的凹凸性以及函数的单调性。
接下来,我将分别介绍这些知识点,并探讨它们在实际问题中的应用。
一、曲线的切线与法线在这一部分,我们学习了如何求曲线在给定点的切线和法线。
首先,我们需要掌握求导数的方法,以确定曲线在某点的斜率。
然后,我们可以使用点斜式方程来确定切线或法线的方程。
这些知识非常重要,因为它们在物理等领域的运动问题中有广泛的应用。
例如,在机械运动中,我们可以利用曲线的切线来确定物体在某一瞬间的速度和方向。
二、函数的极值与最值这一部分的内容主要关于函数的极值和最值。
我们学会了如何找到函数的极值点,并验证它们是否为极大值或极小值。
我们可以通过求导数和二阶导数来确定函数的极值点,并用函数的图像进行确认。
函数的最值是指函数在定义域内取得的最大或最小值。
求解函数的最值需要考虑函数的最值点和函数的导数。
这一知识点在优化问题中有广泛的应用,例如在经济学中,我们可以利用函数的最值来确定最优的生产方案或消费策略。
三、曲线的凹凸性曲线的凹凸性是指曲线在某一点的弯曲程度。
在这一部分,我们学习了如何确定曲线的凹凸性以及凹凸点。
为了确定曲线的凹凸性,我们需要求曲线的二阶导数,并通过分析二阶导数的正负性来确定曲线的凹凸区间。
曲线的凹凸性在物理学和经济学等领域有重要的应用,例如在力学中,我们可以利用曲线的凹凸性来分析物体的稳定性和平衡状态。
四、函数的单调性函数的单调性是指函数在某一区间上递增或递减的性质。
我们学习了如何确定函数的单调性以及单调区间。
为了确定函数的单调性,我们需要求函数的导数,并通过分析导数的正负性来确定函数的单调区间。
函数的单调性在经济学、市场分析和判断趋势等领域具有重要的应用,例如在金融市场中,我们可以利用函数的单调性来分析股票的涨跌趋势。
总结起来,高数大一的第十二章知识点涵盖了曲线的切线与法线、函数的极值与最值、曲线的凹凸性以及函数的单调性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A. (1)n 100
n1
n 1
C.
n1
(1)n1
4 3n
B. un 与 (1)n un 都发散
n 1
n1
D. un 发散, (1)n un 收敛
n 1
n1
B. (1)n
3 2n2
n1
(n 1)(n 2)
D.
1
n1 (2n 1)3
4. 设 an (x 1)n 在 x 2 处条件收敛,则它在 x 2 处( ). n1
n1
n
B. (1)n sin
n1
n
C.
n1
(1) n
sin
n2
D. cos n n1
15.若级数 un 收敛,则下列级数收敛的是(
).
n1
本试卷共 6页第2页
A. un
n1 10
B. (un 10) n1
二、填空题
10
C.
u n1 n
D. (un 10) n1
1.若幂级数 an (x 3)n 在点 x 1 处条件收敛,则其收敛半径 R ____ . n0
ln 3n
12.级数
的和为
2n
n 1
.
13. 1 1 1
.
12 23 34
14. 函数 f (x) 1 的麦克劳林级数为
.
1 x
15. 等比级数 aq n (a 0) ,当__ _____时级数收敛. n0
16. 函数 f (x) ex 的麦克劳林级数为
.
17. 函数 f (x) sin x 的麦克劳林级数为
n0 n 1
20.将 f (x) 1 展开为 x 的幂级数. x(x 3)
x n
21. 求幂级数
的收敛域.
n1 n 2n
本试卷共 6页第6页
第十二章
一、选择题
1. 设 an (x 1)n 在 x 2 处条件收敛,则它在 x 2 处(
).
n1
A.绝对收敛 B.条件收敛
C. 发散
D.无法确定
2. 设 un
1
,则级数(
n3 1
)
A. un 与 (1)n un 都收敛
n1
n1
C. un 收敛, (1)n un 都发散
n 1
n1
3. 下列级数发散的是( )
).
n0 2
A. 1 1 x
B. 2 2x
C. 2 1 x
D. 1 2x
10.当 k
0 时,级数
(1) n
n1
kn n2
是(
)
A.条件收敛
B.绝对收敛
C.发散
11.下列四个级数中,发散的级数是( )
1
A.
n1 n!
2n 3
B.
n1 1000n
n
C.
2n
n1
D.收敛性与 k 值无关
1
D.
n2
n1
12.
lim
n
un
0 是级数
un 收敛的(
n1
)条件.
A. 充分非必要 B. 必要非充分 C. 充要 D. 既非充分也非必要
13. 对于级数
un
,若
lim
n
u
n
0 ,则级数
un (
)
n1
n1
A. 收敛
B. 发散 C.不确定
14.下列级数中,绝对收敛的是( )
D. 以上都不对
A. sin
A.绝对收敛 B.条件收敛
C. 发散
D.无法确定
5. 设 a 为非零常数,则当(
)时,级数 ar n 收敛. n 1
A. r 1
B. r 1
C. r a
D. r 1
6. 设 un 是收敛的,则下列必收敛的级数为( ) n1
A. (1)n1un n1
B. un n1
7. 下列级数收敛的是(
2.交错级数
(1)n
n 1
1 n2
是____(条件收敛、绝对收敛、发散)的.
3.幂级数
n0
1 3n1
(x
2)n
的收敛区间为______
.
4.若幂级数 an ( x 3)n 在点 x 0 处条件收敛,则收敛区间为___. n0
1
5. 级数
的和为
n=1 n(n 1)
.
6.
p
级数
n1
1 np
的敛散性.
10.判别级数
n =1
(1)n1
n 3n1
的敛散性;若收敛,判别是绝对收敛还是条件收敛.
(x 1)n
11. 求幂级数
n1
2n n
的收敛域.
xn
12.求幂级数
的收敛域、和函数。
n1 n
13.
பைடு நூலகம்
求幂级数 nxn
n =1
n
的收敛区间与和函数,并求级数
2n
n =1
的和.
14.判断级数1 1 1 1 的敛散性. 234
C. (un +100) n1
).
D. 100un n1
本试卷共 6页第1页
n
A.
n=1 n 1
3n
B.
2n
n =1
8. 下列级数收敛的是(
n
A. n=1 n2 1
B. 3n
n =1
n
C. n=1 2n
).
1
C. n=1 2n
1
D.
n=1 n
1
D.
n=1 n
9.幂级数 x n 在收敛域内的和函数是(
5.判断级数
n1
3n 2n
1
cos
n
的敛散性,若收敛,请说明其为绝对收敛还是条件收敛.
本试卷共 6页第4页
6.求幂级数 (n 1)xn 的收敛域及和函数. n 1
7.求幂级数 (1)n xn 的收敛域.
n 1
n
8.求幂级数
n0
3n 1 2n
x3n
的收敛域.
n2
9.
判别级数
3n
n =1
在
p 满足
条件下收敛.
(1)n
7. 级数
是绝对收敛还是条件收敛
n2
n =1
.
8. 级数 un 收敛的必要条件是
.
i 1
ln 3n
9.级数
的和为
2n
n 1
.
10.若 un 5 , vn 10 ,则 (10un3vn )
.
n 1
n1
n1
本试卷共 6页第3页
11.正项级数 un 收敛的充要条件是它的部分和数列 Sn ___. n 1
.
三、计算题.
1.将函数 f ( x) 1 展成 ( x 1) 的幂级数. x2
2.将函数
f
(x)
1 1 2x
展成
x
的幂级数.
3.将函数 f ( x) 1 展成 ( x 3) 的幂级数. x
4.判断级数 (1)n1 ln(1 1) 的敛散性,若收敛,请说明其为绝对收敛还是条件
n1
n
收敛?
n4
15.判断级数
的收敛性.
n1 n!
(1)n1
16. 判定级数
的敛散性,如果收敛,指出是条件收敛还是绝对收敛.
n1 n
nn
17. 用比值审敛法判定级数
的敛散性.
n1 n!
本试卷共 6页第5页
18.
将
f (x)
1 x(x 3) 在 x
3 处展开为泰勒级数.
(x 2)n
19. 求幂级数
的收敛域.