第六章 非线性规划
非线性规划

非线性规划非线性规划是一种涉及非线性目标函数和/或非线性约束条件的优化问题。
与线性规划不同,非线性规划可能存在多个局部最优解,而不是全局最优解。
非线性规划在许多领域都有广泛的应用,如经济学、工程学和管理学等。
非线性规划的一般形式可以表示为:最小化或最大化 f(x),其中 f(x) 是一个非线性函数,x 是决策变量向量。
满足一组约束条件g(x) ≤ 0 和 h(x) = 0,其中 g(x) 和 h(x) 是非线性函数。
为了求解非线性规划问题,可以使用不同的优化算法,如梯度下降法、牛顿法和拟牛顿法等。
这些算法的目标是找到目标函数的最小值或最大值,并满足约束条件。
非线性规划的难点在于寻找全局最优解。
由于非线性函数的复杂性,这些问题通常很难解析地求解。
因此,常常使用迭代算法来逼近最优解。
非线性规划的一个重要应用是在经济学中的生产计划问题。
生产活动通常受到多个因素的限制,如生产能力、原材料和劳动力等。
非线性规划可以帮助确定最佳的生产数量,以最大化利润或最小化成本。
另一个应用是在工程学中的优化设计问题。
例如,优化某个结构的形状、尺寸和材料以满足一组要求。
非线性规划可以帮助找到最佳设计方案,以最大程度地提高性能。
在管理学中,非线性规划可以用于资源分配和风险管理问题。
例如,优化一个公司的广告预算,以最大程度地提高销售额。
非线性规划可以考虑多种因素,如广告投入和市场需求,以找到最佳的广告投放策略。
总之,非线性规划是一种重要的优化方法,用于解决涉及非线性目标函数和约束条件的问题。
它在经济学、工程学和管理学等领域有广泛的应用。
尽管非线性规划的求解难度较大,但通过合适的优化算法,可以找到最佳的解决方案。
第6章非线性规划

x1 + 2 x 2 ≤ 10 x1 , x 2 ≥ 0
能源 产量y 产量
生产资料1 生产资料 (x1) 1
生产资料2 生产资料 (x2) 2
能源 原理
一、非线性规划的数学模型: 非线性规划的数学模型:
目标函数或约束条件中有非线性函数的规划问题。 目标函数或约束条件中有非线性函数的规划问题。 一般形式: 一般形式:
2 例 : 判断函数凹凸性 : f ( X ) = 3 x 1 + 2 x 2 − 2 x 1 − x 2 + 10 2
∂2 f (X ) ∂x12 解∵ H = 2 ∂ f (X ) ∂ x ∂x 2 1
∂2 f (X ) ∂ x1 ∂ x 2 6 = ∂ 2 f ( X ) 0 2 ∂x 2
六、寻优方法概述: 寻优方法概述:
1、N.L.P.问题分类 无约束条件的NLP问题。 NLP问题 ① 无约束条件的NLP问题。 有约束条件的NLP问题。 NLP问题 ② 有约束条件的NLP问题。 2、寻优方法 间接法(解析法) 适应于目标函数有简单明确的数学表达式。 ① 间接法(解析法):适应于目标函数有简单明确的数学表达式。 直接法(搜索法) 目标函数复杂或无明确的数学表达式。 ② 直接法(搜索法):目标函数复杂或无明确的数学表达式。 消去法(对单变量函数有效) a.消去法(对单变量函数有效): 不断消去部分搜索区间,逐步缩小极值点存在的范围。 不断消去部分搜索区间,逐步缩小极值点存在的范围。 爬山法(对多变量函数有效) b.爬山法(对多变量函数有效): 根据已求得的目标值,判断前进方向,逐步改善目标值。 根据已求得的目标值,判断前进方向,逐步改善目标值。
非线性规划知识点讲解总结

非线性规划知识点讲解总结1. 非线性规划的基本概念非线性规划是指目标函数和/或约束条件包含非线性项的优化问题。
一般来说,非线性规划问题可以表示为如下形式:\[\min f(x)\]\[s.t. \ g_i(x) \leq 0, \ i=1,2,...,m\]\[h_j(x)=0, \ j=1,2,...,p\]其中,\(x \in R^n\)是优化变量,\(f(x)\)是目标函数,\(g_i(x)\)和\(h_j(x)\)分别表示不等式约束和等式约束。
目标是找到使目标函数取得最小值的\(x\)。
2. 非线性规划的解决方法非线性规划问题的求解是一个复杂的过程,通常需要使用数值优化方法来解决。
目前,常用的非线性规划求解方法主要包括梯度方法、牛顿方法和拟牛顿方法。
(1)梯度方法梯度方法是一种基于目标函数梯度信息的优化方法。
该方法的基本思想是在迭代过程中不断沿着梯度下降的方向更新优化变量,以期望找到最小值点。
梯度方法的优点是简单易实现,但缺点是可能陷入局部最优解,收敛速度慢。
(2)牛顿方法牛顿方法是一种基于目标函数的二阶导数信息的优化方法。
该方法通过构造目标函数的泰勒展开式,并利用二阶导数信息来迭代更新优化变量,以期望找到最小值点。
牛顿方法的优点是收敛速度快,但缺点是计算复杂度高,需要计算目标函数的二阶导数。
(3)拟牛顿方法拟牛顿方法是一种通过近似求解目标函数的Hessian矩阵来更新优化变量的优化方法。
该方法能够克服牛顿方法的计算复杂度高的问题,同时又能保持相对快速的收敛速度。
拟牛顿方法的典型代表包括DFP方法和BFGS方法。
3. 非线性规划的应用非线性规划方法在实际生活和工程问题中都有着广泛的应用。
以下将介绍非线性规划在生产优化、资源分配和风险管理等领域的应用。
(1)生产优化在制造业中,生产线的优化调度问题通常是一个非线性规划问题。
通过对生产线的机器设备、生产工艺和生产速度等因素进行建模,并设置相应的目标函数和约束条件,可以使用非线性规划方法来求解最优的生产调度方案,以最大程度地提高生产效率和减少成本。
第六章 非线性规划

第六章 非线性规划由前几章知道,线性规划的目标函数和约束条件都是其自变量的线性函数,如果目标函数或约束条件中包含有自变量的非线性函数,则这样的规划问题就属于非线性规划。
第一节 基本概念一、 非线性规划的数学模型非线性规划数学模型的一般形式是⎪⎩⎪⎨⎧=≥==),,2,1(0)(),,2,1(0)()(min l j x g m i x h x f ji (6.1)其中,X=(n χχχ,,,21 )T 是n 维欧氏空间E n 中的点(向量),目标函数)(X f 和约束函数)()(X j X i g h 、为X 的实函数。
有时,也将非线性规划的数学模型写成 ⎩⎨⎧=≥),,2,1(0)()(min l j X g X f j (6.2)即约束条件中不出现等式,如果有某一约束条件为等式0)(=X g j ,则可用如下两个不等式约束替代它: ⎩⎨⎧≥-≥0)(0)(X g X g jj模型(6.2)也常表示成另一种形式:{}⎩⎨⎧=≥=⊂∈),,2,1(,0)(|),(min l j X g X R E R X X f j n (6.3)上式中R 为问题的可行域。
若某个约束条件氏“≤”不等式的形式,只需用“-1”乘这个约束的两端,即可将其变成“≥”的形式。
此外,由于[])(m in )(m ax x f X f --=,且这两种情况下求出的最优解相同(如有最优解存在),故当需使目标函数极大化时,只需求其负函数极小化即可。
二、二维问题的图解当只有两个自变量时,求解非线性规划也可像对线性规划那样借助于图解法。
考虑非线性规划问题⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≥-+=-+-+-=000505)1()2()(min 212122212221x x x x x x x x x X f (6.4)如对线性规划所作的那样,在21Ox x 坐标平面画出目标函数的等值线,它是以点(2.1)为圆心的同心圆,再根据约束条件画出可行域,它是抛物线段ABCD (图6-1)。
第6讲 非线性规划

1 gi X
其中称r lng i X 或 r
i 1 i 1
m
m
1 为障碍项,r为障碍因子 gi X
X D
这样问题()就转化为求一系列极 1 值问题: k min I X , rk 得 X (rk) 0
10
内点法的迭代步骤
(1) 给定允许误差 0 ,取r1 0,0
k1
5) 判断精度: j 1,, n , 若 则点 X 为近似最优解;
k j
否则,令 k 1 k j 1,, n ,k=k+1,返回步骤(2). j j
14 返回
1、二次规划
标准型为: Min Z= 1 XTHX+cTX
2
s.t. AX<=b
m k
m
返回(3) .
11
近似规划法
近似规划法的基本思想:将问题(3)中的目标函数 f X
和约束条件 g i X 0 (i 1,..., m); h j X 0 ( j 1,, l )
近似为线性函数,并对变量的取值范围加以限制,从
而得到一个近似线性规划问题,再用单纯形法求解之,
i 1 j 1
(2)
将问题( )转化为无约束问题: minn T X , M 1
X E
(3)
其中T(X,M)称为罚函数,M称为罚因子,带M的项称为罚项,这 里的罚函数只对不满足约束条件的点实行惩罚:当 D 时,满 X 足各 i X 0, hi X 0 ,故罚项=0,不受惩罚.当 D 时, g X 必有 0或hi X 0 的约束条件,故罚项>0,要受惩罚. gi X
非线性规划

1. 非线性规划我们讨论过线性规划,其目标函数和约束条件都是自变量的线性函数。
如果目标函数是非线性函数或至少有一个约束条件是非线性等式(不等式),则这一类数学规划就称为非线性规划。
在科学管理和其他领域中,很多实际问题可以归结为线性规划,但还有另一些问题属于非线性规划。
由于非线性规划含有深刻的背景和丰富的内容,已发展为运筹学的重要分支,并且在最优设计,管理科学,风险管理,系统控制,求解均衡模型,以及数据拟合等领域得到越来越广泛的应用。
非线性规划的研究始于三十年代末,是由W.卡鲁什首次进行的,40年代后期进入系统研究,1951年.库恩和.塔克提出带约束条件非线性规划最优化的判别条件,从而奠定了非线性规划的理论基础,后来在理论研究和实用算法方面都有很大的发展。
非线性规划求解方法可分为无约束问题和带约束问题来讨论,前者实际上就是多元函数的极值问题,是后一问题的基础。
无约束问题的求解方法有最陡下降法、共轭梯度法、变尺度法和鲍威尔直接法等。
关于带约束非线性规划的情况比较复杂,因为在迭代过程中除了要使目标函数下降外,还要考虑近似解的可行性。
总的原则是设法将约束问题化为无约束问题;把非线性问题化为线性问题从而使复杂问题简单化。
求解方法有可行方向法、约束集法、制约函数法、简约梯度法、约束变尺度法、二次规划法等。
虽然这些方法都有较好的效果,但是尚未找到可以用于解决所有非线性规划的统一算法。
非线性规划举例 [库存管理问题] 考虑首都名酒专卖商店关于啤酒库存的年管理策略。
假设该商店啤酒的年销售量为A 箱,每箱啤酒的平均库存成本为H 元,每次订货成本都为F 元。
如果补货方式是可以在瞬间完成的,那么为了降低年库存管理费用,商店必须决定每年需要定多少次货,以及每次订货量。
我们以Q 表示每次定货数量,那么年定货次数可以为QA,年订货成本为Q A F ⨯。
由于平均库存量为2Q,所以,年持有成本为2Q H ⨯,年库存成本可以表示为:Q HQ A F Q C ⨯+⨯=2)( 将它表示为数学规划问题:min Q H Q A F Q C ⋅+⋅=2)( ..t s 0≥Q其中Q 为决策变量,因为目标函数是非线性的,约束条件是非负约束,所以这是带约束条件的非线性规划问题。
非线性规划的基本概念及问题概述

牛顿法在凸优化问题上表现较好,但在非凸问题 上可能陷入局部最优解。
拟牛顿法
01
拟牛顿法是一种改进的牛顿法,通过构造海森矩阵 的近似来降低计算成本。
02
拟牛顿法在每一步迭代中更新搜索方向,并逐渐逼 近最优解。
03
拟牛顿法在处理大规模非线性规划问题时表现较好 ,但仍然需要计算目标函数的二阶导数。
共轭梯度法
共轭梯度法结合了梯度法和牛 顿法的思想,通过迭代更新搜 索方向来寻找最优解。
共轭梯度法的迭代方向是梯度 方向和上一次迭代方向的线性 组合,可以加快收敛速度。
共轭梯度法适用于大规模优化 问题,尤其在约束条件较多或 非凸函数情况下表现较好。
05
非线性规划的挑战与解决方 案
局部最优解问题
局部最优解问题
案例二:生产计划优化问题
总结词
生产计划优化问题旨在通过合理安排生 产计划,降低生产成本并满足市场需求 。
VS
详细描述
生产计划优化问题需要考虑生产过程中的 各种因素,如原材料需求、设备能力、劳 动力成本等。目标函数通常是非线性的, 因为生产成本和产量之间的关系是非线性 的。约束条件可能包括资源限制、交货期 限制等。
例子
最小化成本函数,其中成本是生产量 的函数,生产量受到资源、生产能力 等约束。
最大化问题
最大化目标函数
在给定的约束条件下,找到一组变量 ,使得目标函数达到最大值。
例子
最大化收益函数,其中收益是销售量 的函数,销售量受到市场需求、价格 等约束。
约束条件下的优化问题
01
在满足一系列约束条件下,寻找最优解,使得目标函数达到最 优值。
梯度法适用于目标函数和约束条件比较简单的情况,但对于非凸函数或约束条件复 杂的情况可能不收敛或收敛到局部最优解。
chapter 6 非线性规划

– 3. 函数的凸性的判别 – 定理6.1(一阶条件) 设R是n维欧式空间上的开凸
集,f(X)在R上具有一阶连续偏导数,则f(X)为R上 的凸函数的充分必要条件是,对于任意两个不同点 X(1)∈R和X(2)∈R,恒有
– 此外,若将上述关于凸函数定义中两个不等式中 的不等号改为“≥”和“>”,则分别称f(X)为凸集R 上的凹函数和严格凹函数。
– 2. 凸函数的性质
(1)若f(X)为凸函数,则-f(X)必为凹函数,反之亦 然;
(2)若f(X)为凸集R上的凸函数,则对于任意非负实 数α,函数αf(X)亦为凸集R上的凸函数;
chapter 6 非线性规划
chapter 6 非线性规划
概述
一、问题提出
– 生产管理中很多问题的运行过程都是以非线性形式运 行的,如生产成本往往是生产量的非线性函数,产品 的需求量是其价格的非线性函数等等。这样,我们在 建立一个决策问题的数学模型时,目标函数或者约束 条件常常会出现非线性形式。
f ( X (2) ) f ( X (1) ) f ( X (1) )T ( X (2) X (1) )
定理6.2(二阶条件) 设R是n维欧式空间上的某一 开凸集,f(X)在R上具有二阶连续偏导数,则f(X)为 R上的凸函数的充分必要条件是:f(X)的海森矩阵 H(X)在R上处处半正定。
– 6. 全局最优解——对于非线性规划min f = f(X),gi(X) ≥ 0 (i = 1,2,…,l;),设X0∈R,对于任何X∈R均有f(X0) ≤ f(X), 则称X0为非线性规划问题在R上的一个全局最优解。若
X0≠X时,f(X0) < f(X)严格成立,称X0为严格全局最优解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章非线性规划(一)非线性规划的理论模型
Min f(X)
s.t. h
i
(X)=0(i=1,2,…,m)
g
j
(X)≥0(j=1,2,…,m)
其中,目标函数和约束方程含有非线性表达式。
若D={X∈R n:h
i (X)=0,i=1,2,…,m,g
j
(X)≥0,j=1,2,…,l}为可行域
可简化为 min f(X)
X∈D
D中的点X为非线性规划模型的可行解
当D=R n时---无约束线性规划当D≠R n时---有约束线性规划
(二)非线性规划的解及相关概念
1)可行解:D中的点X为非线性规划模型的可行解
2)最优解:若有X*∈D,对于任意的X∈D,都存在f(X*)≤f(X)则X*为最优解。
(全局最优解)
注:非线性规划问题的最优解可以在可行域的任意点取得。
3)梯度:若函数f(X)在X
0的领域内有连续一阶偏导数,则称f(X)在X
处对n
个变量的偏导数组成的向量为f(X)在X
的梯度。
梯度的几何意义:○1等高线;
○2函数f(X)在X
0的梯度方向是函数在X
处增加最快的方
向;
○3函数f(X)在X
0的梯度是等高线在点X
切平面的法向量;
4)海赛阵:若函数f(X)在X
0的领域内有连续二阶偏导数,则称f(X)在X
处对n
个变量两两组合的二阶偏导数组成的矩阵为f(X)在X
的海赛阵。
5)凸规划:在非线性规划问题中,目标函数为凸函数,不等式约束为凹函数,等式约束为仿射函数,则称这样的非线性规划为凸规划。
注:○1如果f(X)为凸函数,则-f(X)为凹函数.
○2对于多元函数f(X),海赛阵为半正定,则f(X)为凸函数;
海赛阵为半负定,则f(X)为凹函数。
6)凸规划的性质:凸规划的约束集为凸集,凸规划的最优解集是凸集,任何局部最优解也是全局最优解。
如果目标函数为严格凸函数,且
最优解存在,则其最优解是唯一的。
(三)无约束极值的解法
1)一维搜索:一维搜索是一种求解单变量实值函数的极值点的过程,也称线性搜索。
常用的搜索方法有斐波拉契法,0.618法等
2)梯度法:梯度法也叫最速下降法,是一种求解无约束极值问题的最简单,最基本的下降类算法,其指导思想是:选取P
K
,使函数f(x)下降最快,
或者说使f(X
K +入P
K
)-f(X
K
)<0,并且是上式左边的绝对值尽可能地大。
(四)罚函数法
罚函数法:罚函数法是求解一般有约束极值问题的一种比较简单实用的方法,其基本思想是:将约束条件与目标函数组合在一起,化成无约束极
值问题来进行求解。
可分为外点法和内点法。
外点法是从可行域的外部逐步逼近最优解,
内点法是从可行域的内部逐渐逼近最优解。