材料力学之剪切
合集下载
材料力学之四大基本变形

内径d=15mm,承受轴向载荷F=20kN作用, 材料旳屈服应力σs=235MPa,安全因数ns= 1.5。试校核杆旳强度。
解:杆件横截面上旳正应力为
N
A
4F
(D2 d2)
4(20103 N ) [(0.020m)2 (0.015m)2
]
1.45108 Pa 145MPa
材料旳许用压力为
IZ
(D4 d 4)
64
D4
64
(1 4 )
WZ
D3
32
(1 4 )
(1)求支座反力
M A 0, M 0 RBl 0 M B 0, RAl M 0 0
(2)列剪力方程和弯矩方程
RB
M0 l
RA
M0 l
AC段 :
Q1
RA
M0 l
M1
RA x
M0 l
x
(0 x a)
CB段 :
许用剪应力
其中,F 为剪切力——剪切面上内力旳合力
A 为剪切面面积
可见,该实用计算措施以为剪切 剪应力在剪切面上是均匀分布旳。
2、挤压强度旳工程计算
由挤压力引起旳应力称为挤压应力 bs
与剪切应力旳分布一样,挤压应力旳分布
也非常复杂,工程上往往采用实用计算旳
方法,一般假设挤压应力平均分布在挤压
面上
首先计算各杆旳内力:
需要分析B点旳受力
X 0
F1 cos 30 F2 0
Y 0
F1 cos 60 Q 0
F1 2Q 20KN
30 B
A
y
F1
F2
x
Q
1 F2 2 3F1 17.32KN
F1 2Q 20KN
F2
解:杆件横截面上旳正应力为
N
A
4F
(D2 d2)
4(20103 N ) [(0.020m)2 (0.015m)2
]
1.45108 Pa 145MPa
材料旳许用压力为
IZ
(D4 d 4)
64
D4
64
(1 4 )
WZ
D3
32
(1 4 )
(1)求支座反力
M A 0, M 0 RBl 0 M B 0, RAl M 0 0
(2)列剪力方程和弯矩方程
RB
M0 l
RA
M0 l
AC段 :
Q1
RA
M0 l
M1
RA x
M0 l
x
(0 x a)
CB段 :
许用剪应力
其中,F 为剪切力——剪切面上内力旳合力
A 为剪切面面积
可见,该实用计算措施以为剪切 剪应力在剪切面上是均匀分布旳。
2、挤压强度旳工程计算
由挤压力引起旳应力称为挤压应力 bs
与剪切应力旳分布一样,挤压应力旳分布
也非常复杂,工程上往往采用实用计算旳
方法,一般假设挤压应力平均分布在挤压
面上
首先计算各杆旳内力:
需要分析B点旳受力
X 0
F1 cos 30 F2 0
Y 0
F1 cos 60 Q 0
F1 2Q 20KN
30 B
A
y
F1
F2
x
Q
1 F2 2 3F1 17.32KN
F1 2Q 20KN
F2
工程力学c材料力学部分第二章剪切与挤压

介绍弯曲变形的基本原理、弯曲变形的应力分布 以及弯曲变形的强度条件。
梁的弯曲变形分析
通过实例分析,介绍梁在不同载荷下的弯曲变形 规律,以及如何应用弯曲变形的强度条件进行梁 的设计。
弯曲变形的应用实例
介绍弯曲变形在日常生活和工程中的应用,如桥 梁、房屋结构等。
THANKS
感谢观看
材料的弹性模量
弹性模量较高的材料在剪切和挤压过程中表现出更好 的刚度和稳定性。
提高剪切与挤压强度的措施
选择合适的材料
根据实际需求选择具有高硬度、韧性和弹性模量的材料。
优化结构设计
合理设计结构,减少应力集中和变形。
加强表面处理
对材料表面进行强化处理,如喷丸、渗碳淬火等,以提高其抗剪切和 挤压能力。
06
剪切与挤压的强度条件
剪切强度条件
在剪切力作用下,材料不发生屈服或剪 切断裂的最小剪切应力称为剪切强度极 限,其表达式为 $tau_{min} geq tau_s$ ,其中 $tau_{min}$ 为材料在剪切面上 的最小剪切应力,$tau_s$ 为材料的剪切 强度极限。
VS
挤压强度条件
在挤压作用下,材料不发生屈服或挤压断 裂的最小挤压应力称为挤压强度极限,其 表达式为 $sigma_{min} geq sigma_s$ ,其中 $sigma_{min}$ 为材料在挤压面 上的最小挤压应力,$sigma_s$ 为材料 的挤压强度极限。
剪切
在力的作用下,物体在相互垂直的两个平面上 发生相对位移的现象。
剪切力
使物体发生剪切变形的力,其大小等于剪切面 上的正压力乘以剪切系数。
剪切强度
材料抵抗剪切破坏的最大应力,通常由实验测定。
挤压定义
挤压
在力的作用下,物体通过一个狭窄的缝隙时,其接 触表面受到强烈的压应力的现象。
梁的弯曲变形分析
通过实例分析,介绍梁在不同载荷下的弯曲变形 规律,以及如何应用弯曲变形的强度条件进行梁 的设计。
弯曲变形的应用实例
介绍弯曲变形在日常生活和工程中的应用,如桥 梁、房屋结构等。
THANKS
感谢观看
材料的弹性模量
弹性模量较高的材料在剪切和挤压过程中表现出更好 的刚度和稳定性。
提高剪切与挤压强度的措施
选择合适的材料
根据实际需求选择具有高硬度、韧性和弹性模量的材料。
优化结构设计
合理设计结构,减少应力集中和变形。
加强表面处理
对材料表面进行强化处理,如喷丸、渗碳淬火等,以提高其抗剪切和 挤压能力。
06
剪切与挤压的强度条件
剪切强度条件
在剪切力作用下,材料不发生屈服或剪 切断裂的最小剪切应力称为剪切强度极 限,其表达式为 $tau_{min} geq tau_s$ ,其中 $tau_{min}$ 为材料在剪切面上 的最小剪切应力,$tau_s$ 为材料的剪切 强度极限。
VS
挤压强度条件
在挤压作用下,材料不发生屈服或挤压断 裂的最小挤压应力称为挤压强度极限,其 表达式为 $sigma_{min} geq sigma_s$ ,其中 $sigma_{min}$ 为材料在挤压面 上的最小挤压应力,$sigma_s$ 为材料 的挤压强度极限。
剪切
在力的作用下,物体在相互垂直的两个平面上 发生相对位移的现象。
剪切力
使物体发生剪切变形的力,其大小等于剪切面 上的正压力乘以剪切系数。
剪切强度
材料抵抗剪切破坏的最大应力,通常由实验测定。
挤压定义
挤压
在力的作用下,物体通过一个狭窄的缝隙时,其接 触表面受到强烈的压应力的现象。
材料力学-剪切

材料力学
剪切
一、剪切强度计算及挤压强度计算
1.单剪
设两块钢板有 n 个铆钉联接,钢板两端受拉力 P 作用 (见图3-1)。
P t1
t2 P
P
P
钢板联接图 图3-1
(1)绘铆钉受力图:
t1 P/n
Q P n
P/n
t2
Pc= P/n
|d|
|d|
铆钉受力图 图3-2
(2)剪切强度条件为:
Q P 3 1
2 20 12106
104MPa
II-II截面
3P
3 200103
II II
b2
5
3d t2
5
200 3 20 12106
71.4MPa
(2)盖板:
P/5
II
P/2
盖板轴力图
II II-II截面
II-II截面内力比I-I截面大,而截面积比I-I截面小,故只 需校核II-II截面。
II II
P nAC 2
P nt2d
C1
PC 1 AC 1
P nAC 1
P 2nt1d
比较: C2 C1
C2
200 103 5 12 20106
167MPa
C2
(四)绘主板和盖板的轴力图并进行强度校核。
(1)主板:
P
I
3P
II
5
主板轴力图
I-I截面
I
II
II
b2
P
2d t2
200
200 103
Q P 3 1
AQ 2nAQ
如需求铆钉的个数,则
n
P
2AQ
3
2
挤压强度条件:
剪切
一、剪切强度计算及挤压强度计算
1.单剪
设两块钢板有 n 个铆钉联接,钢板两端受拉力 P 作用 (见图3-1)。
P t1
t2 P
P
P
钢板联接图 图3-1
(1)绘铆钉受力图:
t1 P/n
Q P n
P/n
t2
Pc= P/n
|d|
|d|
铆钉受力图 图3-2
(2)剪切强度条件为:
Q P 3 1
2 20 12106
104MPa
II-II截面
3P
3 200103
II II
b2
5
3d t2
5
200 3 20 12106
71.4MPa
(2)盖板:
P/5
II
P/2
盖板轴力图
II II-II截面
II-II截面内力比I-I截面大,而截面积比I-I截面小,故只 需校核II-II截面。
II II
P nAC 2
P nt2d
C1
PC 1 AC 1
P nAC 1
P 2nt1d
比较: C2 C1
C2
200 103 5 12 20106
167MPa
C2
(四)绘主板和盖板的轴力图并进行强度校核。
(1)主板:
P
I
3P
II
5
主板轴力图
I-I截面
I
II
II
b2
P
2d t2
200
200 103
Q P 3 1
AQ 2nAQ
如需求铆钉的个数,则
n
P
2AQ
3
2
挤压强度条件:
材料力学2—剪切

Q τ = ≤ [τ ] A
2.3、挤压的实用计算 在外力作用下,连接件和被连接的构件之间, 必将在接触面上相互压紧,这种现象称为挤压。 在外力作用下,剪切构件除可能被剪断外,还 可能发生挤压破坏。挤压破坏的特点是:构件互相 接触的表面上,因承受了较大的压力作用,使接触 处的局部区域发生显著的塑性变形或被压碎。这种 作用在接触面上的压力称为挤压力;在接触处产生 的变形称为挤压变形。
例 2.5 m3挖掘机减速器的一轴上装一齿轮,齿轮与轴通过平 键连接,已知键所受的力为F=12.1 kN。平键的尺寸为:b= 28 mm,h=16 mm,l2=70 mm,圆头半径R=14 mm。键的 许用切应力[τ]=87 MPa,轮毂的许用挤压应力取[σbs]=100 MPa,试校核键连接的强度。
解:(1) 校核剪切强度 销轴的受力如图所示,a-a和b-b两截面 皆为剪切面,这种情况称为双剪。 利用截面法以假想的截面沿a-a和b-b将 销轴截开,由所取研究对象的平衡条件 可知,销轴剪切面上的剪力为
F 188 Q= = = 94 KN 2 2
剪切面面积为
A=
πd2
4
=
π × 92
4
= 63.6 cm 2 = 63.6 ×10−4 m 2
h Abs = ⋅ l p 2 1.6 = (7.0 − 2 ×1.4) 2 = 3.36 cm 2 = 3.36 ×10−4 m 2
故轮毂的工作挤压应力为
12100 P σ bs = = = 36 × 106bs 3.36 × 10−4
2.1 工程实际中的剪切问题 再看连接轴与轮的键(图a)。作用于轮和轴上的 传动力偶和阻抗力偶大小相等,方向相反,键的受 力情况如图b所示。作用于键的左右两个侧面上的 力,意图使键的上、下两部分沿n-n截面发生相对 错动。
材料力学:第三章 剪切

F 挤压面上应力分布也是复杂的
F
实用计算中,名义挤压应力公式
bs
Fbs Abs
Fbs
Fbs
Abs d
——挤压面的计算面积
挤压强度条件:
bs
Fbs Abs
bs
挤压强度条件同样可解三类问题 bs 常由实验方法确定
例: 已知: =2 mm,b =15 mm,d =4 mm,[ =100 MPa, [] bs =300 MPa,[ ]=160 MPa。 试求:[F]
第三章 剪 切
一. 剪切的概念和实例 二. 剪切的实用计算 三. 挤压的实用计算
一. 剪切的概念和实例 工程实际中用到各种各样的连接,如: 铆钉
销轴
平键 榫连接
(剪切)受力特点: 作用在构件两侧面上的外力合力大小相 等、方向相反且作用线相距很近。
变形特点: 构件沿两力作用线之间的某一截面产生相 对错动或错动趋势。
F F
剪切面上的内力 Fs (用截面法求)
实用计算中假设切应力在剪切
F
m m
面(m-m截面)上是均匀分布的 F
名义切应力计算公式:
F
m
m
FS
FS m
m
F
Fs
A
剪切强度条件:
Fs
A
——名义许用切应力
由实验方法确定
剪切强度条件同样可解三类问题
三. 挤压的实用计算
挤压力不是内力,而是外力
解: 1、剪切强度
4F πd 2
[
]
F πd 2[ ] 1.257 kN
4
2、挤压强度
bs
F
d
[ ]bs
F d[ ]bs 2.40KN
3、钢板拉伸强度 F
材料力学 第三章 剪切

根据平衡条件可得
F0 =F =70kN
钢板危险截面拉伸应力为
0
F0 A0
=
70103 N 252106 m2
277.78MPa>275MPa
277.78 275 100% 1.01% 故螺栓满足强度条件
275
明德行远 交通天下
材料力学
例题3-2 某接头部分销钉如图所示,F=110 kN,试求销钉的切应力和挤压应力。
明德行远 交通天下
材料力学
单面剪切
双面剪切
明德行远 交通天下
复杂双面剪切
材料力学
二、剪切的工程实例
铆钉或高强螺栓连接
销轴连接
明德行远 交通天下
铆钉连接
榫连接
材料力学
§3-2 剪切的实用计算
一、连接处破坏三种形式 ①剪切破坏
以铆钉为例:
沿铆钉的剪切面剪断,如沿m–
m面剪断 。
②挤压破坏
铆钉与钢板在相互接触面上因
明德行远 交通天下
材料力学
解:先分析螺栓的剪切面积和挤压面积
剪切面积为 挤压面积为
A
d2
3.14 30 mm2
=
706.5mm2
4
4
Abs dh=3018mm2 540mm2
根据平衡条件可得
挤压力为
FS=F =70kN
FbS =F =70kN
明德行远 交通天下
材料力学
螺栓截面切应力为
FS A
材料力学
第三章 剪切
明德行远 交通天下
材料力学
主要内容
• §3-1 剪切的概念和工程实例 • §3-2 剪切的实用计算 • §3-3 挤压的实用计算
明德行远 交通天下
材料力学第二章剪切

64kN
m P
L
b
d
材料力学
2 剪切面与挤压面的判定
AQ bl
h Abs 2 l
h
L
AQ
b
材料力学
3 切应力和挤压应力的强度条件
FQ [ ]
Lb
[
L1
]
FQ
b
64 16 80
10 3 (
m
)
50mm
2 Pbs Lh
[ bs ]
[
L2
]
2 Pbs
h[ bs ]
2 64 10 240
F
F
F
b
τ FS AS
n πd2
4F nπd 2
[τ]
4
(b) 图7−6
材料力学
➢对于对接方式,每个铆钉有两个剪切面.
每个铆钉每个剪切面上的剪力为
FS
F 2n
F
F
剪切强度条件为
(a)
F
F
F
b
FS AS
2n
d2
4F
n d 2
(b)
4
材料力学
2. 铆钉与钢板孔壁之间的挤压实用计算
➢ 对于搭接构件,挤压强度条件为
材料力学
键: 连接轴和轴上的传动件(如齿轮、皮带轮等),使轴
和传动件不发生相对转动,以传递扭矩。
材料力学
键连接的传动系统
材料力学
分析轮、轴、平键结构中键的剪切面与挤压面
(1)、 取轴和键为研究对象进行受力分析 F
M F d 0
M
2
(2)、单独取键为研究对象受力分析
键的左侧上半部分受到轮给键的约束反力的作用,合力大小F;
T
材料力学课件第三章剪切

材料抵抗剪切破坏的最大应力称为剪切强度。
剪切现象
生活中的剪切现象
如剪刀剪纸、锯子锯木头等,都 是典型的剪切现连接处, 由于受到垂直于连接面的力而发 生相对错动。
剪切应力与应变
剪切应力
在剪切过程中,作用在物体上的剪切力与物体截面面积的比值称 为剪切应力。
剪切应变
04
剪切破坏与预防措施
剪切破坏类型
01
02
03
04
脆性剪切
材料在无明显屈服的情况下突 然发生剪切断裂,多发生在脆 性材料中。
韧性剪切
材料在发生屈服后逐渐发生剪 切断裂,多发生在韧性材料中 。
疲劳剪切
材料在循环应力作用下发生的 剪切断裂,多发生在高强度材 料中。
热剪切
由于温度变化引起的剪切断裂 ,多发生在高温环境下。
车辆工程中的剪切问题
航空航天器在高速飞行时,会受到气 动力的剪切效应,影响其稳定性。
车辆在行驶过程中,车体结构会受到 风力、路面等载荷的剪切作用,影响 车辆的安全性和舒适性。
船舶结构中的剪切变形
船舶在航行过程中,会受到波浪、水 流等载荷的剪切作用,影响其结构安 全。
THANK YOU
感谢聆听
患。
05
剪切在实际工程中的应用
建筑结构中的剪切问题
80%
桥梁结构的剪切变形
桥梁在受到车辆等载荷作用时, 会发生剪切变形,影响结构的稳 定性。
100%
高层建筑的剪切力传递
高层建筑中的剪切力对建筑物的 稳定性和安全性具有重要影响。
80%
地震作用下的剪切效应
地震时,建筑结构会受到地震波 的剪切作用,可能导致结构破坏 。
03
剪切与弯曲的关系
弯曲与剪切的相互作用
剪切现象
生活中的剪切现象
如剪刀剪纸、锯子锯木头等,都 是典型的剪切现连接处, 由于受到垂直于连接面的力而发 生相对错动。
剪切应力与应变
剪切应力
在剪切过程中,作用在物体上的剪切力与物体截面面积的比值称 为剪切应力。
剪切应变
04
剪切破坏与预防措施
剪切破坏类型
01
02
03
04
脆性剪切
材料在无明显屈服的情况下突 然发生剪切断裂,多发生在脆 性材料中。
韧性剪切
材料在发生屈服后逐渐发生剪 切断裂,多发生在韧性材料中 。
疲劳剪切
材料在循环应力作用下发生的 剪切断裂,多发生在高强度材 料中。
热剪切
由于温度变化引起的剪切断裂 ,多发生在高温环境下。
车辆工程中的剪切问题
航空航天器在高速飞行时,会受到气 动力的剪切效应,影响其稳定性。
车辆在行驶过程中,车体结构会受到 风力、路面等载荷的剪切作用,影响 车辆的安全性和舒适性。
船舶结构中的剪切变形
船舶在航行过程中,会受到波浪、水 流等载荷的剪切作用,影响其结构安 全。
THANK YOU
感谢聆听
患。
05
剪切在实际工程中的应用
建筑结构中的剪切问题
80%
桥梁结构的剪切变形
桥梁在受到车辆等载荷作用时, 会发生剪切变形,影响结构的稳 定性。
100%
高层建筑的剪切力传递
高层建筑中的剪切力对建筑物的 稳定性和安全性具有重要影响。
80%
地震作用下的剪切效应
地震时,建筑结构会受到地震波 的剪切作用,可能导致结构破坏 。
03
剪切与弯曲的关系
弯曲与剪切的相互作用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
28
§3-2
纯剪切 切应力互等定理 剪切胡克定律
三.剪切胡克定律
G
其中,比例常数G 称为切变模量。常用单位GPa
29
§3-2
纯剪切 切应力互等定理 剪切胡克定律
对各向同性材料可以证明,弹性常数E、G、 μ存在关系
G E 2(1 )
表明3个常数间相互不独立的
30
§3-3
剪切应变能
9
§3-1
连接件的强度计算
Fs A
切应力强度条件: 挤压强度条件: bs 塑性材料: 0.5 0.7
Fbs Abs
bs
bs 1.5 2.5 bs 0.9 1.5
10
脆性材料: 0.8 1.0
§3-1
连接件的强度计算
Fs A
F lb
bs
Fbs Abs
F cb
11
§3-1
连接件的强度计算
Fs A 4F
d
2
bs
Fbs Abs
F dh
2
为充分利用材 料切应力和挤压应 力均达到最大值。 即:
常由实验方法确定
8
§3-1
3.挤压的实用计算
F
连接件的强度计算
假设应力在挤压面上应力是均 匀分布的
F
得实用挤压应力公式 bs *注意挤压面面积的计算
F bs A bs
Fbs Fbs
Abs d
挤压强度条件: bs
Fbs Abs
bs
bs 常由实验方法确定
FN A
3
b
a
F ( b 2 d ) 50 10
3
2.板的剪切强度
Fs A 15 . 7 10
6
F 4a
50 10
4 0 . 08 0 . 01
( 0 . 15 2 0 . 017 ) 0 . 01 43 . 1 10
6
15 . 7 M Pa [ ]
第三章
剪
切
1
第三章
§3-1 §3-2
剪
切
连接件的强度计算 纯剪切 切应力互等定理
剪切胡克定律 §3-3 剪切应变能
2
§3-1
1.剪切的工程实例
连接件的强度计算
3
§3-1
连接件的强度计算
4
§3-1
连接件的强度计算
5
§3-1
铆钉连接
连接件的强度计算
螺栓连接
销轴连接
6
§3-1
平键连接
连接件的强度计算
r
Me
M 2 r
2
rdA
A
2
r rd 2 r
2
0
r
l
r l
纯剪切:单元体截面上只有切应力 而无正应力作用,这种应力状态叫 做纯剪切应力状态。 26
§3-2
纯剪切 切应力互等定理 剪切胡克定律
二.切应力互等定理
27
§3-2
纯剪切 切应力互等定理 剪切胡克定律
Me
Me
外力功:W
1 2
M e
φ
φ
Me 所作功全部转变为剪切应变能Vs 存储在薄壁圆管内
Vs W 1 2 M e
单位体积应变能称为应变能密度:
vs Vs V M e / 2 2 r l
1 2
1
2
M e r
2
2 2 r l
31
进一步简化得:vs
2G
6
50 10
3
2 0 . 017 0 . 01
bs
147 10
147 M Pa [
]
结论:强度足够。
17
§3-1
连接件的强度计算
18
§3-1
连接件的强度计算
19
§3-1
连接件的强度计算
20
§3-1
连接件的强度计算
21
§3-1
连接件的强度计算
2 2
F2 8 0 5 0 4 0
焊接连接
榫连接
7
§3-1
2.剪切的实用计算
连接件的强度计算
F
剪切受力特点:作用在构件两侧 面上的外力合力大小相等、方向 相反且作用线很近。 变形特点:位于两力之间的截面 发生相对错动。 假设切应力在剪切面(m-m 截面)上是均匀分布的 得切应力计算公式: 切应力强度条件:
F
Fs A
Fs A
43 . 1 M Pa [ ]
16
§3-1
d
连接件的强度计算
3.铆钉的剪切强度
Fs A 4F 2 πd
2
3 2
2F πd
2
2 50 10
b
a
π 0 . 017 110 10
6
110 MPa [ ]
4.板和铆钉的挤压强度
bs
F bs A bs F 2d
4F
d
2
F dh
2
4F
d
2
F 2 dh
d
8h
12
§3-1
连接件的强度计算
1.要使被冲钢板冲断;
F
d
b
d
F
b
2.同时要使冲头强度足够。
4F
d
2
d
4F
4F
d
F
b
13
§3-1
4.连接件失效形式
连接件的强度计算
剪断 (连接件与连接板) 挤压破坏
ห้องสมุดไป่ตู้
连接板拉断
14
§3-1
连接件的强度计算
l
F F F F F
F
d (a) (b)
F
F
(c)
(d)
(e)
15
§3-1
d
连接件的强度计算
图示接头,受轴向力F 作 用。已知F =50kN,b=150mm, δ=10mm,d=17mm,a=80mm, [σ]=160MPa,[τ]=120MPa, [σbs]=320MPa,铆钉和板的材 料相同,试校核其强度。 解:1.板的拉伸强度
F2
50 2
kN
22
§3-1
连接件的强度计算
23
§3-1
焊缝剪切计算 有效剪切面
连接件的强度计算
4.其它连接件的实用计算方法
24
§3-1
连接件的强度计算
F
4.其它连接件的实用计算方法 胶粘缝的计算 F 不同的粘接方式
F
F
[ ]
25
[ ]
§3-2
一、纯剪切
纯剪切 切应力互等定理 剪切胡克定律