材料力学剪切与扭转PPT课件
合集下载
材料力学课件第3-4章

L M x( x) d x
0 GIP (x)
28
3.5 圆轴扭转时的变形与刚度条件
二. 刚度条件
对等直轴:
d
dx
Mx GIP
单位长度的扭转角
等直圆轴扭转
max
M x max GIP
180
[ ](o /m)
对阶梯轴: 需分段校核。
max
M x max GIP
180
[ ](ο /m)
2. 给出功率, 转速
(kw)
Me = 9549
P n
(N. m)
(r/min)
5
3.2 外力偶矩的计算 扭矩和扭矩图 二.横截面上的内力
截面法求内力: 截,取,代,平
Mx 称为截面上的扭矩
Mx 0 Mx Me 0 即 Mx Me
按右手螺旋法:
指离截面为正,
M x 指向截面为负。
6
3.2 外力偶矩的计算 扭矩和扭矩图
10
3.3 薄壁圆筒的扭转 纯剪切
一. 薄壁筒扭转实验
nm
t
实验观察 分析变形
x
r
nm l
mn没变 x = 0
x = 0
Me
nm
γ
Me
φ
x
r没变 = 0
= 0
nm
Me
nm
Mx
x
n m Mx
11
3.3 薄壁圆筒的扭转 纯剪切
Me Mx
nm
Mx
n m Mx
由于轴为薄壁,所以认
为 沿t 均布.即 =C
max
M x max Wp
31.5 103 m
M x max d 3
16
材料力学第四版课件 第三章 扭转

2
例1:图示空心圆轴外径D=100mm,内径 图示空心圆轴外径D=100mm,内径 d=80mm, M1=6kN·m, M2=4kN·m, 材料的切变 =6kN· 模量 G=80GPa. (1) 试画轴的扭矩图; 试画轴的扭矩图; (2) 求轴的最大切应力,并指出其位置. 求轴的最大切应力,并指出其位置.
平面假设:圆轴扭转后各横截面仍保持为平面, 平面假设:圆轴扭转后各横截面仍保持为平面, 各横截面如同刚性平面仅绕轴线作相对转动。 各横截面如同刚性平面仅绕轴线作相对转动。
横截面上无σ 1)横截面上无σ 2)横截面上只有τ
F O1 a d dφ d1 dx O2
dd1 ρdφ γ ρ ≈ tanγ ρ = = ad dx
4
πd
3 0
(
)
16T ∴d0 ≥ 3 = 76.3mm 4 π (1−α )[τ ]
取 d0 = 76.3mm、 、 (3)比较空心轴与实心轴的重量 比较空心轴与实心轴的重量 积之比: 二者重量之比等于横截面 积之比:
π (d − di ) 4 = 0.395 β= 2 4 πd
2 0 2
可见空心轴比实心轴的重量轻 可见空心轴比实心轴的重量轻
任一点处的切应变 切应变与到 距圆心为 ρ 任一点处的切应变与到 成正比。 圆心的距离ρ成正比。
2. 物理方面
dφ γρ = ρ dx
dφ τ ρ = Gρ dx
3. 静力学方面
dφ 2 T = ∫ ρτ ρ dA = G ∫ ρ dA dx A A
Ip = ∫ ρ dA 称为极惯性矩
2 A
ρ
dA
MB
1
MC
MA
2 2
A
3
MD
例1:图示空心圆轴外径D=100mm,内径 图示空心圆轴外径D=100mm,内径 d=80mm, M1=6kN·m, M2=4kN·m, 材料的切变 =6kN· 模量 G=80GPa. (1) 试画轴的扭矩图; 试画轴的扭矩图; (2) 求轴的最大切应力,并指出其位置. 求轴的最大切应力,并指出其位置.
平面假设:圆轴扭转后各横截面仍保持为平面, 平面假设:圆轴扭转后各横截面仍保持为平面, 各横截面如同刚性平面仅绕轴线作相对转动。 各横截面如同刚性平面仅绕轴线作相对转动。
横截面上无σ 1)横截面上无σ 2)横截面上只有τ
F O1 a d dφ d1 dx O2
dd1 ρdφ γ ρ ≈ tanγ ρ = = ad dx
4
πd
3 0
(
)
16T ∴d0 ≥ 3 = 76.3mm 4 π (1−α )[τ ]
取 d0 = 76.3mm、 、 (3)比较空心轴与实心轴的重量 比较空心轴与实心轴的重量 积之比: 二者重量之比等于横截面 积之比:
π (d − di ) 4 = 0.395 β= 2 4 πd
2 0 2
可见空心轴比实心轴的重量轻 可见空心轴比实心轴的重量轻
任一点处的切应变 切应变与到 距圆心为 ρ 任一点处的切应变与到 成正比。 圆心的距离ρ成正比。
2. 物理方面
dφ γρ = ρ dx
dφ τ ρ = Gρ dx
3. 静力学方面
dφ 2 T = ∫ ρτ ρ dA = G ∫ ρ dA dx A A
Ip = ∫ ρ dA 称为极惯性矩
2 A
ρ
dA
MB
1
MC
MA
2 2
A
3
MD
材料力学-扭转1ppt课件

横截面上 —
max
T IP
max
IP
T
max
T WP
Ip—截面的极惯性矩,单位:m4 , mm 4
WP
Ip
max
WP —抗扭截面模量,单位:m3, mm3.
整个圆轴上——等直杆:
max
Tm a x WP
三、公式的使用条件: 1、等直的圆轴, 2、弹性范围内工作。
30
四、圆截面的极惯性矩 Ip 和抗扭截面系数Wp
d
dx
d / dx-扭转角变化率
二)物理关系:
弹性范围内 max P
G → G
G
d
dx
方向垂直于半径。
28
三)静力关系:
T A dA
T A dA
G d 2dA dx A
I p
2dA
A
Ip
横截面对形心的极惯性矩
T
GI p
d
dxp
29
二、圆轴中τmax的确定
结论:
横截面上 0, 0 0 0
根据对称性可知剪应力沿圆周均匀分布;
t D, 可认为剪应力沿壁厚均匀分布,
且方向垂直于其半径方向。
t
D
20
3、剪应力的计算公式:
T
AdA.r0
2 0
r0
2td
r02t2
d
T
2r0 2t
薄壁圆筒横截面上的剪应力计算式
21
二、关于剪应力的若干重要性质
例题: 1、一传动轴作200r/min的匀速转动,轴上装有五个轮子。 主动轮2输入的功率为60kW,从动轮1、3、4、5依次输出的 功率为18kW、12kW、22kW和8kW。试作出该轴的扭矩图。
材料力学第3章扭转

试问:纵向截面里的切应力是由什么内力平衡的?
§3.8 薄壁杆件的自由扭转
薄壁杆件:杆件的壁厚远小于截面的其它尺寸。 开口薄壁杆件:杆件的截面中线是不封闭的折线或曲
线,例如:工字钢、槽钢等。 闭口薄壁杆件:杆件的截面中线是封闭的折线或曲线,
例如:封闭的异型钢管。
一、开口薄壁杆的自由扭转
= Tl
GI t
变形特点:截面发生绕杆轴线的相对转动 本章主要研究圆截面等直杆的扭转
§3.2 外力偶矩的计算 扭矩和扭矩图
功率: P(kW) 角速度:ω 外力偶矩:Me
P = Meω
转速:n(r/min)
2n/ 60
Me
1000 P=9549
P n
(N
m)
内力偶矩:扭矩 T 求法:截面法
符号规则: 右手螺旋法则 与外法线同向“ + ” 与外法线反向“-”
max
T max
It
It
1 3
hi
3 i
二、闭口薄壁杆的自由扭转
max
T
2 min
TlS
4G 2
其中:ω截面为中线所围的面积
S 截面为中线的长度
闭口薄壁杆的应力分布:
例: 截面为圆环形的开口和闭口薄壁杆件如图所 示,设两杆具有相同平均半径 r 和壁厚δ,试 比较两者的扭转强度和刚度。
开=3 r 闭 开=3( r )2 闭
8FD3n Gd 4
C
ห้องสมุดไป่ตู้
Gd 4 8D3n
F C
§3.7 矩形截面杆扭转的概念
1) 翘曲
变形后杆的横截面不再保持为平面的现象。
2) 自由扭转和约束扭转
自由扭转:翘曲不受限制的扭转。 各截面翘曲程度相同,纵向纤维无伸缩, 所以,无正应力,仅有切应力。
材料力学课件:扭转

B
D
C
12 3
A P
Page4
§3-6 热应力与预应力
扭转
§4-1 引言 §4-2 圆轴扭转应力
Page5
§3-6 热应力与预应力
lT=ll T
B
C
A A’
变形不受限制(静定结构),杆内未引起应力
Page6
B lT=ll T
CB
C
A’
A
A
变形受到限制(静不定结构),杆内引起应力
热应力:因温度的变化在杆件内部引起的应力 预应力:由于实际尺寸的误差在杆件内部引起的应力
各
截面的扭矩。
Page20
扭矩图:外扭力矩随杆轴线变化的情况。
M 3ml
m
x
A
B
C
D
l
l/2 l/2
T1 ( x)
x
T ml
x
2ml
例:(m:单位长度的扭力偶矩)
AB段: T1 x mx
BC段: T2 ml CD段: T3 2ml
Page21
思考:
M
M’
M’
M
(1)
M’
(2)
M’
(3)
FN3
FN1
FN2
Page9
3
1
2
3
1
2
协调方程:
l3+ l1/cos()=
l3
FN3
FN1
FN2
Page10
➢ 装配应力在工程结构中的应用
1 23
P
在准确加工、装配的情况下,2杆 的应力最大。
如果能使3根杆同时达到许用应力, 将对结构更有利。
FN1 [1 ]A FN 2 [ 2 ]A FN 3 [ 3 ]A
材料力学-第4章 扭转 ppt课件

dA
T
O
dA
23
材料力学-第4章 扭转
圆轴扭转横截面上的应力
A dA T
代入:
G
G
d dx
得到:
G d 2dA T dx A
记: IP -2dA称为圆截面的极惯性矩
A
则:圆轴扭转角的变化率 d T
dx GIP
圆截面切应力
采用右手螺旋法则,如果用四指表示扭矩的转向, 拇指的指向与截面的外法线n的方向相同时,该扭矩为 正;反之,规定扭矩为负
正扭矩
负扭矩
——保证了无论从哪一段计算,扭矩的大小和符号 都相同
12
材料力学-第4章 扭转
扭力偶矩计算与扭矩
讨论:如图受扭圆轴,m-m截面上扭矩为多少?
Me
m
2M e
m m
T Me
17
材料力学-第4章 扭转
圆轴扭转横截面上的应力
几何变形:
1. 横截面绕圆轴的轴线转动
?
主要
2. 圆轴中段的横截面缩小 几何变形特征
有剪切应变 rz 次要
3. 圆轴的长度略有增长
有轴向应变 z 次要
– 变形后,横截面仍保持为平面,其形状和大小均不
改变,半径仍为直线
– 变形后,相邻横截面的间距保持不变,相邻横截面 绕圆轴轴线转动一定的角度
外力偶矩的计算
• 工程中的传动轴,通常给出传动轴所传递的功率和转 速,而不直接给出外力偶矩的数值
• 设外力偶矩为Me,传动轴的功率为P,角速度为w,则
有(理论力学)
Me
P
w
外力偶矩Me 单位:N·m (牛顿·米) 功率为P 单位:J (焦耳)
材料力学扭转教学课件PPT

200 kW。试做轴力图。
(a)
P2
P3
P1
n
P4
B
C
D
A
例题3-2图
m P2 2
m P3 3
P1
m1
m n
4 P4
B
C
D
A
m2
m3
m1
m4
(b)
B
C
A
D
解:1.计算外力偶矩
m1
m2
9.55 P1 15.9kN .m
m3
n
9.55
P2
n
4.78kN
.m
m4
9.55 P4 n
6.37kN .m
2.由计算简图用截面法计算各段轴内的扭矩,然后画扭矩图
§3.1 扭转的概念和实例
➢ 扭转变形 ——作用在垂直于杆件轴线的平面内 的力偶矩,使得杆件的任意两个 横截面都发生了绕轴线的相对转 动。
➢ 扭转变形杆件的内力 ——扭矩(T )
➢ 轴 ——主要承受扭矩的构件
m A'
g
A
m B j B'
扭转的受力特征 :在杆件的两端作用两个大小相等、
转向相反、且作用平面垂直于杆件轴线的力偶。
dA
O r
dA
dA
O
A
G 2
dj
dx
dA
G
dj
dx
A
2dA
T
GI p
dj
dx
令 Ip A 2dA
dj
dx
T GI p
代入物理关系式
G
dj
dx
得:
T
Ip
T
Ip
—横截面上距圆心为处任一点剪应力计算公式。
(a)
P2
P3
P1
n
P4
B
C
D
A
例题3-2图
m P2 2
m P3 3
P1
m1
m n
4 P4
B
C
D
A
m2
m3
m1
m4
(b)
B
C
A
D
解:1.计算外力偶矩
m1
m2
9.55 P1 15.9kN .m
m3
n
9.55
P2
n
4.78kN
.m
m4
9.55 P4 n
6.37kN .m
2.由计算简图用截面法计算各段轴内的扭矩,然后画扭矩图
§3.1 扭转的概念和实例
➢ 扭转变形 ——作用在垂直于杆件轴线的平面内 的力偶矩,使得杆件的任意两个 横截面都发生了绕轴线的相对转 动。
➢ 扭转变形杆件的内力 ——扭矩(T )
➢ 轴 ——主要承受扭矩的构件
m A'
g
A
m B j B'
扭转的受力特征 :在杆件的两端作用两个大小相等、
转向相反、且作用平面垂直于杆件轴线的力偶。
dA
O r
dA
dA
O
A
G 2
dj
dx
dA
G
dj
dx
A
2dA
T
GI p
dj
dx
令 Ip A 2dA
dj
dx
T GI p
代入物理关系式
G
dj
dx
得:
T
Ip
T
Ip
—横截面上距圆心为处任一点剪应力计算公式。
材料力学 剪切和扭转.

§3–2 连接接头的强度计算
(合力) P 1、连接处破坏三种形式: ①剪切破坏
n
n
P (合力) 剪切面 n
沿铆钉的剪切面剪断,如
沿n– n面剪断 。 ②挤压破坏 铆钉与钢板在相互接触面 上因挤压而使溃压连接松动,
FS n
P
发生破坏。
③拉伸破坏
钢板在受铆钉孔削弱的截面处,应力增大,易在连接处拉断。
2、剪切的实用计算
此杆安全。
[例6]木榫接头如图所示,宽b=20cm,材料[]=1MPa, [bs]=10MPa。受拉力P=40kN作用,试设计尺寸a 、h 。 F F
a
h
剪切面
Fbs
挤压面
F
解: 剪切面面积:As
ab bh
Abs 挤压面面积:
a
h
剪切面
Fbs
挤压面
F
取接头右边,受力如图。
Fs Fbs F
P=40KN,试求接头的剪应力和挤压应力。 h P a 解::受力分析如图∶ P
FS Fbs P 挤压面和挤压力为:
P :剪应力和挤压应力
剪切面和剪力为∶
P b
c
As
Abs
P P
FS P 40 107 0.952MPa AS bh 12 35
Pbs P 40 bs 107 7.4MPa Abs cb 4.5 12
度条件。
P
t
d
t
P
多铆钉连接件,为计算方便,各铆钉受力可视作相同。
上板受力图
F/4 F/4 F/4
F/4
3F/4
F
F
上板轴力图
铆钉受力图
F/4
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P
解:受力分析如图
Fs
Fbs
P 4
P 123
P
P
d
P/4 123
切应力和挤压应力的强度条件
A F Q sP d 2 3 .1 4 1 1 0 1 .6 2 1 0 7 1 3 6 .8 M P a b s F A b b s s 4 P td 4 1 1 1 0 1 .6 1 0 7 1 7 1 .9 M P a b s
dx z
在物体上取一微小六面体,称之为单元 体。
x
X 0
dz
y
(dx
dz)
' y
(dx
dz)
0
y
y
' y
x’ y’
x Y 0
x (dydz)'x (dydz) 0 x 'x
y
dx
x’
x
dy
切应力互等定理:二个相互垂直的截面上, 切应力成对出现。大小相等方向相反,都垂 直于两平面的交线。
y’
dz
(合力) P
n
FS n
n
P (合力)
③剪切面: 构件将发生相互的错动面,如n– n 。
④剪切面上的内力: 内力 — 剪力FS ,其作用线与剪切面平行。
剪切面
n P
3、连接处破坏的形式
(1)剪切破坏 沿铆钉的剪切面剪断,如沿1-1面剪断。
P
n
n
P
1
1
(2)挤压破坏
c
d
铆钉和钢板在相互接触面上因挤压而使接触的 局部区域内产生显著塑性变形,或发生破坏。如ab
,cd接触面。
a
b
(3)拉伸破坏 钢板因铆钉连接,在铆钉孔处截面受到削弱,应力增大,易在连接处被拉断。
二、剪切的实用计算
实用计算方法:根据构件的破坏可能性,采用能反映受力基本特征,并简化计算的假设,计 算其名义应力,然后根据直接试验的结果,确定其相应的许用应力,以进行强度计算。 适用:构件体积不大,真实应力相当复杂情况,如连接件等。
钢板的2--2和3--3面为危险面
2 4 t(b 3 P 2 d ) 4 (8 3 .5 1 2 1 1 .6 ) 0 17 0 1.7 5 M 5 P a
3t(bP d)1 (8 1 .5 1 1 .6 )0 17 01.5 4 M 9P a 综上,接头安全。 123
P
P
P
t t
三、挤压的实用计算
挤压:构件局部面积的承压现象。 挤压力:在接触面上的压力,记Fbs 。
1、挤压力―Fbs :接触面上的合力。
假设:挤压应力在有效挤压面上均匀分布。
2、挤压面积:接触面在垂直Fbs方向上的投影面的面积。
挤压面积 Abs dt
3、挤压强度条件(准则): 工作挤压应力不得超过材料的许用挤压应力。
P
P
可拆卸。
P P
铆钉
无间隙
特点:可传递一般力,不可拆卸。如桥梁桁架结点处用它连接。
m m
齿轮 键
轴 特点:传递扭矩。
2、受力特点和变形特点:
以铆钉为例:
(合力) P
n
①受力特点: 构件受两组大小相等、方向相反、作用线相距
很近(差一个几何平面)的平行力系作用。
n
P (合力)
②变形特点: 构件沿两组平行力系的交界面发生相对错动。
P
P
切应力和挤压应力
b
AQ
A jy
F s P 40 1070.952M Pa
A Q bh 1235
P
P
bsF A b bsscP b4.5 4 0121077.4M Pa
[例] 齿轮与轴由平键(b×h×L=20 ×12 ×100)连接,它传递的扭矩m=2KNm,轴的直径 d=70mm,键的许用剪应力为[]= 60M Pa ,许用挤压应力为[jy]= 100M Pa,试校核键的强度。
d
P/4 123
第十四章 扭转
§14-1 概述 §14-2 外力偶矩、扭矩和扭矩图 §14-3 圆轴扭转时的应力与强度条件 §14-4 圆轴扭转时的变形与刚度条件
概述
轴:工程中以扭转为主要变形的构件。如:机器中的传动轴、 石油钻机中的钻杆等。
实用计算假设:假设切应力在整个剪切面上均匀分布,等于剪切面上的平均应力。
(合力) P
n
FS
n
1、剪切面--A : 错动面。 剪力—FS: 剪切面上的内力。
n
P (合力)
剪切面 n P
2、名义切应力--:
FS A
3、剪切强度条件(准则):
FS
A
其中: jx
n
工作应力不得超过材料的许用应力。
[例] 一铆接头如图所示,受力P=110kN,已知钢板厚度为 t=1cm,宽度 b=8.5cm ,许用应力为 [ ]= 160M Pa ;铆钉的直径d=1.6cm,许用切应力为[]= 140M Pa ,许用挤压应力为[jy]= 320M Pa,试校核铆接头的强度。(假定每个铆钉受力相等。)
t
b
t
P
第十三章 剪切
§13-1 剪切的概念 §13-2 剪切和挤压的实用计算 §13-3 切应力互等定理和剪切胡克定理
剪应力的产生
连接件的剪切 一、连接件的受力特点和变形特点:
1、连接件
在构件连接处起连接作用的部件,称为连接件。例如:螺栓、铆钉、键等。连接件虽 小,却起着传递载荷的作用。
螺栓
特点:可传递一般 力,
z
MZ 0
x (dydz)dxy (dxdz)dy0
x y
当单元体上同时存在切应力和正应力时,切应力 互等定理是否成立?为什么?
剪应变 剪切胡克定律
1. 剪应变
直角的改变量
A
C
A
C
B
D
B
D
F
F 剪切面
2.剪切虎克定律
A C
c
B
D
D
且 单位:Mpa、Gpa.
实验证明:当切应力不超过
பைடு நூலகம்
材料的比例极限
应力 与剪应变
bs
Fbs Abs
bs
四、应用
1 、 校 核 强 度 : [] ; b s [b s ]
2、 设 计 尺 寸 : A Q[F s]; A bs[F b bs s]
3 、 设 计 外 载 : F s A Q [] ; F b s A b s [b s ]
y 切应力互等定律
dy
解:键的受力分析如图
m
h 2
P2m2257kN d 0.07
P m
b d
h
P
L
剪应力和挤压应力的强度校核
QPjy P
QP5 71302.6 8M Pa
A Q bL2 0100
jyA P jjy yLh P25 1 7 0 1 6 30 0 9.3 5 M P ja y
Q
h L b
m d
综上,键满足强度要求。
即
时,剪
成正比。p
G
其中G是材料的剪切弹性模量。
G E
2(1 )
[例] 木榫接头如图所示,a = b =12cm,h=35cm,c=4.5cm, P=40KN,试求接头的切应力和挤压应力。
hh
解: 受力分析如图∶
P
a
c
P
剪切面和剪力为∶
AQbh; Fs P
挤压面和挤压力为: Abs cb; Fbs P