线面垂直的定义和判定

合集下载

高一数学必修2线、面垂直的判定与性质

高一数学必修2线、面垂直的判定与性质

α β a A 线、面垂直的判定与性质一、线、面垂直的判定与性质1.线面垂直的定义:如果直线 l 与平面α内的任意一条直线都垂直,我们说直线 l 与平面α 互相垂直.2.线面垂直的判定:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直. 直线与平面垂直3.(1)的射影所成的角(2)(3一条直线与平面所成的角的取值范围是 4.二面角相关概念:以二面角的棱上任意一点为顶点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角. ∠AOB即为二面角α-AB-β的平面角注意:二面角的平面角必须满足:(1)角的顶点在棱上.(2)角的两边分别在两个面内. (3)角的边都要垂直于二面角的棱.二面角的取值范围 5.面面垂直的定义:一般地,两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.记为β⊥α6.判定定理:如果一个平面经过另一个平面的垂线,则这两个平面垂直.7.直线与平面垂直的性质定理:垂直于同一个平面的两条直线平行8.面面垂直的性质定理:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直. 面面垂直⇒线面垂直α⊥l 记为⇒⎪⎪⎭⎪⎪⎬⎫l a l ⊥b l ⊥α⊂a α⊂b A b a = ]90,0[0[]]0[180,000π,或a β⊂a α⊥面⇒βα⊥//a a b b αα⊥⎫⇒⎬⊥⎭a b αa bl a a l αβαββ⊥⎫⎪=⎪⎬⊂⎪⎪⊥⎭a α⇒⊥二、例题解析题型一、判断问题例1、直线l与平面α内的无数条直线垂直,则直线l与平面α的关系是()A.l和平面α相互平行B.l和平面α相互垂直C.l在平面α内D.不能确定变式:如果一条直线垂直于一个平面内的:①三角形的两边;②梯形的两边;③圆的两条直径;④正六边形的两条边.则能保证该直线与平面垂直()A.①③B.①②C.②④D.①④例2、已知直线a∥平面α,a⊥平面β,则( )A.α⊥βB.α∥βC.α与β不垂直D.以上都有可能变式:下列命题中错误的是( )A.如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βB.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βC.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥平面γD.如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β例3、已知b⊥平面α,a⊂α,则直线a 与直线b 的位置关系是( )A.a∥b B.a⊥b C.直线a 与直线b 垂直相交D.直线a 与直线b 垂直且异面变式1:下面四个命题,其中真命题的个数为( )①如果直线l 与平面α内的无数条直线垂直,则l⊥α;②如果直线l 与平面α内的一条直线垂直,则l⊥α;③如果直线l 与平面α不垂直,则直线l 和平面α内的所有直线都不垂直;④如果直线l 与平面α不垂直,则平面α内也可以有无数条直线与直线l 垂直.A.1 个B.2 个C.3 个D.4 个变式2:已知平面α⊥平面β,则下列命题正确的个数是()①α内的直线必垂直于β内的无数条直线;②在β内垂直于α与β的交线的直线必垂直于α内的任意一条直线;③α内的任何一条直线必垂直于β;④过β内的任意一点作α与β交线的垂线,则这条直线必垂直于α. A.4 B.3C.2D.1题型二:求角问题(线面角、面面角)例1、在正方体ABCD-A1B1C1D1中,(1)求直线A1C与平面ABCD所成的角的正切值.(2)求直线A1B与平面BDD1B1所成的角.变式:如图所示,Rt△BMC中,斜边BM=5且它在平面ABC上的射影AB长为4,∠MBC=60°,求MC与平面ABC所成角的正弦值.例2、在长方体ABCD -A 1B 1C 1D 1中,二面角A -BC -A 1的平面角是( )A .∠ABCB .∠ABB 1C .∠ABA 1D .∠ABC 1变式:如图所示,在四棱锥P -ABCD 中,底面ABCD 为平行四边形,P A ⊥平面ABCD ,且P A =3,AB =1,BC =2,AC =3,求二面角P -CD -B 的大小.题型三:证明问题例1、如图,在三棱锥 A-BCD 中,AD ,BC ,CD 两两互相垂直,M ,N分别为 AB ,AC 的中点.(1)求证:BC ∥平面 MND ;(2)求证:平面 MND ⊥平面 ACD .变式: 如图,四棱锥P-ABCD 的底面是矩形,AB=2,,侧面PAB 是等边三角形,且侧面PAB ⊥底面ABCD. (1)证明:侧面PAB ⊥侧面PBC ;(2)求侧棱PC 与底面ABCD 所成的角.BC A B C D P三、巩固练习1.在三棱锥V -ABC 中,VA =VC ,AB =BC ,则下列结论一定成立的是( )A .VA ⊥BCB .AB ⊥VCC .VB ⊥ACD .VA ⊥VB2.若A ∈α,B ∈α,A ∈l ,B ∈l ,P ∈l ,则( )A .P ⊂αB .P αC .l αD .P ∈α3.一条直线若同时平行于两个相交平面,则这条直线与这两个平面的交线的位置关系是( )A .异面B .相交C .平行D .不能确定4.如图,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AA 1=1,则BC 1与平面BB 1D 1D 所成角的正弦值为( )A.63B.2 65C.155D.1055.设x ,y ,z 是空间不同的直线或平面,对下列四种情形:①x ,y ,z 均为直线;②x ,y 是直线,z 是平面;③z 是直线,x ,y 是平面;④x ,y ,z 均为平面.其中使“x ⊥z ,且y ⊥z ⇒x ∥y ”为真命题的是( )A .③④B .①③C .②③D .①②6.如图,正方体ABCD -A 1B 1C 1D 1中,异面直线BD 1与A 1D 所成的角等于__________.7如图,已知正方体ABCD -A 1B 1C 1D 1,则二面角C 1-BD -C 的正切值为________.8.如图,在边长为1的等边三角形ABC 中,D ,E 分别是AB ,AC 边上的点,AD =AE ,F 是BC 的中点,AF 与DE 交于点G ,将△ABF 沿AF 折起,得到如图所示的三棱锥A -BCF ,其中BC =22. (1)证明:DE ∥平面BCF ;(2)证明:CF ⊥平面ABF ;(3)当AD =23时,求三棱锥F -DEG 的体积V F -DEG .。

2.3线面垂直面面垂直的判定

2.3线面垂直面面垂直的判定

2.3线面垂直、面面垂直的判定知识点:1.定义:如果直线l 与平面α内任意一条直线都垂直,我们就说直线l 与平面α互相垂直,记α⊥l .直线l 叫做平面α的垂线, 平面α叫做直线l 的垂面. 2.线面垂直的判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直 符合表示:3.面面垂直的判定定理:一个平面过另一个平面的垂线,则这两个屏幕垂直. 符合表示: 例题解析:例1. 已知a ∥b,a ⊥α,求证: α⊥b .练习1:)(,,,则下列命题正确的是是一个平面是两条不同的直线设αm l,.B ,,.A ααα⊥⊥⊂⊥l l m m l 若则若l ∥m,则α⊥mC.若l ∥α,α⊂m ,则l ∥mD. 若l ∥α,若m ∥α,则若l ∥m , 例2:如图,在三棱锥V-ABC 中,VA=VC,AB=BC,求证:VB AC ⊥练习2: .在正四面体P-ABC 中,E 是BC 的中点,求证:平面PAE ⊥平面ABC例3.如图,在∆ABC 中,ABC ,AC ,90ABC 0∆=∠是的中点为S D 所在平面外一点,且 SA=SB=SC. (1)求证:SD ⊥平面ABC; (2)若AB=BC,求证:BD ⊥平面SAC练习3:过∆ABC 所在平面α外一点P,作PO α⊥,垂足为O,连接PA,PB,PC (1)若PA=PB=PC,则点O 为∆ABC 的 心(2)AB C O ,,,∆⊥⊥⊥为则若PA PC PC PB PB PA 的心巩固练习一.选择题1.在一个平面内,和这个平面的一条斜线垂直的直线有A.无数条 B.2条 C.1条 D.0条2.a与直线b垂直,b又垂直于平面α,则a与α的位置关系是( )A. a⊥αB. a∥αC. a⊂αD. a⊂α或a∥α3.直线a与直线b垂直,a平行于平面α,则b与α的位置关系是( )A.b∥αB.b⊂αC.b与α相交D.不确定4.菱形ABCD在平面α内,PC⊥α,则PA与对角线BD的位置关系是()(A)平行(B)斜交(C)垂直相交(D)异面垂直5.若平面α⊥平面β,直线nα⊂,直线m⊂β,m⊥n,则()A.n⊥βB.n⊥β且m⊥αC.m⊥αD.n⊥β与m⊥α中至少有一个成立6.若直线l、m与平面α、β、γ满足:β∩γ=l,l∥α,mα⊂,m⊥γ,则有()A.α⊥γ,l⊥m B.α⊥γ,m∥βC.m∥β,l⊥m D.α∥β,α⊥γ二.填空题7.已知a,b为不垂直的异面直线,α是一个平面,①两条平行直线;②两条相互垂直的直线;③同一条直线;④一条直线及其外一点. 则a,b在上的射影有可能是8. 如图,BC是Rt△ABC的斜边,AP⊥平面ABC,则图中共有直角三角形个.三.解答题9. 如图,已知AP⊥⊙O所在平面,AB为⊙O的直径,C是圆周上的任意一点,过A作AE ⊥PC 于点E.求证:AE⊥平面PBC.10.已知△ABC 中,∠ABC=90°,SA ⊥平面ABC ,AD ⊥SB 于D.求证:AD ⊥平面SBC.11、如图,在正方体ABCD -A 1B 1C 1D 1中, 求证:平面A 1BD ⊥平面A 1C 1CA .12.如图,已知四棱锥S-ABCD,底面ABCD 为正方形,SA ,AB CD 平面⊥平面AEFG SC ⊥,分别交SB/SC/SD 于E 、F 、G,求证:SB ⊥AEABCDA 1B 1C 1D1。

直线与平面垂直的定义及判定

直线与平面垂直的定义及判定

⑵过一点有且只有一条直线与已知平面垂直. ⑶过一点有且只有一个平面与已知直线垂直.
直线与平面垂直的定义:
如果直线 l 与平面内的任意一条直线都 垂直,则称直线 l 和平面互相垂直. 记作:l⊥
思考: 如果 l⊥ , ,那么 l a 吗? a
l P α
探究1: 如果直线 l 与平面内的一条直线垂直, 则直线 l 和平面 互相垂直?
证明:∵a⊥AC,a⊥BC,AC∩BC=C. ∴a⊥面ABC. ∵AB⊂面ABC,
A C B
a
∴a⊥AB. 思考:此例为”线线垂直”的判断提供了一种什么方法?
例2.如图,已知:α ∩β =l ,PA⊥α 于Α ,PB⊥β于
B,AQ⊥l于Q,求证:BQ⊥l . 提示:
Байду номын сангаас
欲证BQ⊥l ⇔l⊥平面BPQ
⇔ l⊥PQ ⇔l⊥平面PAQ
a
b
α
探究2: 如果直线 l 与平面内的两条直线垂直, 则直线 l 和平面 互相垂直? 如果两条直线平行 如果两条直线相交
a
b
α
直线与平面垂直 那平面内的两条直线相交时又是什么情况呢?
A A 如图,准备一块三角形的纸片,做一个试验: A
l
C
A
D

B B
D D
P
C C
C
B B
D
当且仅当折痕 AD 是 BC 边上的高时,AD所在直 过 ABC 的顶点A翻折纸片,得到折痕AD,将翻 线与桌面所在平面 垂直. 折后的纸片竖起放置在桌面上(BD,DC于桌面接触)
实例引入
生活中有很多直线与平面垂直的实例,你能举出 几个吗?
大桥的桥柱与水面垂直

直线、平面垂直的判定及其性质

直线、平面垂直的判定及其性质

2.3 直线、平面垂直的判定及其性质线面垂直→线线垂直:如果一条直线a与一个平面α内的任意一条直线都垂直,我们就说直线a垂直于平面α。

【线面垂直定义】线线垂直→线面垂直:如果一条直线和一个平面内的两条相交直线垂直,那么这条直线垂直于这个平面。

【判定】线面垂直→线线平行:如果两条直线同时垂直于一个平面,那么这两条直线平行。

【性质】线面垂直→面面垂直:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。

【判定】面面垂直→线面垂直:如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。

【性质】三垂线定理:在平面内的一条直线,如果和穿过这个平面的一条斜线在这个平面内的射影垂直,那么它也和这条斜线垂直。

一、选择题1.给定空间中的直线l及平面α,条件“直线l与平面α内两条相交直线都垂直”是“直线l与平面α垂直”的( )A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件【解析】直线l与平面α内两条相交直线都垂直,是线面垂直判定定理的条件,故为充要条件.【答案】 C2.空间四边形ABCD中,若AB=BC,AD=CD,E为对角线AC的中点,下列判断正确的是( ) A.面ABD⊥面BDC B.面ABC⊥面ABDC.面ABC⊥面ADC D.面ABC⊥面BED【解析】在等腰三角形ABC、ADC中,E为底边AC的中点,则BE⊥AC,DE⊥AC.又∵BE∩DE=E,∴AC⊥面BDE,故面ABC⊥面BDE,面ADC⊥面BDE.【答案】 D3.对两条不相交的空间直线a和b,必定存在平面α,使得 ( )A.a⊂α,b⊂α B.a⊂α,b∥αC.a⊥α,b⊥α D.a⊂α,b⊥α【解析】当a,b异面时,A不成立;当a,b不平行时,C不成立;当a,b不垂直时,D不成立.故选B.【答案】 B4.设直线m与平面α相交但不垂直,则下列说法中正确的是( )A.在平面α内有且只有一条直线与直线m垂直B.过直线m有且只有一个平面与平面α垂直C.与直线m垂直的直线不可能与平面α平行D.与直线m平行的平面不可能与平面α垂直【解析】在平面α内有无数条彼此平行的直线与直线m垂直,与直线m垂直的直线可能与平面α平行,与直线m平行的平面可能与平面α垂直.故A,C,D错误.【答案】 B5.设a,b,c是空间三条直线,α,β是空间两个平面,则下列命题中,逆命题不成立...的是( )A.当c⊥α时,若c⊥β,则α∥βB.当b⊂α,且c是a在α内的射影时,若b⊥c,则a⊥bC.当b⊂α时,若b⊥β,则α⊥βD.当b⊂α,且c⊄α时,若c∥α,则b∥c【解析】α⊥β,b⊂α,b不一定垂直于β.故C错误.【答案】 C6.命题p:若平面α⊥β,平面β⊥γ,则必有α∥γ;命题q:若平面α上不共线的三点到平面β的距离相等,则必有α∥β.对以上两个命题,下列结论中正确的是( ) A.命题“p且q”为真 B.命题“p或綈q”为假C.命题“p或q”为假 D.命题“綈p且綈q”为假【解析】命题p,命题q皆为假,所以命题C正确.【答案】 C7.如图,已知△ABC 为直角三角形,其中∠ACB =90°,M 为AB 的中点,PM 垂直于△ABC 所在的平面,那么( )A .PA =PB >PCB .PA =PB <PCC .PA =PB =PCD .PA ≠PB ≠PC【解析】 ∵M 为AB 的中点,△ACB 为直角三角形,∴BM =AM =CM ,又PM ⊥平面ABC ,∴Rt △PMB ≌Rt △PMA ≌Rt △PMC ,故PA =PB =PC .【答案】 C二、填空题8.m 、n 是不同的直线,α、β、γ是不同的平面,有以下四个命题:①若α∥β,α∥γ,则β∥γ;②若α⊥β,m ∥α,则m ⊥β;③若m ⊥α,m ∥β,则α⊥β;④若m ∥n ,n ⊂α,则m ∥α.其中真命题的序号是________.【解析】 由平面平行的传递性知①正确,由面面垂直的判定定理知③正确.【答案】 ①③9.P 为△ABC 所在平面外一点,AC =2a ,连接PA 、PB 、PC ,得△PAB 和△PBC 都是边长为a 的等边三角形,则平面ABC 和平面PAC 的位置关系为________.【解析】如图所示,由题意知PA =PB =PC =AB =BC =a ,取AC 中点D ,连接PD 、BD ,则PD ⊥AC ,BD ⊥AC ,则∠BDP 为二面角P -AC -B 的平面角,又∵AC =2a ,∴PD =BD =22a , 在△PBD 中,PB 2=BD 2+PD 2,∴∠PDB =90°.【答案】 垂直10.(精选考题·四川高考)如图所示,二面角α-l -β的大小是60°,线段AB ⊂α,B ∈l ,AB 与l 所成的角为30°,则AB 与平面β所成的角的正弦值是________________________________________________________________________.【解析】 如图,过点A 作平面β的垂线,垂足为C ,在β内过C 作l 的垂线,垂足为D ,连接AD ,由线面垂直关系可知AD ⊥l ,故∠ADC 为二面角α-l -β的平面角,∴∠ADC =60°.连接CB ,则∠ABC 为AB 与平面β所成的角.设AD =2,则AC =3,CD =1,AB =AD sin30°=4,∴sin ∠ABC =AC AB =34. 【答案】34 三、解答题11.如图所示,在四棱锥P -ABCD 中,PA ⊥底面ABCD ,AB ⊥AD ,AC ⊥CD ,∠ABC =60°,PA =AB =BC ,E 是PC 的中点.求证:(1)CD ⊥AE ;(2)PD ⊥平面ABE .【证明】 (1)在四棱锥P -ABCD 中,∵PA ⊥底面ABCD ,CD ⊂平面ABCD ,∴PA ⊥CD .∵AC ⊥CD ,PA ∩AC =A ,∴CD ⊥平面PAC .而AE ⊂平面PAC ,∴CD ⊥AE .(2)由PA =AB =BC, ∠ABC =60°,可得AC =PA .∵E 是PC 的中点,∴AE ⊥PC .由(1)知,AE ⊥CD ,且PC ∩CD =C ,∴AE ⊥平面PCD ,而PD ⊂平面PCD ,∴AE ⊥PD .∵PA ⊥底面ABCD ,∴PA ⊥AB .又∵AB ⊥AD 且PA ∩AD =A ,∴AB ⊥平面PAD ,而PD ⊂平面PAD ,∴AB ⊥PD .又∵AB ∩AE =A ,∴PD ⊥平面ABE .12.如图,在四棱锥P -ABCD 中,PD ⊥平面ABCD ,PD =DC =BC =1,AB =2,AB ∥DC ,∠BCD =90°.(1)求证:PC ⊥BC ;(2)求点A 到平面PBC 的距离.【解析】 (1)证明:∵PD ⊥平面ABCD ,BC ⊂平面ABCD ,∴PD ⊥BC .由∠BCD =90°,得BC ⊥DC .又PD ∩DC =D ,∴BC ⊥平面PCD .∵PC ⊂平面PCD ,∴PC ⊥BC .(2)如图,连接AC .设点A 到平面PBC 的距离为h .∵AB ∥DC ,∠BCD =90°,∴∠ABC =90°.从而由AB =2,BC =1,得△ABC 的面积S △ABC =1.由PD ⊥平面ABCD 及PD =1,得三棱锥P -ABC 的体积V =13S △ABC ·PD =13.∵PD ⊥平面ABCD ,DC ⊂平面ABCD ,∴PD ⊥DC .又PD =DC =1,∴PC =PD 2+DC 2= 2.由PC ⊥BC ,BC =1,得△PBC 的面积S △PBC =22.由V =13S △PBC h =13×22h =13,得h = 2.因此点A 到平面PBC 的距离为 2.。

高中数学必修二4.线面垂直的性质及判定

高中数学必修二4.线面垂直的性质及判定

αO A B CαOAB授课内容 线面垂直的判定及性质教学内容知识梳理1 、线面垂直定义:如果一条直线和一个平面相交,并且和这个平面内的任意一条直线都垂直,我们就说这条直线和这个平面互相垂直其中直线叫做平面的垂线,平面叫做直线的垂面交点叫做垂足直线与平面垂直简称线面垂直,记作:a ⊥α2、直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面3 直线和平面垂直的性质定理:如果两条直线同垂直于一个平面,那麽这两条直线平行4、斜线,垂线,射影⑴垂线 自一点向平面引垂线,垂足叫这点在这个平面上的射影. 这个点和垂足间的线段叫做这点到这个平面的垂线段.⑵斜线 一条直线和一个平面相交,但不和这个平面垂直,这条直线叫做这个平面的斜线斜线和平面的交点叫斜足;斜线上一点与斜足间的线段叫这点到这个平面的斜线段⑶射影 过斜线上斜足外的一点向平面引垂线,过垂足和斜足的直线叫做斜线在这个平面内的射影垂足和斜足间线段叫这点到这个平面的斜线段在这个平面内的射影直线与平面平行,直线在平面由射影是一条直线直线与平面垂直射影是点斜线任一点在平面内的射影一定在斜线的射影上5.直线和平面所成角(1)定义:平面的一条斜线和它在平面上的射影所成的锐角叫做这条斜线和这个平面所成的角一直线垂直于平面,所成的角是直角一直线平行于平面或在平面内,所成角为0︒角。

直线和平面所成角范围: [0,2π](2)定理:斜线和平面所成角是这条斜线和平面内经过斜足的直线所成的一切角中最小的角【同步练习】1、下列命题中正确的个数是( )①如果直线l 与平面α内的无数条直线垂直,则α⊥l ; ②如果直线l 与平面α内的一条直线垂直,则α⊥l ;③如果直线l 不垂直于α,则α内也没有与l 垂直的直线; ④如果直线l 不垂直于α,则α内也有无数条直线与l 垂直。

A 、0 B 、1 C 、2 D 、32、若直线l ⊥平面α,直线α⊂m ,则( )A 、m l ⊥B 、l 可能和m 平行C 、l 和m 相交D 、l 和m 不相交3、直线a ⊥直线b ,b ⊥平面β,则a 与β的关系是( ) A 、β⊥a B 、a ∥β C 、β⊂a D 、β⊂a 或a ∥β4、给出下列四个命题:①若直线垂直于平面内的两条直线,则这条直线垂直于这个平面;②若直线与平面内的任意一条直线都垂直,则这条直线垂直于这个平面;③互相平行的两条直线,在同一个平面内的射影必然是互相平行的两条直线; ④过点P 有且仅有一条直线与异面直线l ,m 都垂直。

直线与平面垂直判定定理

直线与平面垂直判定定理
推理模式:
l m,l n m , n , m n B
l
两条相交直线 垂直两条交线
B

m
A
n
线线垂直
线面垂直

例1

求证:如果两条平行直线中的一条垂直 于一个平面,那么另一条也垂直于这个平面.
已知:a//b,a 可作定理使用 求证: b 证明:设m是内的任意一条直线
直线与平面垂直
直线和面垂直的定义
如果一条直线和一个平面相交,并且和这个平面 内的任意一条直线都垂直,我们就说这条直线和 这个平面垂直.其中直线叫做平面的垂线,平面叫 做直线的垂面.交点叫做垂足. 平面的垂线

A 垂足
直线的垂面
直线和平面垂直,记作
A
l
2、判定直线和平面垂直的方法 (1)根据定义 (最基本的方法)
a
m
Байду номын сангаас
b
a a m m b m

a // b
m
b

常用结论发散 练习 1.过一点只有一条直线和一个平面垂直. 结论 1.
结论 2. 练习 2.过一点只有一个平面和一条直线垂直.
结论 3. 练习 3.如果两直线垂直于同一个平面,那么这 两条直线平行.
如果一条直线和一个平面内的两条相交直线都 垂直,那么这条直线垂直于这个平面.
B

m
n
A
有以下几种情况:
已知:m , n , m n B l m,l n 求证:l
A

m
B
g
n
D
c
E
A’

线面垂直的判定


线面垂直的条件常这样使用
l
l
al
a
a
简记:线面垂直
Байду номын сангаас
线线垂直
直线和平面垂直的画法
l
P
α
注:画直线与水平平面垂直时;要把直线画 成和表示平面的平行四边形横边垂直
怎样判断线面垂直呢
问题
1 如果一条直线垂直于平面内的一条直线;能否 判断这条直线和这个平面垂直
2 如果一条直线垂直于平面内的两条直线;能否 判断这条直线和这个平面垂直
然后用你的这个条件来证明A’C⊥B’D’
2 如图在正方体AC1中; 求证:1AC⊥平面D1DB
2D1B⊥平面ACB1
D1 A1
D
C1 B1
C
A
B
满足什么条件时; A’C⊥B’D’
A'
D'
B' C'
A
D B
结论:
C
提示:为了求ABCD满足的条件;不妨把
当 A’四C⊥边B形’ADB’C看D的成两一条个对条角件线;互看相可垂以直求出什么
时 结;论A’C⊥B’D’
内容结构
线线垂直
线面垂直的定义 线面垂直
线面垂直的判定定理
小结: 1 入手指南:碰到证明线面垂直的问题;应转化为
p
线面垂直的定义:
P
如 果 直 线 l与 平 面 内 的 任 意 一 条 直 线 都 垂 直 , 我 们 就 说 直 线 l与 平 面 互 相 垂 直 , 记 作 l
直 线 l叫 做 平 面 的 垂 线 , 平 面 叫 做 直 线 l的 垂 面 .
直 线 与 平 面 垂 直 时 ,它 们 唯 一 的 公 共 点 P 叫 做 垂 足

垂线的定义和性质垂直的判定定理和性质定理垂线的画法步骤

一、垂线的性质性质1:过一点有且只有一条直线与已知直线垂直。

性质2:连结直线外一点与直线上各点的所有线段中,垂线段最短。

简称:垂线段最短。

二、垂线的定义:1.两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直。

其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

2.直线AB,CD互相垂直,记作“AB⊥CD”(或“CD⊥AB”),读作“AB 垂直于CD”(或“CD垂直于AB”)。

三、垂直的判定:垂线的定义。

四、垂线的画法1.画垂线有两种情况,一种是已知一条直线,过这个直线之外的一个点画这个直线的垂线;另一种情况是已知一条直线,过这个线上的某一点作这个直线的垂线。

这两种情况画垂线都需要用到工具,有直尺、直角三角尺还有笔。

2.第一种情况,首先把直尺放好,直尺的一条边要和已知的那条直线重合,然后把直角三角尺的其中一个直角边靠在直尺上,保持三角尺的另一个边和直尺垂直的情况下,慢慢移动直角三角尺,直到直线外的某一点和直尺三角尺的另一条边重合,最后沿着直角三角尺的另一条边过直线外的那一点画出来直线,这条直线就是那条已知直线的垂线。

3.第二种情况,也是要先把直尺作为一个标准放好,直尺的一条边要和已知的直线重合在一起,把直角三角形的一个直角边靠在直尺上,保持直尺不动,直角三角尺慢慢移动,直到直角三角尺的顶点和已知的那个点重合,沿着直角三角尺的另一条直角边过已知的点画一条直线,这条直线就是要画的垂线。

五、线线垂直的性质和判定定理如果一条直线和一个平面内的任何一条直线都垂直,那么就称这条直线和这个平面垂直。

线线垂直是指两条线是垂直关系,分为平面两直线垂直和空间两直线垂直两种。

平面两直线垂直:两直线垂直→斜率之积等于1;两直线斜率之积等于1→两直线垂直。

空间两直线垂直:所成角是直角,两直线垂直。

六、线面垂直的判定方法⑴定义(反证法);⑵判定定理:⑶b⊥α,a∥ba⊥α; (线面垂直性质定理)⑷α∥β,a⊥βa⊥α(面面平行性质定理);⑸α⊥β,α∩β=l,a⊥l,a β a⊥α(面面垂直性质定理)。

高中数学线面、面面垂直的判定与性质

线面、面面垂直的判定与性质知识回顾1.直线与平面垂直的判定(1)定义:如果直线l 与平面α内的任意一条直线都垂直,就说直线l 与平面α垂直,记作l ⊥α.(2)判定定理文字表述:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直.符号表述:⎭⎪⎬⎪⎫l ⊥a l ⊥b⇒l ⊥α. 2.直线与平面垂直的性质文字表述:垂直于同一个平面的两条直线平行。

符号表述:⎭⎪⎬⎪⎫a ⊥αb ⊥α⇒ a ∥b 3. 直线与平面所成的角定义:平面的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所成的角.4.平面与平面的垂直的判定(1)定义:如果两个平面相交,且它们所成的二面角是直角,就说这两个平面互相垂直.(2)面面垂直的判定定理文字语言:一个平面过另一个平面的垂线,则这两个平面垂直.符号表示:⎭⎪⎬⎪⎫a ⊥β⇒α⊥β. 5.平面与平面垂直的性质两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直. 用符号表示为:α⊥β,α∩β=l ,a ⊂α,a ⊥l ⇒a ⊥β. 6.二面角二面角:从一条直线出发的两个半平面所组成的图形叫做二面角.二面角的平面角:如图,在二面角α-l-β的棱l上任取一点O,在半平面α和β内分别作垂直于棱l的射线OA和OB,则∠AOB叫做二面角的平面角.题型讲解题型一例1、空间四边形ABCD的四边相等,则它的两对角线AC、BD的关系是()A.垂直且相交 B.相交但不一定垂直C.垂直但不相交 D.不垂直也不相交答案:C例2、如图所示,PA⊥平面ABC,△ABC中BC⊥AC,则图中直角三角形的个数为()A.4 B.3 C.2 D.1答案:A例3、如图所示,在正方体ABCD—A1B1C1D1中,E、F分别是棱B1C1、B1B的中点.求证:CF⊥平面EAB.证明在平面B1BCC1中,∵E、F分别是B1C1、B1B的中点,∴△BB1E≌△CBF,∴∠B1BE=∠BCF,∴∠BCF+∠EBC=90°,∴CF⊥BE,又AB⊥平面B1BCC1,CF⊂平面B1BCC1,∴AB⊥CF,AB∩BE=B,∴CF⊥平面EAB.题型二例4、若m 、n 表示直线,α表示平面,则下列命题中,正确命题的个数为( ) ①⎭⎪⎬⎪⎫m ∥n m ⊥α⇒n ⊥α; ② ⎭⎪⎬⎪⎫m ⊥αn ⊥α⇒m ∥n ; ③⎭⎪⎬⎪⎫m ⊥αn ∥α⇒M ⊥n; ④⎭⎪⎬⎪⎫m ∥αm ⊥n ⇒n ⊥α.A .1B .2C .3D .4答案:C例5、如图所示,在正方体ABCD —A 1B 1C 1D 1中,M 是AB 上一点,N 是A 1C 的中点,MN ⊥平面A 1DC .求证:(1)MN ∥AD 1; (2)M 是AB 的中点.证明 (1)∵ADD 1A 1为正方形, ∴AD 1⊥A 1D .又∵CD ⊥平面ADD 1A 1,∴CD ⊥AD 1. ∵A 1D∩CD =D ,∴AD 1⊥平面A 1DC . 又∵MN ⊥平面A 1DC , ∴MN ∥AD 1.(2)连接ON ,在△A 1DC 中, A 1O =OD ,A 1N =NC . ∴ON12CD 12AB , ∴ON ∥AM . 又∵MN ∥OA ,∴四边形AMNO 为平行四边形,∴ON =AM .∵ON =12AB ,∴AM =12AB ,∴M 是AB 的中点.题型三例6、直线a 与平面α所成的角为50°,直线b ∥a ,则直线b 与平面α所成的角等于( )A .40°B .50°C .90°D .150°答案:B例7、在正方体ABCD -A 1B 1C 1D 1中,(1)直线A 1B 与平面ABCD 所成的角是________; (2)直线A 1B 与平面ABC 1D 1所成的角是________; (3)直线A 1B 与平面AB 1C 1D 所成的角是________. 答案:(1)45° (2)30° (3)90° 题型四例6、在边长为1的菱形ABCD 中,∠ABC =60°,把菱形沿对角线AC 折起,使折起后BD =32,则二面角B -AC -D 的余弦值为( ) A .13 B .12 C .223 D .32答案:B [如图所示,由二面角的定义知∠BOD 即为二面角的平面角. ∵DO =OB =BD =32, ∴∠BOD =60°.]例7、过正方形ABCD 的顶点A 作线段AP ⊥平面ABCD ,且AP =AB ,则平面ABP 与平面CDP 所成的二面角的度数是________.答案:45° 题型五例8、下列命题中正确的是()A.平面α和β分别过两条互相垂直的直线,则α⊥βB.若平面α内的一条直线垂直于平面β内两条平行线,则α⊥βC.若平面α内的一条直线垂直于平面β内两条相交直线,则α⊥βD.若平面α内的一条直线垂直于平面β内无数条直线,则α⊥β答案:C例9、如图所示,四棱锥P—ABCD的底面ABCD是边长为1的菱形,∠BCD=60°,E是CD的中点,PA⊥底面ABCD,PA=3.(1)证明:平面PBE⊥平面PAB;(2)求二面角A—BE—P的大小.9.(1)证明如图所示,连接BD,由ABCD是菱形且∠BCD=60°知,△BCD是等边三角形.因为E是CD的中点,所以BE⊥CD.又AB∥CD,所以BE⊥AB.又因为PA⊥平面ABCD,BE⊂平面ABCD,所以PA⊥BE.而PA∩AB=A,因此BE⊥平面PAB.又BE⊂平面PBE,所以平面PBE⊥平面PAB.(2)解由(1)知,BE⊥平面PAB,PB⊂平面PAB,所以PB⊥BE.又AB⊥BE,所以∠PBA是二面角A—BE—P的平面角.在Rt△PAB中,tan∠PBA=PAAB=3,则∠PBA=60°.故二面角A—BE—P的大小是60°.题型六例10、平面α⊥平面β,直线a∥α,则()A.a⊥β B.a∥βC.a与β相交 D.以上都有可能答案:D例11、如图所示,在多面体P—ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD 是等边三角形,已知BD=2AD=8,AB=2DC=45.(1)设M是PC上的一点,求证:平面MBD⊥平面PAD;(2)求四棱锥P—ABCD的体积.11.(1)证明在△ABD中,∵AD=4,BD=8,AB=45,∴AD2+BD2=AB2.∴AD⊥BD.又∵面PAD⊥面ABCD,面PAD∩面ABCD=AD,BD⊂面ABCD,∴BD⊥面PAD,又BD⊂面BDM,∴面MBD⊥面PAD.(2)解过P作PO⊥AD,∵面PAD⊥面ABCD,∴PO⊥面ABCD,即PO为四棱锥P—ABCD的高.又△PAD是边长为4的等边三角形,∴PO=23.在底面四边形ABCD中,AB∥DC,AB=2DC,∴四边形ABCD为梯形.在Rt△ADB中,斜边AB边上的高为4×845=855,此即为梯形的高. ∴S 四边形ABCD =25+452×855=24. ∴V P —ABCD =13×24×23=163.跟踪训练1.正方体A 1B 1C 1D 1-ABCD 中,截面A 1BD 与底面ABCD 所成二面角A 1-BD -A 的正切值等于( )A .33B .22C . 2D . 3答案:C[解析] 设AC 、BD 交于O ,连A 1O ,∵BD ⊥AC ,BD ⊥AA 1,∴BD ⊥平面AA 1O ,∴BD ⊥A 1O ,∴∠A 1OA 为二面角的平面角. tan ∠A 1OA =A 1AAO=2,∴选C.2.过两点与一个已知平面垂直的平面( ) A .有且只有一个 B .有无数个 C .有且只有一个或无数个 D .可能不存在答案:C [当两点连线与平面垂直时,有无数个平面与已知平面垂直,当两点连线与平面不垂直时,有且只有一个平面与已知平面垂直.]3.如图,正方体ABCD -A 1B 1C 1D 1中,点P 在侧面BCC 1B 1及其边界上运动,并且总是保持AP ⊥BD 1,则动点P 的轨迹是( )A .线段B 1C B .线段BC 1C .BB 1中点与CC 1中点连成的线段D .BC 中点与B 1C 1中点连成的线段 答案:A[解析] ∵DD 1⊥平面ABCD , ∴D 1D ⊥AC ,又AC ⊥BD ,∴AC ⊥平面BDD 1, ∴AC ⊥BD 1.同理BD 1⊥B 1C. 又∵B 1C ∩AC =C , ∴BD 1⊥平面AB 1C.而AP ⊥BD 1,∴AP ⊂平面AB 1C.又P ∈平面BB 1C 1C ,∴P 点轨迹为平面AB 1C 与平面BB 1C 1C 的交线B 1C.故选A. 4.如图所示,在正方体ABCD -A 1B 1C 1D 1中,M 、N 分别是棱AA 1和AB 上的点,若∠B 1MN 是直角,则∠C 1MN =________.答案:90°解析 ∵B 1C 1⊥面ABB 1A 1, ∴B 1C 1⊥MN . 又∵MN ⊥B 1M , ∴MN ⊥面C 1B 1M , ∴MN ⊥C 1M .∴∠C 1MN =90°.5.如图所示,平面α⊥平面β,A ∈α,B ∈β,AA′⊥A′B′,BB′⊥A′B′,且AA′=3,BB′=4,A′B′=2,则三棱锥A -A′BB′的体积V =________.答案: 4[解析] ∵α⊥β,α∩β=A′B′,AA′⊂α,AA′⊥A′B′, ∴AA′⊥β,∴V =13S △A′BB′·AA′=13×(12A′B′×BB′)×AA′=13×12×2×4×3=4.6. 如图所示,已知PA 垂直于⊙O 所在的平面,AB 是⊙O 的直径,C 是⊙O 上任意一点,过点A 作AE ⊥PC 于点E .求证:AE ⊥平面PBC .证明 ∵PA ⊥平面ABC ,∴PA ⊥BC . 又∵AB 是⊙O 的直径,∴BC ⊥AC . 而PA ∩AC =A ,∴BC ⊥平面PAC . 又∵AE ⊂平面PAC ,∴BC ⊥AE .又∵PC ⊥AE ,且PC ∩BC =C ,∴AE ⊥平面PBC .7.如图,已知AB ⊥平面ACD ,DE ⊥平面ACD ,△ACD 为等边三角形,AD =DE =2AB ,F 为CD 的中点.求证:平面BCE ⊥平面CDE.证明 取CE 的中点G ,连接FG ,BG ,AF. ∵F 为CD 的中点, ∴GF ∥DE ,且GF =12DE.∵AB ⊥平面ACD ,DE ⊥平面ACD , ∴AB ∥DE.则GF ∥AB. 又∵AB =12DE ,∴GF =AB.则四边形GFAB 为平行四边形.于是AF ∥BG. ∵△ACD 为等边三角形,F 为CD 的中点, ∴AF ⊥CD.∵DE ⊥平面ACD ,AF ⊂平面ACD ,∴DE ⊥AF. 又∵CD ∩DE =D ,CD ,DE ⊂平面CDE , ∴AF ⊥平面CDE.∵BG ∥AF ,∴BG ⊥平面CDE.∵BG ⊂平面BCE ,∴平面BCE ⊥平面CDE.8.如图,在四棱锥P-ABCD中,底面是边长为a的正方形,侧棱PD=a,PA=PC=2a,求证:(1)PD⊥平面ABCD;(2)平面PAC⊥平面PBD;(3)二面角P-BC-D是45°的二面角.证明(1)∵PD=a,DC=a,PC=2a,∴PC2=PD2+DC2.∴PD⊥DC.同理可证PD⊥AD,又AD∩DC=D,∴PD⊥平面ABCD.(2)由(1)知PD⊥平面ABCD,∴PD⊥AC.而四边形ABCD是正方形,∴AC⊥BD.又BD∩PD=D,∴AC⊥平面PBD.又AC⊂平面PAC,∴平面PAC⊥平面PBD.(3)由(1)知PD⊥BC,又BC⊥DC,∴BC⊥平面PDC.∴BC⊥PC.∴∠PCD为二面角P-BC-D的平面角.在Rt△PDC中,PD=DC=a,∴∠PCD=45°.∴二面角P-BC-D是45°的二面角.6.如图,在直三棱柱ABC—A1B1C1中,AA1=AC,且BC1⊥A1C.(1)求证:平面ABC1⊥平面A1ACC1;(2)若D、E分别是A1C1和BB1的中点,求证:DE∥平面ABC1.11解析: (1)∵直三棱柱ABC -A 1B 1C 1中,AA 1=AC , ∴ACC 1A 1为正方形, ∴A 1C ⊥AC 1.又∵BC 1⊥A 1C ,AC 1∩BC 1=C 1,∴A 1C ⊥平面ABC 1, 又∵A 1C ⊂平面A 1ACC 1, ∴平面A 1ACC 1⊥平面ABC 1.(2)如图,取AA 1的中点F ,连接DF 、EF.∵D 、E 、F 分别为A 1C 1、BB 1、AA 1的中点, ∴DF ∥AC 1,EF ∥AB ,DF∩EF =F , ∴平面DEF ∥平面ABC 1, ∴DE ∥平面ABC 1.。

直线、平面垂直的判定及其性质解析

直线、平面垂直的判定及其性质知识要点梳理知识点一、直线和平面垂直的定义与判定1.直线和平面垂直定义如果直线和平面内的任意一条直线都垂直,我们就说直线与平面互相垂直,记作.直线叫平面的垂线;平面叫直线的垂面;垂线和平面的交点叫垂足。

要点诠释:(1)定义中“平面内的任意一条直线”就是指“平面内的所有直线”,这与“无数条直线”不同,注意区别。

(2)直线和平面垂直是直线和平面相交的一种特殊形式。

(3)若,则。

2.直线和平面垂直的判定定理判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。

符号语言:特征:线线垂直线面垂直要点诠释:(1)判定定理的条件中:“平面内的两条相交直线”是关键性词语,不可忽视。

(2)要判定一条已知直线和一个平面是否垂直,取决于在这个平面内能否找出两条相交直线和已知直线垂直,至于这两条相交直线是否和已知直线有公共点,则无关紧要。

知识点二、斜线、射影、直线与平面所成的角一条直线和一个平面相交,但不和这个平面垂直,这条直线叫做这个平面的斜线。

过斜线上斜足外的一点向平面引垂线,过垂足和斜足的直线叫做斜线在这个平面内的射影。

平面的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所成的角。

要点诠释:(1)直线与平面相交但不垂直,直线在平面的射影是一条直线。

(2)直线与平面垂直射影是点。

(3)斜线任一点在平面内的射影一定在斜线的射影上。

(4)一条直线垂直于平面,它们所成的角是直角;一条直线和平面平行或在平面内,它们所成的角是0°的角。

知识点三、二面角1.二面角定义平面内的一条直线把平面分成两部分,这两部分通常称为半平面.从一条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫二面角的棱,这两个半平面叫做二面角的面。

表示方法:棱为、面分别为的二面角记作二面角.有时为了方便,也可在内(棱以外的半平面部分)分别取点,将这个二面角记作二面角.如果棱记作,那么这个二面角记作二面角或。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1)根据定义判断 (2)有没有什么方便可行的方法来判定?
探究:
(1)如果平面外的一条直线和平面内的一条直线 垂直,能不能保证该直线垂直于此平面? 即:
l
l b,b × l
b

不能
探究:
(2)和一个平面内的两条直线垂直呢?
①两条直线平行的情况 即:
b l a b l c c a b//c
C
D
B
小结:证面内两直线垂直经常用的方法: 等腰三角形底边上的中线、高线、角平分线三线合一
知识小结
1.直线与平面垂直的定义 2.直线与平面垂直的判定、性质
线线垂直
线面垂直
3.数学思想方法:转化的思想
空间问题
平面问题
线面垂直很关键, 要证线面找线线; 必是面内两交线, 线面线线会转换。 善于观察勤思考, 成绩提升步步高。
直线与平面垂直的判定定理
如果一条直线与平面内的两条相交直 线垂直,则这条直线与这个平面垂直。
a l b a b A
la l b
l b a
检测答案:1、A 2、C 3、4个
4、证明:连结BD ∵ABCD-A‘B’C‘D’为正方体 ∴DD‘⊥平面ABCD
D′
C′ B′
AC 平面ABCD
∵AC、BD 为正方形ABCD的对角线
A′
D A
AC DD' (线面垂直→线线垂直)
∴AC⊥BD ∵DD'∩BD=D
C
DD, BD 平面BDD ∴AC⊥平面BDD' (线面垂直的判定定理) BD 平面BDD AC BD
P
D A B
C
A M B
C
(1) BB AB,BB BC
(2) P-ABC为正三棱锥,
PB PC, AB AC
∵M为棱BC的中点
AB BC B
AB, BC 平面ABCD
BB 平面ABCD
∴BC ⊥ PM,BC ⊥ AM
∵AM∩PM=M
PM , AM 平面PAM
•同学们,经过几天的努力学习,你的身心 可能有些疲惫,好想歇息一会儿,有句话 说的好,很多事情不是有了希望才坚持, 而是坚持了才有希望。同学们因为你的坚 持又向理想迈进了一步,拿出我们饱满的 热情迎接新的一课!!
努 力 加 油
1.2.3 空间中的垂直关系 ——线面垂直
海岳中学
李富政
学习目标:
一、理解直线与平面垂直的定义 和性质; 二、能通过动手试验,归纳和掌握直 线与平面垂直的判定定理并学会简单 应用。
A
AB2 BC 2 AC 2
∴AB⊥BC 同理AB⊥BD
α C B D
∵B、C、D三点不共线,∴BC∩BD=B
BC 平面BCD,BD 平面BCD
∴AB⊥平面BCD
即旗杆和地面垂直
练习 如图,在三棱锥V-ABC中,VA=VC,AB=BC, 求证VB⊥AC.
证明:取 AC的中点D,连结DV、DB 分析:( 1)要证线线垂直,首先证线面垂直 ∵VA=VC,AB=BC (2∴△ )AC ⊥VB 所在的面,应该 VAC 与△ BAC都是等腰三角形 是哪一个面? ∴AC ⊥DV AC⊥DB A 给出 ∵DV ∩VA=VC DB=D ,AB=BC可 以知道△ ∴AC ⊥平面VAC VDB与△BAC都是 等腰三角形 VB 平面VDB, ∴AC⊥VB V
一、空间两条直线垂直
如果两条直线相交于一点或经过平移后相交于一 点,并且交角为直角,则称这两条直线互相垂直。
A’A┴ AB C’C┴ AB
A’
D’
C’ B’
D
A B
C
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
二、直线与平面垂直
1、定义:如果一条直线AB和一个平面α相交于一点 O,并且和这个平面内过交点O的任何直线都垂直, 我们就说这条直线和这个平面垂直。
B
3、在三棱锥P-ABC中,PA⊥平面ABC,AB⊥BC, PA=AB,D为PB的中点,求证:AD⊥PC.
P D Aபைடு நூலகம்
B C
练习
4.已知 : = CD, EA , EB . 求证 : CD AB .
E A

D
B

C
练习
1、如图,空间中直线l和三角形的两边 AC,BC同时垂直,则这条直线和三角形的 第三边AB的位置关系是( ) A 平行 B 垂直 C C 相交 B A D 不确定 2 、如果平面外的一条直线上有两点到这个平面的 距离相等,则这条直线和平面的位置是( ) A.平行 B.相交 C.平行或相交
×
l

c
不能
探究:
(2)和一个平面内的两条相交直线垂直呢?
即:
b , c , b c P l l b, l c
猜想:
是不是一条直线垂直于平面内的 两条相交直线,此直线就垂直于该平 面呢?
探究
如图,准备一块三角形的纸片,做一个试验:
A
C
A
D
B
D
C

直线与平面垂直的判定定理
如果一条直线 l和平面 内的两条相交直线 m,n都垂直, 那么直线 l 垂直平面 l m , 即: 关键:线不在多,相交则行 n , l mn P m P l m, l n n 线线垂直 线面垂直
问:要判断一条直线与一个 平面是否垂直,取决于什么?
A
B
直线和平面垂直的定义
这条直线叫做平面的垂线,这个平面叫做直线的垂面。
平面的垂线
直线的垂面

A
垂足
交点叫做垂足,垂线上一点到垂足间的线段,叫做这个点到 这个平面的垂线段,垂线段的长度叫做这个点到平面的距离。
直线和平面垂直的画法
通常把直线画成和表示平面的平行四边形的一边垂直。
L
P

记作:L⊥
在平面内不经过O点的任意直线和垂线什么关系?
AO ⊥ 平面内任意一条直线
A
B1
O B
C1
C
3、线面垂直的性质: 如果一条直线垂直于一个平面,那么它 就和平面内的任意一条直线垂直。
符号语言表示:
a
b
a
ab

b
此性质经常用来 证明线线垂直,特 别是异面垂直
思考问题:
学校操场上竖了一根新 旗杆,现要检验它是否与地 面垂直,现在手中只有几根 绳子和皮尺,你有什么好办 法?
∴BC⊥平面PAM
线面垂直的判定方法:
1、 定义 如果一条直线AB和一个平面α相交于一点O,并 且和这个平面内过交点O的任何直线都垂直,我们就 说这条直线和这个平面垂直。 2、判定定理 如果一条直线与平面内的两条相交直线垂直,则 这条直线与这个平面垂直。
自己动手,解答问题
有一同学测得一旗杆AB高8m,它的顶端A挂着两条长10m的 绳子,拉紧绳子,并把它的下端放在地面上的两点C,D(和旗 杆脚不在同一条直线上),如果这两点和旗杆脚B的距离都是 6m,那么旗杆就和地面垂直,为什么? 证明:∵⊿ABC中,AB=8m, BC=6m,AC=10m
取决于在这个平面内能否 找到两条相交直线和已知 直线垂直.
应用定理,加深理解 例1 判断下列命题是否正确,并说明理由. (1)正方体ABCD ABCD中,棱BB和底面ABCD垂直
(2)正三棱锥P—ABC中,M为棱BC的中点,则 棱BC和平面PAM垂直
P
A M B
C
D' A' B'
C'
B
过ABC的顶点A翻折纸片,得到折痕AD,将翻折后 的纸片竖起放置在桌面上(BD,DC于桌面接触). (1)折痕AD与桌面垂直吗? (2)如何翻折才能使折痕AD与桌面所在平面垂直.
A
CC
A
A
D

B
D D
B
C
当且仅当折痕 AD 是 BC 边上的高时,AD所在直 线与桌面所在平面 垂直.
问:由此可以归纳出直线与平面垂直应 具有什么条件?
相关文档
最新文档