实体单元弯矩轴力提取

合集下载

ANSYS实体单元求截面内力

ANSYS实体单元求截面内力

2、ANSYS实体单元后处理中的求内力发表于2007-9-10 13:13:41分使用道具小中大楼主平常计算弯矩或剪力,一般用剖面法,即用一个剖面将体剖开,分析剖面左边或右边的受力情况。

尝试用较为简单的方法,不用积分来求弯矩,曾试过计算简支梁与悬臂梁,外荷载所括集中力、面荷载、体荷载(自重),结果准确。

对别的结构未曾算过,不知可行与否?finish/clearb0=200h0=300l0=3000ec=3.3e5p0=0.2/prep7csys,0et,1,solid95mp,ex,1,ecmp,prxy,1,0.167blc4,,,b0,h0,l0wpoffs,,,750!为了后处理中选择单元方便,故将体剖分vsbw,allwpoffs,,,750!为了后处理中选择单元方便,故将体剖分vsbw,all/view,1,1,1,1/ang,1vplotlsel,s,loc,y,0lsel,r,loc,z,0dl,all,,uylsel,s,loc,y,0lsel,r,loc,z,l0dl,all,,uyksel,s,loc,x,0ksel,r,loc,y,0dk,all,uxasel,s,loc,y,h0sfa,all,1,pres,p0allsel,allesize,50vsweep,allfinish/solusolve/post1!首先求跨中弯矩spoint,,0,0,1500!将计算点移至跨中nsel,s,loc,z,0,1500!选择计算截面某一侧的全部节点fsum !此时求得支座反力以及作用在模型上的外力(仅算集中力,面荷载及体荷载如重力等未计算在内)对跨中截面的力矩Mxallsel,allvsel,s,loc,z,0,1500eslv,r !选择计算截面某一侧全部单元,在命令流中利用位置选单元无法实现,故先选择体,再选与体相联的单元,但在gui模式中较易做到fsum !此时求得外力(仅算面荷载及体荷如重力等)对跨中截面的力矩Mx!求得上面两个值后,将后一个值反号与前一个值相加即得跨中截面力矩Mx(正负号的规定参看ansys帮助,与材料力学中的不一定相同)!求1/4截面的剪力spoint,,0,0,750!将计算点移到1/4截面nsel,s,loc,z,0,750!选择计算截面某一侧的全部节点fsum !此时求得支座反力以及作用在模型上的外力(仅算集中力,面荷载及体荷载如重力等未计算在内)对1/4截面的剪力fyallsel,allvsel,s,loc,z,0,750eslv,r!在命令流中利用位置选单元无法实现,但在gui模式中较易做到fsum !此时求得外力(仅算面荷载及体荷如重力等)对1/4截面的剪力fy!求得上面两个值后,将后一个值反号与前一值相加即得剪力fy(正负号的规定参看ansys 帮助,与材料力学中的不一定相同)----复制自天工网关于实体单元后处理中的求内力讨论三月雨1.采用实体单元计算(有时不得不采用实体单元)有其优点,但因实体单元无法直接得到结构的内力(M,N,Q),所以对于混凝土结构想进行配筋计算就带来了难度,这是本题目提出的缘由。

简支梁有限元结构静力分析(实体单元)

简支梁有限元结构静力分析(实体单元)

第二章简支梁有限元结构静力分析(实体单元)前言本文利用ANSYS软件中SOLID45实体单元建立简支梁有限元模型,对其进行静力分析与模态分析,来比较建模时不同约束方位的选择所带来的不同结果,以便了解和认识ANSYS 用于分析计算结果的方法。

2.1实体单元SOLID45介绍2.1.1SOLID45单元的几何描述:SOLID45单元用于构造三维实体结构。

单元通过八个节点来定义,每个节点有三个沿着XYZ方向平移的自由度UX、UY、UZ。

单元具有塑性,蠕变,膨胀,应力强化,大变形和大应变等能力。

SOLID45单元的几何描述如下图所示:图2.1SOLID45单元几何描述2.1.2SOLID45单元的结果输出:SOLID45单元的结果输出包括节点结果输出和单元结果输出,这些结果可以反映出结构整体以及局部的应力、应变、内力等参量,详细输出结果见下表:表2.1SOLID45单元的结果输出项名称定义S:X,Y,Z,XY,YZ,XZ应力S;1,2,3主应力S:INT应力强度S:EQV等效MISES应力EPEL:X,Y,Z,XY,YZ,XZ弹性应变EPEL:1,2,3主弹性应变EPEL:EQV等效弹性应变EPTH:X,Y,Z,XY,YZ,XZ平均热应变EPTH:EQV等效热应变EPPL:X,Y,Z,XY,YZ,XZ平均塑性应变EPPL:EQV等效塑性应变EPCR:X,Y,Z,XY,YZ,XZ平均蠕变应变EPCR:EQV等效蠕变应变EPSW:平均膨胀应变NL:EPEQ平均等效塑性应变NL:SRAT屈服表面上的迹应力和应力之比NL:SEPL从应力-应变曲线平均等效mises应力NL:HPRES静水压力FACE表面lableAREA表面面积TEMP表面平均温度EPEL表面弹性应变(X,Y,XY)PRESS表面压力S(X,Y,XY)表面应力(X轴平行于定义该表面的前面两个结点连接) S(1,2,3)表面主应力SINT表面应力强度SEQV表面等效mises应力LOCI:X,Y,Z积分点位置2.1.3SOLID45单元的参数设置:SOLID45单元可定义正交各向异性材料:即该单元属性允许材料的物理性能和力学性能在不同方向上具有不同的数值。

有限元计算注意事项

有限元计算注意事项

1、计算原理任何有限元模拟的第一步都是利用一个有限单元的集合离散结构的实际几何形状,每个单元(element)代表这个实际结构的一个离散部分.这些单元通过公用的节点(node)来连接.节点和单元的集合成为网格(mesh).在一个特定网格中的单元数目称为网格密度(mesh density).在ansys计算过程中,程序以每个节点的每个自由度建立平衡方程,以节点的位移作为未知量,利用矩阵求解节点的位移.一旦节点位移求出,整个结构的应力和应变都很容易计算出来.这种计算的过程和方法,数学上称之为隐式方法.从上叙述来看,整个计算过程中就是求解n个n元一次方程组(n表示节点数量),当计算模型复杂而且庞大时,隐式求解方法的计算量还是相当大的.与之相对应的,显式求解方法.显式求解方法是通过动态方法从一个增量步前推到下一个增量步得到的.具体显式求解方法和隐式求解方法例子如下:(1)隐式求解(2)显式求解隐式求解中,计算的精度完全控制于计算步数,在一般的计算软件中(flac、abaqus),软件均是利用不平衡力来控制计算步数(当不平衡力<10-5时,停止计算).不平衡力=A+B.A表示施加在节点上的集中力;B表示:在n步数下,根据第n步计算出来的应力,求出节点的内力.Flac软件中 B,以上公式是根据虚功原理推倒而得到.具体推倒过程见《flac 原理》.2、Ansys计算注意事项:计算单位、参数、荷载、标准值、设计值,计算过程中系数的加入. (1)b eam单元对于beam单元.Ansys软件中我们常用的有两种梁单元:beam188和beam4.这两种单元均是三维的梁单元,每个节点都具有6个自由度(ux、uy、uz、mx、my、mz),并且单元坐标系x轴是i点指向j 点.Beam188单元是基于铁木辛哥理论的梁,beam4单元是我们常用的经典结构力学梁.(铁木辛哥理论考虑了梁的剪切变形,而我们常用的经典结构力学梁只考虑了弯矩对结构的变形影响)所以说,beam188可以更精确的计算梁单元,因此我们结构计算中,一般都采用beam188单元.当然还有beam189单元,189单元属于三维二次的梁单元(beam188属于三维一次梁单元),精度比beam188更加高.定义beam188单元,一般采用如下形式:!定义单元/prep7 !进入前处理et,1,beam188 !定义单元188号标号为1!定义材料属性mp,ex,1,2.55e7 !定义弹性模量(kn/m2)mp,nuxy,1,0.167 !定义泊松比mp,dens,1,2.5 !定义密度(KN/N*KG/M3)nummrg,all !合并重合节点numcmp,all !压缩编号!定义梁截面SECTYPE,1,BEAM,RECT,A1,0 ! 1表示梁编号 ; RECT表示是矩形梁(还有其他t型等等,具体见ansys帮助); A1 表示梁的名称 ; 0表示薄壁梁单元网格划分精细程度(0~5). SECDATA,1,3,4,12 !1表示梁b ; 3表示梁h ; 4和12定义对应宽长等分份数.SECOFFSET,CENT !cent质心 ; shrc剪切中心 ; origin原始中心 ; user用户定义;!注意:当梁单元和壳单元一起使用时,可以设置梁单元的偏心,使梁的一面和壳的一面共面.(secoffset,user,offset-y,offset-z),如下图:!划分网格LSEL,S,,,1 !选中编号为1的线.LATT,1,1,1,,,,1 !mp,r,et,,方向点,,SECTYPE截面号.LESIZE,ALL,0.2,,,,,,,1 !0.2是单元大小,1是确认细分规则.LMESH,ALL !用beam单元离散模型,形成网格.!对于划分网格,空间的beam单元,由于需要确定b、h的方向,ansys软件利用方向点来控制b、h的方向.方向点的编号最好定义的很大,如果定义太小,会影响后面的加载.具体方向点如何控制见上面的latt命令和ansys帮助.自己试两下就知道怎么用了. AllsFINISH!加载加约束/SOLUACEL,,,9.8 !重力加速度.注意方向,数值和整体坐标相反,比如重力指向z轴负向,则为正值.SFCUM,ALL,ADD !设置单元荷载是叠加还是替代,只对加在单元和节点上的荷载有效,对于加在面、线上的荷载,都只有替代作用(对同一个面,第二次加的荷载替代第一次加的荷载)!对于beam单元,只能根据sfbeam命令增加均布荷载①等大小的均布荷载.Lsel,s,,,1ESLL,S,1sfbeam,ALL,1,PRES,-161.5 !1表示作用在beam单元的①面上(如下图,③面表示beam单元的轴向,②面表示单元侧面,①面表示beam单元顶面),-161.5表示均布荷载大小,正负号可以控制作用力的方向.②梯形均布荷载Sfbeam命令是对每个单元进行加载.如果一根梁承受10~100的梯形均布荷载,而且这根梁被分成了10个beam单元,这样施加荷载就非常困难.因此我将这种加载过程写成命令流,让软件自动进行加载.命令流如下:LSEL,S,,,1 !选中要加载的那根梁(线)ESLL,S,1 !选中属于这根梁(线)的beam单元*GET,Nelem,ELEM,,COUNT, , , , !获得当前所选单元个数,赋予参数Nelem*GET,Ne,ELEM,,NUM,MIN, , , , !获得当前所选单元最小编号,赋予参数Ne*DO,I,1,Nelem !循环加载,循环次数=单元个数ESEL,S,,,NeNSLE,S,1*GET,Nnode,NODE,,COUNT, , , , !获得当前所选节点个数,赋予参数Nnode*GET,Nn,NODE,,NUM,MIN, , , , !获得当前所选节点最小编号,赋予参数NnNN1X=NX(NN) !将nn节点的x坐标赋予NN1X(NX表示x坐标,NY表示y坐标) NN=NDNEXT(NN) !NN=当前所选节点的下一个编号NN2X=NX(NN) !将nn节点的x坐标赋予NN2Xsfbeam,ALL,1,PRES,-1630.76/3.23*(3.23-NN1X),-1630.76/3.23*(3.23-NN2X)!以上荷载公式应根据实际情况进行调整LSEL,S,,,1ESLL,S,1NE=ELnext(NE) !NE=当前所选单元的下一个编号*ENDDO!对于此命令流,根据不同的实际情况,ABC部分需要修改,其他不需要修改.!后处理 (XY平面) (大拇指指向y,就是my)etable,ImY,smisc,2 !显示弯距etable,JmY,smisc,15PLLS,IMY,JMYETABLE,IFX,SMISC,1 !显示轴力ETABLE,JFX,SMISC,14PLLS,IFX,JFXETABLE,IFY,SMISC,5 !显示剪力ETABLE,JFY,SMISC,18PLLS,IFY,JFY!注意:beam单元的结果输出都是以单元坐标系输出的,且拉为正、压为负.前面我们已经知道,单元坐标系x轴就是i点指向j点,其他坐标可以根据整体坐标系推出.详细内容见ansys 帮助.(2)S hell单元对于shell单元应用的范围,ansys软件并没有强制规定,只是从字面上区分了薄壳和厚壳.我以前看过一本电子教案《仿真在线》,里面说一般规定壳体的主尺寸是厚度的10倍左右,都是可以用壳体来模拟的.一般高度与跨度之比(非与单元尺寸比较)<1/15,可以当作薄壳处理,>1/15 & <1/10,可以当作厚壳来处理.shell63是薄壳单元,他包含弯曲和薄膜效应,但是忽略横向剪切变形;shell43,shell143,shell181,shell91,shell93和shell99,都属于厚壳单元,不仅有弯曲、薄膜效应,他也包含了横向剪切效应.横向剪切被表示为整个厚度上的常剪切应变.这种一阶近似只适用于中等厚度壳体.线形分析时,如果不包含横向剪切应变,使用63,163单元;如果横向剪切变形重要,则遵守以下原则:均匀材料,使用43,93,143单元,复合材料使用91,99,181.我们土木工程中,一般利用shell43计算.!定义单元/prep7 !进入前处理et,1,shell43 !定义单元43号标号为1!定义材料属性mp,ex,1,2.55e7 !定义弹性模量(kn/m2)mp,nuxy,1,0.167 !定义泊松比mp,dens,1,2.5 !定义密度(KN/N*KG/M3)!定义墙体厚度!①等厚度板R,1,2 !1表示编号,2表示厚度(m)R,2,3Asel,s,,,1 !选中1号面Aatt,1,1,1 !mp,real,typeESIZE,0.2 !定义单元大小为0.2左右MSHAPE,0,2D !规定划分单元形状,0表示四边形(1表示三角形),2d表示划分面(3d表示划分体)MSHKEY,2 !指定是自由划分还是映射划分,2表示:尽量用映射划分,不符合要求就自动使用自由划分,具体参见ansys帮助的eshkey命令. AMESH,ALL !划分面单元.!!!注意:在网格剖面方面,最好全部用四边形,而且形状尽量规则、均匀!因为将来后处理内力提取的时候,提取出来的力和单元的大小有直接的关系。

ANSYS绘制弯矩、剪力、轴力图命令流完全教程

ANSYS绘制弯矩、剪力、轴力图命令流完全教程

ANSYS绘制弯矩、剪力、轴力图命令流完全教程1.绘制弯矩图建立弯矩单元表。

例如梁单元i节点单元表名称为imom,j节点单元表名称为jmom,ETABLE,NI,SMISC,1 !单元I点轴力ETABLE,NJ,SMISC,7 !单元J点轴力ETABLE,QI,SMISC,2 !单元I点剪力ETABLE,QJ,SMISC,8 !单元J点剪力ETABLE,MI,SMISC,6 !单元I点弯矩ETABLE,MJ,SMISC,12 !单元J点弯矩plls,MI,MJ2.标注弯矩图PLOTCTRLS>>NUMBERING>>SVAL ON即可在画出弯矩图的同时在图上标出弯矩值的大小3.调整弯矩图如果弯矩图方向错误,则绘制弯矩图命令为plls,imom,jmom,-1同一个节点处两边的单元内力有细微差别,导致内力数字标注出现重影。

观察上面整体轴力图也可以发现,一段一段的,好像马赛克,其实上面整体弯矩图也是,不过不是很明显罢了。

这是EULER-BEONOULI梁理论以及ANSYS输出定义造成的(详细原因就不展开了,看看梁理论的书和ANSYS的说明吧)。

为了修正重影和节点两边内力值不一样的问题,遍制了宏文件ITFAVG.MAC命令文件内容如下:!---------------------------------------------------------------------!宏:ITFAVG.MAC(INTERNAL FORCE AVERAGE MACRO)!获取线性单元内力,并对单元边界处的内力进行平衡!输入信息!内力类型:MFORX,MFORY,MFORZ,MMOMX,MMOMY,MMOMZ*ASK,ITFTYPE,'PLEASE INPUT THE TYPE OF INTERNAL FORCE','MMOMY'!需处理的单元包*ASK,EASSEMBLY,'PLEASE INPUT THE COMPONENT NAME OF ELEMENTS TO BE PROCESSED!','EOUTER'!需处理的节点包*ASK,NASSEMBLY,'PLEASE INPUT THE COMPONENT NAME OF NODE TO BE PROCESSED!','NOUTER'!无需处理的节点包*ASK,UNASSEMBLY,'PLEASE INPUT THE COMPONENTNAME OF THE UNCHANGED NODE!(NONE IF THERE'S NO SUCH COMPONENT)','NONE'/POST1!输入信息:内力类型,欲处理单元的集合,欲处理节点的集合!ITFTYPE='MMOMY'!EASSEMBLY='EOUTER'!NASSEMBLY='NOUTER'!按内力类型确定ANSYS输出信息SMISC的编号*IF,ITFTYPE,EQ,'MFORX',THENITFINUM=1ITFJNUM=7*ELSEIF,ITFTYPE,EQ,'MFORY',THENITFINUM=2ITFJNUM=8*ELSEIF,ITFTYPE,EQ,'MFORZ',THENITFINUM=3ITFJNUM=9*ELSEIF,ITFTYPE,EQ,'MMOMX',THENITFINUM=4ITFJNUM=10*ELSEIF,ITFTYPE,EQ,'MMOMY',THENITFINUM=5ITFJNUM=11*ELSEIF,ITFTYPE,EQ,'MMOMZ',THENITFINUM=6ITFJNUM=12*ELSE*ENDIF!对不需平均的节点进行处理*IF,UNASSEMBLY,NE,'NONE',THEN!选出不进行处理的节点包并获取不进行处理节点的数目CMSEL,S,UNASSEMBLY*GET,UNNODNUM,NODE,0,COUNT!定义长度为UNNODNUM的数组(UNNOD),以存放选中单元的单元编号*DIM,UNNOD,ARRAY,UNNODNUM!将选中单元的编号按顺序存入数组UNNOD*DO,I,0,UNNODNUM-1,1UNNOD(I+1)=NDNEXT(I)*ENDDO*ELSEUNNODNUM=0*ENDIF!选出所需的单元和节点包CMSEL,S,EASSEMBLYCMSEL,S,NASSEMBLY!获得当前选中单元总数(存入变量SELELENUM)*GET,SELELENUM,ELEM,0,COUNT!定义长度为SELELENUM的数组(ELENUM),以存放选中单元的单元编号*DIM,ELENUM,ARRAY,SELELENUM!将选中单元的编号按顺序存入数组ELENUM*DO,I,0,SELELENUM-1,1ELENUM(I+1)=ELNEXT(I)*ENDDO!获得当前选中节点总数(存入变量SELNODNUM)*GET,SELNODNUM,NODE,0,COUNT!定义长度为SELNODNUM的数组(NODNUM),以存放选中单元的单元编号*DIM,NODNUM,ARRAY,SELNODNUM!将选中单元的编号按顺序存入数组NODNUM*DO,I,0,SELNODNUM-1,1NODNUM(I+1)=NDNEXT(I)*ENDDO!定义所需的线性单元内力ETABLE,节点I的内力存入数组ITNFI,!节点J的内力存入数组ITNFJETABLE,ITNFI,SMISC,ITFINUMETABLE,ITNFJ,SMISC,ITFJNUM!定义所需的结果数组,并将其置零ETABLE,ITNFINEO,SMISC,5SADD,ITNFINEO,ITNFI,,1ETABLE,ITNFJNEO,SMISC,11SADD,ITNFJNEO,ITNFJ,,1*DO,K,1,SELNODNUM,1!处理不需平均的节点INDEX=0*IF,UNNODNUM,GE,1,THEN*DO,J,1,UNNODNUM*IF,NODNUM(K),EQ,UNNOD(J),THENINDEX=1*ELSE*ENDIF*ENDDO*ELSE*ENDIF*DO,J,1,SELELENUM,1!选出和节点K相连的线性单元中,I节点(对线性单元而言)为节点K的单元编号*IF,NELEM(ELENUM(J),1),EQ,NODNUM(K),THENELEI=ELENUM(J)*EXIT*ELSE*ENDIF*ENDDO*DO,J,1,SELELENUM,1!选出和节点K相连的线性单元中,J节点(对线性单元而言)为节点K的单元编号*IF,NELEM(ELENUM(J),2),EQ,NODNUM(K),THENELEJ=ELENUM(J)*EXIT*ELSE*ENDIF*ENDDO*IF,INDEX,EQ,0,THEN*IF,ELEJ,NE,0,THEN !有可能出现ELEJ为0的情况!取出I节点为节点K的单元的I节点端的内力放入参数ETELEI *GET,ETELEI,ELEM,ELEI,ETAB,ITNFI!取出J节点为节点K的单元的J节点端的内力放入参数ETELEJ *GET,ETELEJ,ELEM,ELEJ,ETAB,ITNFJ!平均节点K的单元的I节点端的内力和节点K的单元的J节点端的内力ETAVE=(ETELEI+ETELEJ)/2!将平均后的内力存入结果数组中DETAB,ELEI,ITNFINEO,ETAVEDETAB,ELEJ,ITNFJNEO,ETAVE*ELSE*ENDIF*ELSE*ENDIF*ENDDO/UDOC,1,LOGO,OFFPLLS,ITNFINEO,ITNFJNEO!END OF ITFAVG.MAC(2)对体和面来说,ANSYS默认的结果输出格式是云图格式,而这种彩色云图打印为黑白图像时对比很不明显,无法表达清楚,对于发表文章非常不便。

基于ANSYS二次开发求解实体单元内力在港口工程中的应用

基于ANSYS二次开发求解实体单元内力在港口工程中的应用

(5)
设三角形 ABC 上的正应力为 σN,则由投影可
得:
σN =lXN+mYN+nZN
(6)
设三角形 ABC 上的剪应力为 τN,则有:
S2 N
=σN2
+
τ2 N
=XN2
+YN2
+ZN2
(7)
可得:
τ2 N
=XN2
+YN2
+ZN2
-σN2
(8)
根据材料力学和弹性力学可得:
乙 N= σNdS S
乙 Q= τNdS
文章结合空心块体码头中空心块体吊运中内 力计算,介绍了 ANSYS 开发求解实体单元内力的 基本原理,并开发了实体单元求解内力的 ANSYS 的程序。开发的 ANSYS 求解实体单元内力程序, 能得到实体单元的内力图,具有很好的实用性和 通用性。
1 截面应力转换成截面内力的计算原理[3] 通过三维有限元计算可得到结构的空间应力
Key words: solid element; secondary development; moment diagram; torque diagram; harbor engineering
ANSYS 软件作为一款强大的数值计算软件, 已经逐步在水运工程中得到应用[1]。该软件可对结 构在各种荷载条件下的受力、变形、稳定性以及 结构动力特性做全面分析,从力学计算、组合分 析等方面提出了全面的解决方案,为设计人员提 供了功能强大方便实用的分析手段[1]。ANSYS 软件 可通过建立参数化模型,适应不同规范要求,已
实体单元在 ANSYS 后处理中,可通过面操作 得到截面的内力。在实现由应力到内力转变过程 中,其实就是面上数据的运算。面上数据的运算需 先将结果数据映射到定义的面上。面上的数据运算 包括:基本数学运算、矢量运算和积分运算等。

(整理)MIDAS计算弯桥及汽车荷载方法.

(整理)MIDAS计算弯桥及汽车荷载方法.

MIDAS计算弯桥及汽车荷载方法对于弯桥,可以把它简化为单根曲梁、平面梁格计算,也可以用实体单元、板单元计算。

单根曲梁模型。

优点:简单,缺点:几乎所有类型的梁单元都有刚性截面假定、因而不能考虑桥梁横截面的畸变,总体精度较低。

梁格法。

优点:可以直接输出各主梁的内力,便于利用规范进行强度验算,整体精度能满足设计要求。

缺点:它对原结构进行了面目全非的简化,大量几何参数要预先计算准备,如果由计算者手工准备,不仅工作量大,而且人为偏差较难避免。

实体单元、板单元模型。

优点:与实际模型最接近,不需要计算横截面的形心、剪力中心、翼板有效宽度,截面的畸变、翘曲自动考虑;缺点:输出的是梁横截面上若干点的应力,不能直接用于强度计算;不能直接考虑预应力问题。

1 建模以直代曲,划分的单元越多,精度越高。

2 自重梁单元内外侧长度不等造成的扭矩,可通过施加偏心均布荷载或均布扭矩来调整。

3 汽车荷载计算依据规范,按静荷载修正的方法计算。

4 车道定义车道(板单元定义车道面),车道的横向布置需由用户定义。

最好按偏载定义各车道位置,多车道的横向折减系数由程序自动计算。

程序不能自动考虑汽车荷载的纵向折减,当跨径大于150m时,用户应在定义移动荷载分析子荷载工况时,在系数中自行输入纵向折减系数。

5 注意a. 在定义车道中输入的跨度的用途有两个: 一个是程序根据输入的值按JTGD60-2004的4.3.1条自动选择公路-I级荷载Pk值、按4.3.5自动选择人群荷载标准值;二是用于计算冲击系数,当用户在分析>移动荷载分析控制中选择按输入的跨度计算冲击系数时,将按在定义车道时输入的跨度计算冲击。

b. 在定义车道时,选择跨度实始点的用途: 当用户在分析>移动荷载分析控制中选择按影响线加载长度计算冲击时,程序将根据跨度始点间的距离计算冲击。

6 连续梁桥的各跨跨度不同时,程序自动按在定义车道时输入的各跨跨度中最大值选用Pk值(偏于安全)。

关于倾覆弯矩规范法与轴力法计算结果不同的分析与讨论

关于倾覆弯矩规范法与轴力法计算结果不同的分析与讨论

第二十三届全国高层建筑结构学术会议论文 2014年关于倾覆弯矩规范法与轴力法计算结果不同的分析与讨论隋庆海(中国建筑东北设计研究院有限公司深圳分公司深圳 518040)摘要:按照《建筑抗震设计规范》和《高层建筑混凝土结构技术规程》,在框剪结构设计中,框架部分承担的地震力倾覆弯矩占结构总地震倾覆力矩的比例是结构设计必须考虑的重要指标。

然而,目前设计中有两种说法,一种是按规范计算,一种是按柱底轴力计算。

两种计算方法计算的结果不同,有时还相差很大。

本文笔者从不同角度对其进行了推导,当扣除轴力法结果中剪力墙的贡献后,轴力法与规范法计算结果一致,可以认为规范法正确,软件的轴力法值得商榷。

关键词:倾覆力矩轴力法1规范及STAWE软件对倾覆弯矩的计算规定根据《高规》[1]7.1.8、8.1.3、10.2.16条,《抗规》[2]6.1.3、6.1.9条的有关规定,倾覆力矩的计算是结构设计中极其重要的指标,且抗规6.1.3条的条文说明中明确规定,框架部分地震力倾覆弯矩的计算公式为:除此之外,SATWE中还提供了一种倾覆弯矩的算法即轴力法[3]。

其计算方法如图1所示。

按力学方法计算倾覆弯矩需先计算合力作用点,然后用底部轴力对合力作用点取矩:(2)2不同计算方法的计算结果工程实践表明,同一工程按照上述两种不同计算方法计算的框架部分承担的倾覆力矩结果不同,有时差别还比较大,以SATWE培训的图2所示简单的框筒结构工程为例,SATWE的计算结果如下:图1 轴力法计算简图图2 框筒结构算例平面图上述计算结果表明,同一框剪结构框架部分承担的倾覆力矩相差达两倍之多。

对此,有人认为规范算法正确,有人认为轴力法计算合理,也有人说由设计人员根据实际情况判断使用,这样在工程设计中易造成有倾向选择计算方法来满足规范对框剪结构中框架部分承担倾覆弯矩比例规定的情况出现。

3不同方法计算结果产生差异的原因分析力学有几个特点,一是无论对体系还是对体系内的任何构件,力永远是平衡的;二无论采用什么样的计算方法,计算的结果是一致的。

系杆拱桥结构受力分析

系杆拱桥结构受力分析

系杆拱桥结构受力分析作者:***来源:《中国水运》2021年第12期摘要:系杆拱桥兼具拱桥的跨越能力和简支梁桥对地质基础的适应能力的优点,故而广泛应用于国内外的桥梁建设。

本文以某系杆拱桥为研究背景,用有限元软件Midas/Civil对桥梁进行模拟,分析其吊杆和拱肋结构受力,得出以下结论:(1)恒载引起吊杆和拱肋的内力比活载较大;(2)在恒载和活载作用下,拱肋在拱脚处弯矩较大;(3)对于有纵坡的系杆拱桥,其纵向的不对称性会对拱肋弯矩产生影响。

研究结果可为同类桥梁设计与后期加固提供参考依据。

关键词:系杆拱桥;Midas/civil;受力分析中图分类号:U448.22+5 文献标识码:A 文章编号:1006—7973(2021)12-0151-03系杆拱桥是主要由拱肋、吊杆和系梁组成的一种复合结构体系,因其内部超静定外部简支的受力特性,故兼具有拱桥的较大跨越能力和简支梁桥对地基适应能力强两大特点。

当桥面高程受到严格限制而桥下又要求有较大的净空,或当墩台基础地质条件不佳但又要保证较大跨径时,系杆拱桥是一种较优越的桥型[1-4]。

由于系杆拱桥设计和施工技术逐渐趋于成熟,在许多城市建设和公路修建上得到大量运用,如广州南沙凤凰三桥、扬州大运河桥等,均为系杆拱桥结构[5-6]。

但随着时间推移,许多系杆拱桥均存在服役过久,使用负荷较大现象,而且当时设计和施工技术不完善,导致目前部分系杆拱桥仍存在许多问题,如出现裂缝,变形等病害,甚至直接发生倒塌,危及人民生命财产安全[7-8]。

为减少此类情况发生,笔者以某系杆拱桥为研究背景,以此桥的受力情况分析其内力作用机理。

具体方法为,使用有限元软件Midas/Civil 对桥梁进行数值模拟,以软件模型模拟桥梁真实受力情况,并读取其各部件在荷载作用下的内力情况,分析其吊杆和拱肋结构受力,本文研究结果可在同类桥梁设计以及后期加固过程中提供一定的参考依据。

1工程概况桥梁全长179米,全宽40米,按整幅桥设计。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实体单元弯矩和轴力的提取
对于一个实体梁
长10m,宽0.6m,高1.0m
程序代码
finish$/clear
finish$/prep7
blc4,0,0,10,0.6,1
ET,1,SOLID45$MP,EX,1,200e6$MP,PRXY,1,0.3!定义单元类型、材料特性
ESIZE,0.5$VMESH,ALL
FINISH$/SOLU
asel,s,loc,x,0
nsla,s,1$d,all,all
nsel,s,loc,x,10
*get,Nnode,node,0,count
f,all,fx,100/Nnode
f,all,fy,30/Nnode
f,all,fz,50/Nnode
SOLVE
finish$/post1
! define surface
wpcsys,-1
wpoffs,5,0.3,0.5$wprota,0,0,90
sucr,xsurf1,cplane,3$!supl,xsurf1
!define varible needed
sumap,sx,s,x$!supl,xsurf1,sx
sumap,sy,s,y$!supl,xsurf1,sy
sumap,sz,s,z$!supl,xsurf1,sz
sumap,sxy,s,xy$!supl,xsurf1,sxy
sumap,syz,s,yz$!supl,xsurf1,syz
sumap,sxz,s,xz$!supl,xsurf1,sxz
!--------The following code varies in the normal direction of section definded------
!------------------------This is for the direction of x aixs------------------
! get section force: Ax SFy SFz
sueval,Ax,sx,intg
sueval,SFy,sxy,intg
sueval,SFz,sxz,intg
! get section center
sueval,A,DA,sum! GCX, GCY, GCZ---global Cartesian coordinates at each point on the surface.
sueval,Sx,GCx,intg$dx=Sx/A
sueval,Sy,GCy,intg$dy=Sy/A
sueval,Sz,GCz,intg$dz=Sz/A
! get the section moment: Mz,My,TOR
sucalc,sxdz,sx,mult,GCz$!supl,xsurf1,sxdz
sueval,Mz,sxdz,intg
Mz=Mz-Ax*dz!Mz
sucalc,sxdy,sx,mult,GCy$!supl,xsurf1,sxdy
sueval,My,sxdy,intg
My=My-Ax*dy!My
sucalc,sxydz,sxy,mult,GCz
sucalc,sxzdy,sxz,mult,GCy
sucalc,tordl,sxydz,add,sxzdy
sueval,TOR,tordl,intg
TOR=TOR-SFy*dz-SFz*dy!TOR
!------------------------------------------------------------------------------------
Ax=∫Sx
A
SFy=∫Sxy
A
SFz=∫Sxz
A
My=∫Sxdz
A
Mz=∫Sxdy
A
TOR=∫Sxydz−Sxzdy
A
!-----------------------This is for the direction of x aixs--------------------------
! get section force: Ax SFy SFz
sueval,Ax,sy,intg
sueval,SFy,sxy,intg
sueval,SFz,syz,intg
! get section center
sueval,A,DA,sum! GCX, GCY, GCZ---global Cartesian coordinates at each point on the surface.
sueval,Sx,GCx,intg$dx=Sx/A
sueval,Sy,GCy,intg$dy=Sy/A
sueval,Sz,GCz,intg$dz=Sz/A
! get the section moment: Mz,My,TOR
sucalc,sxdz,sx,mult,GCz$!supl,xsurf1,sxdz
sueval,My,sxdz,intg
My=My-Ax*dz!My
sucalc,sxdy,sx,mult,GCy$!supl,xsurf1,sxdy
sueval,My,sxdy,intg
Mz=Mz-Ax*dy!Mz
sucalc,sxydz,sxy,mult,GCz
sucalc,sxzdy,sxz,mult,GCy
sucalc,tordl,sxydz,add,sxzdy
sueval,TOR,tordl,intg
TOR=TOR-SFy*dz-SFz*dy!TOR
!-----------------------------------------------------------------------------------------。

相关文档
最新文档