趋势剔除法求季节指数的计算案例

合集下载

统计学考研真题精选13

统计学考研真题精选13

统计学考研真题精选13(总分:200.00,做题时间:150分钟)一、单项选择题(总题数:24,分数:24.00)1.五月份的商品销售额为60万元,该月的季节指数为120%,则消除季节因素影响后,该月的商品销售额为()万元。

(分数:1.00)A.72B.50 √C.60D.51.2解析:消除季节因素影响后的商品销售额=该月商品实际销售额/该月季节指数=60/120%=50(万元)2.周末超市的营业额常常会高于平常的数额,这种波动属于()。

(分数:1.00)A.长期趋势B.循环变动C.季节变动√D.不规则变动解析:季节变动也称季节性,它是时间序列在一年或更短的时间内重复出现的周期性波动。

季节性中的“季节”一词是广义的,它不仅仅是指一年中的四季,其实是指任何一种短期内周期性的变化。

3.应用指数平滑法预测时,给定的权数应该是()。

(分数:1.00)A.近期权数大,远期权数小√B.近期权数小,远期权数大C.权数和资料的大小成正比D.权数均相等解析:指数平滑法是通过对过去的观察值加权平均进行预测的一种方法,该方法使t+ 1期的预测值等于t期的实际观察值与t期的预测值的加权平均值。

指数平滑法是加权平均的一种特殊形式,观察值时间越远,其权数也跟着呈现指数下降。

即近期权数大,远期权数小。

4.在羽绒服销售量时间序列分析中,一般情况下8月份的季节指数()。

(分数:1.00)A.等于1B.大于1C.小于1 √D.无法确定解析:季节指数刻画了序列在一个年度内各月或各季度的典型季节特征。

季节指数是以其平均数等于100%为条件而构成的,它反映了某一月份或季度的数值占全年平均数值的大小。

一般来说,8月份是羽绒服销售淡季,故季节指数应小于1。

5.如果时间序列的逐期观察值按一定的增长率增长或衰减,则适合的预测模型是( )。

(分数:1.00)A.移动平均模型B.指数平滑模型C.线性模型D.指数模型√解析:移动平均模型和指数平滑模型是对平稳时间序列进行预测的方法,而线性模型和指数模型是对趋势型序列进行预测的方法。

第7章时间序列分析习题解答

第7章时间序列分析习题解答

第七章时间序列分析思考与练习一、选择题1.已知2000-2006年某银行的年末存款余额,要计算各年平均存款余额,该平均数是:( b )a. 几何序时平均数;b.“首末折半法”序时平均数;c. 时期数列的平均数;d.时点数列的平均数。

2.某地区粮食增长量1990—1995年为12万吨,1996—2000年也为12万吨。

那么,1990—2000年期间,该地区粮食环比增长速度( d )a.逐年上升b.逐年下降c.保持不变d.不能做结论上表资料中,是总量时期数列的有( d )a. 1、2、3b. 1、3、4c. 2、4d. 1、34.利用上题资料计算零售额移动平均数(简单,4项移动平均),2001年第二季度移动平均数为(a )a. 47.5b. 46.5c. 49.5d. 48.4二、判断题1.连续12个月逐期增长量之和等于年距增长量。

2.计算固定资产投资额的年平均发展速度应采用几何平均法。

3.用移动平均法分析企业季度销售额时间序列的长期趋势时,一般应取4项进行移动平均。

4.计算平均发展速度的水平法只适合时点指标时间序列。

5.某公司连续四个季度销售收入增长率分别为9%、12%、20%和18%,其125126环比增长速度为0.14%。

正确答案:(1)错;(2)错;(3)对;(4)错;(5)错。

三、计算题:1.某企业2000年8月几次员工数变动登记如下表:试计算该企业8月份平均员工数。

解:该题是现象发生变动时登记一次的时点序列求序时平均数,假设员工人数用y 来表示,则: 1122n 12y y ...y y=...nnf f f f f f ++++++121010124051300151270311260()⨯+⨯+⨯+=≈人 该企业8月份平均员工数为1260人。

2. 某地区“十五”期间年末居民存款余额如下表:试计算该地区“十五”期间居民年平均存款余额。

解:居民存款余额为时点序列,本题是间隔相等的时点序列,运用“首末折半法”计算序时平均数。

管理数量方法计算题题解

管理数量方法计算题题解

管理数量方法计算题题解习题一 计算题 1.某地区股民生产总值GNP 在1988年~1989年平均每年递增15%,1990年~1992年年平均每年递增12%, 1993年~1997年平均每年递增9%,试计算:(1)该地区国民生产总值这十年间的总发展速度及平均增长速度。

(2)若1997年的国民生产总值为500亿元,,以后每年增长8%,到2000年可达到多少亿元? 解:(1) 总发展速度()()()235115%112%19%285.88%=+++=平均增长速度1111.08%===(2) 2000年GNP ()350018%629.86=+= (亿元) 2解:甲农贸市场蔬菜平均价格 ()75.040.045.00.3275.040.045.00.300.320.6++==++元千克 乙农贸市场蔬菜平均价格()37.580.045.00.32537.580.045.00.300.320.6++==++元千克 经计算可知,乙市场蔬菜平均价格较高,原因是乙市场价格高的蔬菜在销售额中所占比重较大3.某企业360名工人生产某种产品的资料如下表:解:7月份工人平均日产量=111530257835108459055426512373078108904212i ii i i x ff=⨯+⨯+⨯+⨯+⨯+⨯===+++++∑∑8月份工人平均日产量=111518253035724512055906530441830*********i ii i i x ff=⨯+⨯+⨯+⨯+⨯+⨯===+++++∑∑根据计算结果可知:8月份的工人每人平均日产量比7 月份工人每人平均日产量多7件。

其原因是不同日产量水平的工人人数所占比重发生了变化,7月份工人日产量在40件以上的工人人数仅占工人总人数的90421243%360++=,而8月份这部分工人人数占工人总人数的66.67%4试填入表中所缺的数字(要求写出计算过程)解:2001年A 公司计划产值()1900370589941=-+=2001年A 公司计划产值比重94149.51900== 2001年A 公司实际产值94197%912.8=⨯=; 2001年A 公司实际产值比重912.846.4%1968.6==2001年B 公司计划产值190031%589=⨯= 2001年B 公司实际产值589111%653.8=⨯=2001年B 公司实际产值比重653.833.2%1968.6==2000年C 公司实际产值402405.210.8%==-(); 2001年C 公司计划产值比重37019.5%1900==;2001年C 公司实际产值比重40220.4%1968.6== 2001年C 公司计划完成402108.6%370==2000年A 公司实际产值()912.8835.119.3%==+2000年B 公司实际产值1500(835.1405.2)259.7=-+=B 公司2001年比2000年产值增长653.8259.7151.8%259.7-==三家公司产值2001年计划完成程度1968.6103.6%1900==三家公司产值2001年比2000年增长1968.6150031.24%1500-==习题二计算题1. 已知某种球体直径服从()2,xN μσμσ2和未知,某位科学家测量到的一个球体直径的5次记录为: 6.33、6.37、6.36、6.32和 6.37 厘米,试估计 2μσ和值。

季节性分析方法

季节性分析方法

yt M
t

Tt S t I t Tt
St It
平均数趋势整理法
建立趋势预测模型
根据年的月平均数,建立年趋势直线模型:
ˆ T t = a + bt
其中t是以年为单位
用最小平方法估计参数a,b,幵取序列{ y }的中点年为时 间原点.再把此模型转变为月趋势直线模型
(t )
Tˆt = a 0 + b 0 t b a0 = a + 24 , b0 = b 12
时间序列分析模型
加法模型
Y=T+S+C+I
乘法模型 Y=T×S×C×I
Y T

T S I T
S I
时间序列的分解分析
分解步骤:
① 分析和测定现象变动的长期趋势,求趋势值T。 ② 对时间序列进行调整,即减去或除以T,得出丌包含趋势 变动的时间序列资料。 乘法模型:
Y T T S I T S I
同月平均数与季节指数对比
元/吨 1.04 1.02 1 0.98 0.96 1 2 3 4 5 6 7 8 9 10 11 12 季节指数 同月平均 3400 3350 3300 3250 3200 3150 3100 3050 3000
yt M
t

Tt S t I t Tt
St It
计算季节比率及其平均数
y Mt tBiblioteka Tt St
It
S
Tt
t
It
计算季节指数
yt M
t

Tt S t I t Tt
St It
移动平均趋势剔除法
移动平均季节指数

趋势剔除法求季节指数的计算案例

趋势剔除法求季节指数的计算案例
2002
70.37
146.79
第三步:求各季节的平均值
季节
一季度
二季度
三季度
四季度
平均值
70.36
145.64
132.89
50.17
第四步:进行指数修正
计算四个季节的平均值之和为399.06,修正系数为:400/399.06=1.0024
修正后各季节指数为:
季节
一季度
二季度
三季度
四季度
修正值
70.53
第一步:计算各季度的四季度移动平均,由于移动平均周期为偶数,需要进行两次移动平均,计算结果为
年度
一季度
二季度
三季度
四季度
1998
190.00
196.25
1999
206.25
213.75
216.25
223.75
2000
235.00
242.50
247.50
251.25
2001
256.25
260.00
261.25
145.99
133.21
50.29
266.25
2002
270.00
272.50
第二步:用原数据除以趋势值,得到各季的季节比率
年度
一季度
二季度
三季度
四季度
1998
126.32
50.96
1999
72.73
145.03
134.10
49.16
2000
68.09
148.45
133.33
51.74
2001
70.24
142.31
137.80
48.83

第4章 季节周期预测法

第4章 季节周期预测法

(2)计算修匀比例,即时间序列中各季度 的数值与其对应的趋势值相比,使其增长趋 势的影响得以消除,以表明各季度销售量的 季节变动程度。
(3)把修匀比率按季度排列,计算出各年同 季度平均数,及平均修匀比率,该数值就是 各季度指数。
(4)把各季的季节指数加起来,判断是否等 于400%。()
1400 1200 1000 800 600 400 200 0
1
2004
2
2005 2006
32007 200841400 1200 1000 800 600 400 200 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
第二步:计算季节指数(移动平均趋势剔除法 计算季节指数 ) (1)计算移动平均值。由于是季度数据,所 以在计算的时候,采用4项移动平均。并将 结果进行“中心化”处理,也就是将移动平 均的结果再进行一次2项移动平均,即得出 “中心化移动平均值”。
二、季节指标 (一)季节比率 不考虑长期趋势变动: 季节比率=各月(或季)实际观察值/月 (或季)平均值 考虑长期趋势: 各月(或季)实际观察值/月(或季)趋势值
(二)季节变差 季节变差: 不考虑长期趋势变动: 季节比率=各月(或季)实际观察值-月 (或季)平均值 考虑长期趋势: 各月(或季)实际观察值-月(或季)趋势值
季节比率偏离100%的程度大,说明季节变 动幅度大,季节比率偏离100%的程度小, 说明市场现象季节变动的幅度小。 季节变差偏离0的程度大,说明季节变动的 幅度大,季节变差偏离0的程度小,说明市 场现象季节变动的幅度小。
三、模型的形式 1、加法模型 Y=T+S 2、乘法模型 Y=T+S
四、不考虑长期趋势的季节预测法。 例2:某企业空调销售量2000-2003年四年 的月份资料如下表所示,说明该商品的销售 量是否呈季节变动,并用季节指标进行描述, 同时对该企业2004年的空调销售量进行预 测。 第一步:判断是否存在季节成分。

统计学的时间数列习地的题目及答案详解

统计学的时间数列习地的题目及答案详解

第十章时间数列分析和预测一、填空题1.同一现象在不同时间的相继____________排列而成的序列称为_______________。

2.时间序列在__________重复出现的____________称为季节波动。

3.时间序列在___________呈现出来的某种持续_______________称长期趋势。

4.增长率是时间序列中_________观察值与基期观察值______减1 后的结果。

5.由于比较的基期不同,增长率可分为_____________和______________。

6.复合型序列是指含有___________季节性和___________的序列。

7.某企业2005年的利润额比2000年增长45%,2004年2000年增长30%,则2005年比2004年增长_______;2004年至2000年平均增长率__________。

8.指数平滑法是对过去的观察值__________进行预测的一种方法。

9.如果时间序列中各期的逐期增减量大致相等,则趋势近似于_____________;各期环比值大体相等,则趋势近似于___________。

10.测定季节波动的方法主要有____________和_____________。

二、单项选择题1.用图形描述时间序列,其时间一般绘制在()A. 纵轴上B. 横轴上C. 左端D. 右端2.求解()趋势参数方法是先做对数变换,将其化为直线模型,然后用最小二乘法求出模型参数A. 三次曲线B. 指数曲线C. 一次直线D. 二次曲线3.对运用几个模型分别对时间序列进行拟合后,()最小的模型即位最好的拟合曲线模型A. 判定系数B. 相关系数C. 标准误差D.D—W值4.当数据的随机波动较大时,选用的移动间隔长度K应该()A. 较大B. 较小C. 随机D. 等于n5.在进行预测时,最新观察值包含更多信息,可考虑权重应()A. 更大B. 更小C. 无所谓D. 任意6. 按季度资料计算的季节指数S的取值范围是()A. 0≤ S ≤4B. 0 ≤S≤ 1C. 1 ≤S ≤4D. 1≤ S≤ 2三、多项选择题1. 时间序列可以分解为下列因素的影响 ( )A. 长期趋势B. 季节变动C. 周期波动D. 不规则变动E. 随机误差因素2. 某地区国民收入2000年为140亿元,2005年比2000年增长45%,则()A. 国民收入2005年比2000年增加了63亿元B. 2000年每增长1%的绝对值为1.4亿元C. 五年间平均增长率是9%D. 国民收入2005年达到210亿元E. 国民收入2005年达到203亿元3.测定季节变动A. 可以依据年度资料B. 可以依据月度资料C. 可以依据季度资料D. 需要三年以上资料E. 可以依据任何资料4. 时间序列分解较常用的模型有()A. 加法模型B. 乘法模型C. 直线模型D. 指数模型E. 多项式模型5.一次指数平滑法的初值的确定可以()A. 取第一期的实际值B. 取最初三期的加权平均值C. 取最初几期的平均值D. 取初值=1E. 取任意值四、简答题1. 简述时间序列的构成要素2. 利用增长率分析时间序列时应注意哪些问题3. 简述用平均趋势剔除法求季节指数的步骤4. 简述用剩余法求循环波动的基本步骤5. 试比较移动平均法与一次指数平滑法五、计算题1.某企业利润额资料如下:要求:(1) 求出直线趋势方程(2)预测2006年的利润额2.已知某煤矿(1)求五期移动平均;(2)取α= 0.9,求一次指数平滑3.某地财政收入资料如下试用指数曲线拟合变动趋势4.某商场销售资料如下:(单位:百万元)试就其进行季节变动分析5.某企业职工人数逐年增加,有1992—2004年的资料,求得∑t = 0,∑ty=9100,∑y = 15600;试求出直线趋势方程,并估计2006年职工人数。

季节预测法例题

季节预测法例题

季节预测法是一种基于时间序列数据的预测方法,它利用时间序列中的季节性规律来预测未来的趋势。

下面是一个使用季节预测法的简单例题:
假设你是一位餐厅老板,想要预测未来一个月的销售额。

你收集了过去几个月的销售额数据,发现销售额呈现出季节性波动,每个月的销售额都会出现一次高峰和一次低谷。

基于这些数据,你可以使用季节预测法来预测未来一个月的销售额。

具体步骤如下:1.将时间序列数据划分为若干个季节,每个季节包含若干个时间点。

在这个例子
中,你可以将每个月划分为一个季节,然后计算每个月的平均销售额。

2.计算季节性指数,即将每个季节的平均销售额除以所有季节的平均销售额。


如,如果某个月的平均销售额为1000元,而所有月份的平均销售额为800元,则该月份的季节性指数为1.25。

3.使用季节性指数来预测未来一个月的销售额。

假设过去几个月的季节性指数分
别为1.1、1.2、1.3和1.4,则未来一个月的销售额预测值为800 * 1.3 = 1040元。

需要注意的是,季节预测法只适用于具有明显季节性规律的时间序列数据。

如果数据中没有明显的季节性规律,或者季节性规律不稳定,则该方法可能不适用。

此外,还需要注意数据的异常值和缺失值对预测结果的影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
145.99
133.21
50.29
趋势剔除法求季节指数的计算案例
某工厂各季节产品的销售情况如下表所示(万元)
年度
一季度
二季度
三季度
四季度
1998
130
280
240
100
1999
150
310
290
110
2000
160
360
330
130
2001
180
370
360
130
2002
190
400
360
150
试使用趋势剔除法分别求各季的季节指数。
第一步:计算各季度的四季度移动平均,由于移动平均周期为偶数,需要进行两次移动平均,计算结果为
年度
一季度
二季度
三季度
四季度
1998
190.00
196.25
1999
206.25
213.75
216.25
223.75
2000பைடு நூலகம்
235.00
242.50
247.50
251.25
2001
256.25
260.00
261.25
2002
70.37
146.79
第三步:求各季节的平均值
季节
一季度
二季度
三季度
四季度
平均值
70.36
145.64
132.89
50.17
第四步:进行指数修正
计算四个季节的平均值之和为399.06,修正系数为:400/399.06=1.0024
修正后各季节指数为:
季节
一季度
二季度
三季度
四季度
修正值
70.53
266.25
2002
270.00
272.50
第二步:用原数据除以趋势值,得到各季的季节比率
年度
一季度
二季度
三季度
四季度
1998
126.32
50.96
1999
72.73
145.03
134.10
49.16
2000
68.09
148.45
133.33
51.74
2001
70.24
142.31
137.80
48.83
相关文档
最新文档