张平第一原理电子结构计算程序VASP.pdf
VASP原包的计算过程及原理

——by Tan Su
VASP计算流程概括:
首先在Materiale Studio(MS)里导入原包模型,即纯金属模型、氧化 物模型、原子模型等
把原包坐标转换成VASP坐标,用FTP转入所要计算的服务器(a)
然后在SecureCRT中进入服务器a,建立文件夹(mkdir 文件名,如 sut), 也可以直接用ftp键入好文件夹,在所建好的原包文件件,如 Au中键入四个指标(vi 名称,名称必需大写!) 四个指标分别是:INCAR,KPOINTS,POSCAR,POTCAR 复制VASP脚本,即:cp VASP脚本 交作业: qsub 目录(如所在即是要算的目录,可不加) VASP脚本 作业运行:qstat
ljy01 : 192.9.207.206 ljy03a:192.9.207.102 ljy07a:192.9.207.102 ljy01b-ljy04b:192.9.207.253 pdr06b: 192.9.207.253 ljy01c:192.9.207.204 ljy01e-ljy02e: 192.9.207.240 ljy01g:192.9.207.18 ljy01h-ljy02h:192.9.200.99 st01d: 192.9.207.206
存成*.cif和*.car文件
16
表面的计算
在VESTA软 件中打开所 要转化的*.cif 文件,如右 图所示,转 化为*.VASP 文件 另外一种方 式见过渡态 计算部分
17
表面的计算
பைடு நூலகம்
固定最上两层,即 最大数值的两个, 所以区域为7-9.5 之间即可
自动生成四个参数,需 要检查参数是否正确
18
一般会进入队列排队(R),也可能出错,请检查OUTCAR文件 多余作业取消:qdel 作业代号
电子结构计算方法概述

第二章电子结构计算方法概述物体所表现的宏观特性都由物体内部的微观结构决定,块状材料在力学、热学、电学、磁学和光学等方面的许多基本性质,如振动谱、电导率、热导率、磁有序、光学介电函数、超导等都由电子结构决定1。
因此,定量、精确地计算材料的电子结构在解释实验现象、预测材料性能、指导材料设计等方面都具有非常重要的意义和作用,也是一个富有挑战性的课题。
第一性原理计算方法概述2.1.1 基本概念与其它理论计算方法类似,电子结构的计算方法大体上也可划分为两类:半经验(或经验)计算方法与第一性原理(First-Principles)计算方法(也有“从头算(ab initio)”这个叫法)。
前者是指在总结归纳某些实验现象与结果的基础上建立起相应的理论模型、计算公式与参数,然后推广应用到研究其它现象和性质的理论方法;后者则、电子电量e、普指仅需采用5个基本物理常数,即电子的静止质量m朗克(Plank)常数h、光速c和玻尔兹曼(Boltzmann)常数k B,而不需要其它任何或经验或拟合的可调参数,就可以应用量子力学原理(Schrödinger方程)计算出体系的总能量、电子结构等的理论方法2。
在计算过程中,它只需知道构成体系的各个元素与所需要模拟的环境(如几何结构),因此有着半经验方法不可比拟的优势。
2.1.2 基本思路量子力学是20世纪最伟大的发现之一,它构成了整个现代物理学(甚至现代化学)的基石,其矩阵力学形式最先由海森堡(W. K. Heisenberg)于1925年创立。
但量子力学最流行的表述形式却是薛定谔(Schrödinger)于次年建立的与矩阵力学形式等价的波动力学形式,它的核心是粒子的波函数及其运动方程——薛定谔方程。
对一个给定的系统,我们可能得到的所有信息都包含在系统的波函数当中。
因此,第一性原理计算方法的基本思路就是将多个原子构成的体系理解为由电子和原子核组成的多粒子系统,然后求解这个多粒子系统的薛定谔方程组,获得描述体系状态的波函数Φ以及对应的本征能量——有了这两项结果,从理论上讲就可以推导出系统的所有性质 2。
vasp

(9) NELM=整数 整数 该关键词确定能量自洽场最大迭代轮数,缺省为60轮 该关键词确定能量自洽场最大迭代轮数,缺省为 轮; NELMIN=整数 整数 在构型优化中,计算每个构象能量时最少迭代轮数, 在构型优化中,计算每个构象能量时最少迭代轮数,一般 为3~4,以保证能量和力的稳定性; ,以保证能量和力的稳定性; (10)
-0.125 -0.125 -0.125 T T T
POTCAR文件内容说明: 文件内容说明: 文件内容说明 VASP程序本身有提供了赝势库,只需将体系各类原子的 程序本身有提供了赝势库, 程序本身有提供了赝势库 赝势合并在一起即可,但需注意到: 赝势合并在一起即可,但需注意到: 1) 赝势类型: 赝势类型: LDA US型赝势 型赝势 GGA PBE LDA PAW型赝势 型赝势 GGA PBE PW91 PW91 US 型 赝 势 所 需 截 至 能 较小,计算速度快, PAW 赝 势 截 至 能 通 常 较大, 较大,而且考虑的电子 数多,计算慢, 数多,计算慢,但精确 度高。 度高。
2) POTCAT中各原子赝势定义的顺序必需与 中各原子赝势定义的顺序必需与POSCAR中相同: 中相同: 中各原子赝势定义的顺序必需与 中相同
surface of mgo(100) (2*2)Mg 1.00000000000000 5.9459999999999997 0.0000000000000000 0.0000000000000000 0.0000000000000000 5.9459999999999997 0.0000000000000000 0.0000000000000000 0.0000000000000000 20.0000000000000000 20 20 Selective dynamics Direct ……
VASP第一性原理计算与案例详解

VASP第⼀性原理计算与案例详解V ASP第⼀性原理计算与案例详解⽬录第⼀章 LINUX命令 (3)1.1 常⽤命令 (3)1.1.1 浏览⽬录 (3)1.1.2 浏览⽂件 (3)1.1.3 ⽬录操作 (3)1.1.4 ⽂件操作 (3)1.1.5 系统信息 (3)第⼆章 SSH软件使⽤ (4)2.1 软件界⾯ (4)2.2 SSH transfer的应⽤ (5)2.2.1 ⽂件传输 (5)2.2.2 简单应⽤ (5)第三章 VASP的四个输⼊⽂件 (5)3.1 INCAR (5)3.2 KPOINTS (6)3.3 POSCAR (6)3.4 POTCAR (7)第四章实例 (8)4.1 模型的构建 (8)4.2 VASP计算 (11)4.2.1 参数测试(VASP)参数设置 (11)4.2.2 晶胞优化(Cu) (18)4.2.3 Cu(100)表⾯的能量 (20)4.2.4 吸附分⼦CO、H、CHO的结构优化 (22)4.2.5 CO吸附于Cu100表⾯H位 (24)4.2.6 H吸附于Cu100表⾯H位 (25)4.2.7 CHO吸附于Cu100表⾯B位 (26)4.2.8 CO和H共吸附于Cu100表⾯ (28)4.2.9 过渡态计算 (29)第⼀章 Linux命令1.1 常⽤命令1.1.1 浏览⽬录cd: 进⼊某个⽬录。
如:cd /home/songluzhi/vasp/CH4cd .. 上⼀层⽬录;cd / 根⽬录;ls: 显⽰⽬录下的⽂件。
注:输⼊⽬录名时,可只输⼊前3个字母,按Tab键补全。
1.1.2 浏览⽂件cat:显⽰⽂件内容。
如:cat INCAR如果⽂件较⼤,可⽤:cat INCAR | more (可以按上下键查看) 合并⽂件:cat A B > C (A和B的内容合并,A在前,B在后) 1.1.3⽬录操作mkdir:建⽴⽬录;rmdir:删除⽬录。
如:mkdir T-CH3-Rh1111.1.4 ⽂件操作rm:删除⽂件;vi:编辑⽂件;cp:拷贝⽂件mv:移动⽂件;pwd:显⽰当前路径。
vasp计算参数设置

软件主要功能:采用周期性边界条件(或超原胞模型)处理原子、分子、团簇、纳米线(或管)、薄膜、晶体、准晶和无定性材料,以及表面体系和固体l 计算材料的结构参数(键长、键角、晶格常数、原子位置等)和构型l 计算材料的状态方程和力学性质(体弹性模量和弹性常数)l 计算材料的电子结构(能级、电荷密度分布、能带、电子态密度和ELF)l 计算材料的光学性质l 计算材料的磁学性质l 计算材料的晶格动力学性质(声子谱等)l 表面体系的模拟(重构、表面态和STM模拟)l 从头分子动力学模拟l 计算材料的激发态(GW准粒子修正)计算主要的四个参数文件:INCAR ,POSCAR,POTCAR ,KPOINTS,下面简要介绍,详细权威的请参照手册INCAR文件:该文件控制VASP进行何种性质的计算,并设置了计算方法中一些重要的参数,这些参数主要包括以下几类:l 对所计算的体系进行注释:SYSTEMl 定义如何输入或构造初始的电荷密度和波函数:ISTART,ICHARG,INIWA Vl 定义电子的优化–平面波切断动能和缀加电荷时的切断值:ENCUT,ENAUG–电子部分优化的方法:ALGO,IALGO,LDIAG–电荷密度混合的方法:IMIX,AMIX,AMIN,BMIX,AMIX_MAG,BMIX_MAG,WC,INIMIX,MIXPRE,MAXMIX–自洽迭代步数和收敛标准:NELM,NELMIN,NELMDL,EDIFFl 定义离子或原子的优化–原子位置优化的方法、移动的步长和步数:IBRION,NFREE,POTIM,NSW–分子动力学相关参数:SMASS,TEBEG,TEEND,POMASS,NBLOCK,KBLOCK,PSTRESS–离子弛豫收敛标准:EDIFFGl 定义态密度积分的方法和参数–smearing方法和参数:ISMEAR,SIGMA–计算态密度时能量范围和点数:EMIN,EMAX,NEDOS–计算分波态密度的参数:RWIGS,LORBITl 其它–计算精度控制:PREC–磁性计算:ISPIN,MAGMOM,NUPDOWN–交换关联函数:GGA,VOSKOWN–计算ELF和总的局域势:LELF,LVTOT–结构优化参数:ISIF–等等。
VASP简介ppt课件

☺可以在一行设置多个关键词(即参数)的值,但是每个关键值之间用分 号(;)隔开。如ISMEAR= 0; SIGMA= 0.2。 ☺当想不用INCAR中某个关键词的值时,在该行前面加上井号(#)注释掉, 如#ISMEAR=0; SIGMA = 0.2
5
POSCAR输入文件:描述体系结构
例:SiC体系的POSCAR文件
TITEL = US Si
LULTRA = T use ultrasoft PP ?
IUNSCR = 1 unscreen: 0-lin 1-nonlin 2-no
RPACOR = 1.580 partial core radius
POMASS = 28.085; ZVAL = 4.000 mass and valenz
子动力学模拟的软件包。 • 基于(有限温度下的,对电子气而言)局域密度近似,自由
能作为电子气密度的泛函 • 在每个MD时间步长内精确求解电子气的瞬时基态
2
基本任务
• 晶体的电子结构(如态密度、能带、电荷密度)计算 • 晶体的磁学性质计算 • 优化晶体的结构参数 • 内部自由度弛豫 • 结构弛豫 • 表面体系的基本性质的计算
标题或注释行,无特别意义 K点的数目 以字母R开头表示k点是按倒格子坐标系 前三个数是k点的坐标,最后一个数是相应k 点的权重(下面共5个k点)
如果是以卡笛尔坐标系来写k点坐 标,则第三行以字母C开头。
9
POTCAR输入文件: 赝势文件
Si 的一种势函数的部分内容
US Si 4.00000000000000000 parameters from PSCTR are: VRHFIN =Si: s2p2 LEXCH = CA EATOM = 115.7612 eV, 8.5082 Ry GGA = -1.4125 -1.4408 .0293 -.9884 eV
电子结构计算的原理与方法

电子结构计算的原理与方法电子结构计算是一种通过计算准确描述和预测分子和凝聚态材料的电子结构和性质的方法。
该技术在材料科学、化学、物理学以及能源领域的研究中发挥着重要的作用。
本文将重点介绍电子结构计算的原理和方法。
1. 原理电子结构计算的基本原理是根据量子力学的理论,将电子波函数的薛定谔方程求解,得到体系的能量、电子结构等相关信息。
波函数的薛定谔方程为:HΨ = EΨ其中,H为哈密顿算符,Ψ为波函数,E为能量。
哈密顿算符包含了系统的动能和势能:H = T + V其中,T为动能算符,可表示为:T = ∑i(-(hbar)^2/2m_i)\nabla^2_i其中,hbar为普朗克常数除以2π,m_i为电子质量,\nabla_i 为电子的梯度算符。
势能算符V包含了电子之间的库仑相互作用和与原子核之间的相互作用。
电子之间的库仑相互作用可表示为:V_{Coulomb} = ∑i<j(e^2/4πε_0*r_ij)其中,e为元电荷,ε_0为真空电容率,r_ij为两个电子之间的距离,i和j分别表示电子编号。
与原子核之间的相互作用可表示为:V_{nuclear} = ∑i(Z_ie^2/4πε_0*r_i)其中,Z_i为原子核的电荷数,r_i为电子到原子核的距离。
利用波函数的薛定谔方程求解电子体系的能量、电子结构等相关信息,可以采用各种计算方法,如密度泛函理论、哈特里-福克方法、量子蒙特卡罗方法等。
2. 方法目前电子结构计算方法主要包括以下几种。
2.1 密度泛函理论密度泛函理论是一种基于电子密度的理论方法。
电子密度是指在空间坐标上的电子数目。
密度泛函理论主要通过计算体系电子密度,从而得到机制能、结合能、键长等性质。
其中最常用的是局域密度近似(LDA)和广义梯度近似(GGA)。
LDA方法认为每个电子所受的外电子势能只与该电子密度有关。
GGA方法则考虑每个电子周围电子密度的梯度对该电子密度的影响。
密度泛函理论的高效和精确性使其成为当今最有影响力的电子结构计算方法之一。
VASP用VASP46计算晶体硅能带实例用第一原理计算和其它方法研究纳米体系碳纳米管等的电子和自旋结构

Electronic relaxation 2 (details)
Write flags LWAVE = LCHARG =
T write WAVECAR T write CHGCAR
VASP给INCAR文件中的很多参数都设置了默认值,所以如果你对参 数不熟悉,可以直接用默认的参数值。
vaspviennaabinitiosimulationpackageintroductionoutlinelianghunannormaluniversity用vasp46计算晶体硅能带实例用第一原理计算和其它方法研究纳米体系碳纳米管等的电子和自旋结构参考书记introductionvasp是使用赝势和平面波基组进行从头量子力学分子动力学计算的软件包它基于castep1989版开发
P. 10
KPOINTS 文件:
采用自动的Monkhorst-Pack K点撒取方式。对于类似于硅晶体的
半导体材料,通常 4x4x4 的K点网格就够了。
Monkhorst Pack 0 Monkhorst Pack 44 4 00 0
ISIF = 2
stress and relaxation
P. 11
P. 5
第一行就是K点的倒空间的坐标,接下来的8行告诉我们 在那个K点上的8个能级。你可以通过EXCEL或者ORIGIN 之类的画图软件可视化结果。由于现在手头上已经有了 每个K点的能级信息,则将这些K点的能级连接起来就是 所需要的能带图了。下图是用以上步骤算得的硅的能带 图。我们可以看到硅并非是直接能隙的材料。同时,由 于我们用了LDA,所以硅的能隙和实验相比大大被低估 了(实验为1.12eV,计算值~0.6eV)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(4). 做非自洽计算, 求电子结构
• 修改INCAR文件: 将参数ICHARG设为 11 • 修改KPOINTS输入文件 • 运行VASP程序,从输出文件EIGENVAL中提出电子结构
画出电荷密度
VRHFIN =Si: s2p2 LEXCH = CA EATOM = 115.7612 eV, 8.5082 Ry GGA = -1.4125 -1.4408 .0293 -.9884 eV
TITEL = US Si LULTRA = T use ultrasoft PP ? IUNSCR = 1 unscreen: 0-lin 1-nonlin 2-no RPACOR = 1.580 partial core radius POMASS = 28.085; ZVAL = 4.000 mass and valenz RCORE = 2.480 outmost cutoff radius RWIGS = 2.480; RWIGS = 1.312 wigner-seitz radius (au A) ENMAX = 150.544; ENMIN = 112.908 eV EAUG = 241.945 …………
计算,得到输出文件EIGENVAL (5). 提取数据,画图
(1). 生成4个输入文件: POSCAR POTCAR INCAR KPOINTS
Diamond Si 5.5 0.0 0.5 0.5 0.5 0.0 0.5 0.5 0.5 0.0 2 Direct
0.0 0.0 0.0
0.25 0.25 0.25
(2)symmetric setup
Fixed layers (bulk)
unit cell
coordinates are optimized
vacuum
示例1: 用VASP求1*1Mg(0001)的表面性质
分如下几步:
(1). 生成4个输入文件: POSCAR POTCAR INCAR KPOINTS (2). 优化晶格参数,求出体Mg的晶格参数 (3). Mg(0001)的原子层数,构造超原胞的POSCAR (4). 计算表面性质 (5). 提取数据,画图
ar1
=
a(
1 2
r i
−
3
r j)
2
ar2
=
a(1 2
r i
+
3r Leabharlann )2ar3=
r ck
r b1 r b2
= =
2π
a
2π
a
r (i r (i
− +
3
r j)
3 3
r j)
3
r b3
=
2π
c
r k
rr r
Γ K
==013b1(b+r1r0+bbr22+)
0b3 = = (1,
3
(0,0,0) 1 ,0) 3
(ii) 从DOSCAR输出文件中读出态密度和费米能级,费米 费米能级也可从OUTCAR中读出.
0.6
0.5
0.4
DOS
0.3
0.2
0.1
-6
-4
-2
0
2
4
6
8
10
Energy
(4). 做非自洽计算, 求电子结构
• 修改INCAR文件: 将参数ICHARG设为 11 • 修改KPOINTS输入文件 • 运行VASP程序,从输出文件EIGENVAL中提出电子结构
c/a
ar1
=
a(1 2
r i
−
3 2
r j)
ar2
=
a(1 2
r i
+
3
r j)
2
ar3
=
r ck
System =hcp Mg ISTART = 0 ENCUT = 150.0 NELM= 200 EDIFF = 1E-04 EDIFFG = -0.02
NPAR=4 NSW=1 IBRION = 2 ISIF=2 ISYM = 1
(2). 优化晶格参数,求出能量最低所对应的晶格参数
运行VASP程序, 查看SUMMARY.fcc输出文件:
(3). 固定晶格参数, 求出能态密度(DOSCAR), 确定费米能量
(i) 找到平衡晶格常数后, 把该值写入到POSCAR文件中,并增加K点数 作一个离子步自洽计算(NSW = 0, IBRION = -1) .
Choosing POTCAR file
LDA GGA PAW_LDA PAW_GGA PAW_PBE(VASP4.5)
Check following line in POTCAR LEXCH= CA or 91 GGA= LPAW= T
基本任务
• 计算电子态密度,能带,电荷密度 • 优化晶体参数 • 内部自由度弛豫 • 结构弛豫
POSCAR
Mg(0001): 3.208000 0.5 0.5 0.0 6 Direct 0.0 0.6666667 0.0 0.6666667 0.0 0.6666667
• VASP输出电荷密度文件CHGCAR • 采用免费程序LEV00处理数据文件CHGCAR
/lev
(Å)
1
0
0 .0 7
0 .1 4
0
0 .2 1
0 .2 8
0 .3 4
0 .4 1
0 .4 8
-1
0 .5 5
-2
-3
-3
-2
-1
0
1
2
3
(Å )
示例2: 用VASP求Mg的电子态密度和能带
(1). 生成4个输入文件: POSCAR POTCAR INCAR KPOINTS
Hcp-Mg 3.208 0.5 -0.866 0 0.5 0.866 0 0.0 0.0 1.6 2 Direct 0.0 0.0 0.0 0.66667 0.33333 0.5
VASP提供 各种POTCAR
K-Points 0 Monkhorst Pack 21 21 21 000
原胞中的原子个数 坐标系选为基矢构成的坐标系
基矢坐标系下原子的位置
KPOINTS输入文件: 控制K-点的选取方式
K-Points 0 Monkhorst Pack 11 11 11 000
POTCAR输入文件: 赝势文件
US Si 4.00000000000000000 parameters from PSCTR are:
第一原理电子结构计算程序:VASP
• 程序原理 • 输入文件 • 输出文件 • 应用
输入文件
POTCAR KPOINTS POSCAR INCAR
pseudopotentail file Brillouin zone sampling structural data steering parameters
分如下几步:
(1). 生成4个输入文件: POSCAR POTCAR INCAR KPOINTS (2). 优化晶格参数,求出能量最低所对应的晶格参数 (3). 固定晶格参数, 求出能态密度(DOSCAR), 确定费米能量 (4). 修改KPOINTS和INCAR输入文件,固定电荷密度,做非自洽
计算,得到输出文件EIGENVAL (5). 提取数据,画图
0.66667 0.33333 0.1337
0.0 0.0
0.6337
VASP提供 各种POTCAR
K-Points 0 Monkhorst Pack 21 21 21 000
B A
B A
ar1
=
a(1 2
ir
−
3 2
rj)
ar2
=
a(1 2
ir
+
3 rj) 2
ar3
=
r ck
System =hcp Mg ISTART = 0 ENCUT = 150.0 NELM= 200 EDIFF = 1E-04 EDIFFG = -0.02 ISPIN = 2
POSCAR输入文件: 原胞中的原子位置
Diamond Si 3.9 0.0 0.5 0.5 0.5 0.0 0.5 0.5 0.5 0.0 1 Direct
0.0 0.0 0.0
ar1
=
1 2
a ( rj
+
r k)
ar 2
=
1 2
a (ir
+
r k)
ar3
=
1 2
r a(i
+
r j)
基矢的公因子 基矢a1 基矢a2 基矢a3
(2). 优化晶格参数,求出能量最低所对应的晶格参数
hcp结构晶体含有一个内部自由度, 晶格参数优化过程要比立方 结构费时
Mg: a=3.208, c/a=1.6
(3). 固定晶格参数, 求出能态密度(DOSCAR), 确定费米能量
(i) 找到平衡晶格常数后, 把该值写入到POSCAR文件中,并增加K点数 作一个离子步自洽计算(NSW = 0, IBRION = -1) .
VASP提供
K-Points 0
各种POTCAR Monkhorst Pack
21 21 21
000
System =diamond Si ISTART = 0 ENCUT = 150.0 NELM= 200 EDIFF = 1E-04 EDIFFG = -0.02
NPAR=4 NSW=1 IBRION = 2 ISIF=2 ISYM = 1
INCAR输入文件: 程序控制参数
System =diamond Si ISTART = 0 ENCUT = 150.0 NELM= 200 EDIFF = 1E-04 EDIFFG = -0.02