汽车电动助力转向电机技术参数简介
EPS技术参数范文

EPS技术参数范文EPS(Electric Power Steering,电动助力转向)技术是一种利用电动机作为力源,通过控制模块感知驾驶员转向力的变化,以提供合适的转向助力的技术。
以下是关于EPS技术的详细介绍,共计1200字以上。
EPS技术作为汽车转向系统的新一代替代技术,相比于传统的液压助力转向系统(HPS),具有许多显著的优势。
首先,EPS系统无需传统液压助力泵,在节能环保方面具有明显优势。
其次,EPS系统能够根据驾驶员的需求实时调整转向助力大小,提高驾驶员的操控感受。
此外,EPS系统还具有噪音低、可调参数多等优势。
EPS系统的关键技术参数有以下几个方面。
1.动力系统EPS系统的核心是电动机,它负责提供转向助力。
电动机的参数主要包括电机类型、额定功率、最大扭矩等。
目前市场上常见的电机类型包括无刷直流电动机(BLDC)和交流感应电动机(ACIM)。
无刷直流电动机因其高效、小型、轻质等特点,成为主流选择。
额定功率一般在50~250W之间,最大扭矩则视车型和市场需求而定。
2.传感及控制系统EPS系统需要通过传感器监测驾驶员的转向操作,并通过控制器对电动机进行精确的控制。
传感系统主要包括转向力传感器、转向角传感器和转向速度传感器。
控制系统则由控制器、计算机算法、信号处理器组成。
转向力传感器主要用于感知驾驶员施加的力矩,转向角传感器用于测量前轮转角,转向速度传感器用于监测车辆的转向速度。
3.助力控制算法EPS系统的助力控制算法的设计对于驾驶操控性能起着关键作用。
目前,常见的助力控制算法包括感性控制和直接控制两种。
感性控制算法根据驾驶员施加的力矩大小和速度来调整助力大小,但存在较高的延迟。
直接控制算法则根据转向角度和转向速度等参数来调整助力大小,反应时间更短。
此外,助力控制算法还需要考虑电机参数补偿、防止超调等问题。
4.能量源系统EPS系统需要能量源为电机供电。
常用的能量源有汽车电瓶和发电机。
根据不同的能量源,EPS系统分为汽车电瓶供电式EPS和发电机供电式EPS。
微型汽车电动式助力转向设计原理

微型汽车电动式助力转向设计原理微型汽车电动式助力转向是一种通过电动机来辅助驾驶员转动方向盘的技术,它在微型汽车中得到广泛应用。
本文将介绍微型汽车电动式助力转向的设计原理。
我们需要了解什么是助力转向。
助力转向是指通过一种装置来减小驾驶员操纵方向盘时所需要的力量,从而提高操纵的轻便性和舒适性。
传统的助力转向系统通常采用液压助力装置,而微型汽车电动式助力转向则采用电动机来实现。
微型汽车电动式助力转向的设计原理如下:1. 传感器感知:车辆的电动式助力转向系统首先需要通过传感器感知车辆的转向角度和转向力矩。
传感器可以采用角度传感器和扭矩传感器来测量这些参数。
2. 控制器计算:通过传感器感知到的转向角度和转向力矩,控制器会根据预设的算法进行计算,确定需要施加的助力转向力大小。
3. 电动机输出:控制器根据计算结果,控制电动机输出适当的转矩,以辅助驾驶员转动方向盘。
电动机通常通过齿轮传动或直接连接到转向柱上,转动方向盘。
4. 助力力反馈:为了使驾驶员能够感知到助力力的大小和方向,通常会在转向柱上安装一个助力力反馈装置。
这个装置可以通过机械连接或电子信号的方式将助力力传递给驾驶员。
微型汽车电动式助力转向的设计原理相比传统的液压助力转向系统具有以下优势:1. 节能环保:电动式助力转向系统不需要使用液压油,减少了对环境的污染,并且具有更好的能源利用效率。
2. 精确控制:电动式助力转向系统通过控制器的计算和电动机的输出,可以实现对助力力的精确控制,提供更加灵敏和精准的转向操纵。
3. 故障诊断:电动式助力转向系统可以通过控制器对传感器和电动机进行实时监测和故障诊断,提高了系统的可靠性和安全性。
4. 多功能性:电动式助力转向系统可以通过调整算法和参数,实现不同的转向特性,满足不同驾驶条件下的需求。
微型汽车电动式助力转向通过电动机的辅助来减小驾驶员操纵方向盘所需要的力量,提高了操纵的轻便性和舒适性。
它具有节能环保、精确控制、故障诊断和多功能性等优势,是微型汽车中常用的转向系统。
电动助力转向简介

电动助力简介■何谓EPS电动转向系统EPS就是英文Electric Power Steering System的缩写,即电动助力转向系统。
电动助力转向系统是汽车转向系统的发展方向。
该系统由电动助力机直接提供转向助力,省去了液压动力转向系统所必需的动力转向油泵、软管、液压油、传送带和装于发动机上的皮带轮,既节省能量,又保护了环境。
另外,还具有调整简单、装配灵活以及在多种状况下都能提供转向助力的特点。
正是有了这些优点,电动助力转向系统作为一种新的转向技术,将挑战大家都非常熟知的、已具有50多年历史的液压转向系统。
驾驶员在操纵方向盘进行转向时,转矩传感器检测到转向盘的转向以及转矩的大小,将电压信号输送到电子控制单元,电子控制单元根据转矩传感器检测到的转距电压信号、转动方向和车速信号等,向电动机控制器发出指令,使电动机输出相应大小和方向的转向助力转矩,从而产生辅助动力。
汽车不转向时,电子控制单元不向电动机控制器发出指令,电动机不工作。
■技术优势1、节能环保由于发动机运转时,液压泵始终处于工作状态,液压转向系统使整个发动机燃油消耗量增加了3%~5%,而EPS以蓄电池为能源,以电机为动力元件,可独立于发动机工作,EPS几乎不直接消耗发动机燃油。
EPS不存在液压动力转向系统的燃油泄漏问题,EPS通过电子控制,对环境几乎没有污染,更降低了油耗。
2、安装方便EPS的主要部件可以配集成在一起,易于布置,与液压动力转向系统相比减少了许多元件,没有液压系统所需要的油泵、油管、压力流量控制阀、储油罐等,元件数目少,装配方便,节约时间。
3、效率高液压动力转向系统效率一般在60%~70%,而EPS的效率较高,可高达90%以上。
4、路感好传统纯液压动力转向系大多采用固定放大倍数,工作驱动力大,但却不能实现汽车在各种车速下驾驶时的轻便性和路感。
而EPS系统的滞后特性可以通过EPS控制器的软件加以补偿,使汽车在各种速度下都能得到满意的转向助力。
新能源汽车电气技术(第2版)课件:新能源汽车电动助力转向系统

四、EPS系统的优缺点
1.EPS系统具有以下优点: 与其他转向系统相比,该系统突出的优点表现在: 1)更加节省能源和环保。因为EPS没有液压器件,所以可算得上是标准 的“按需供能型”系统,即在转向的情况下系统才工作,而汽车停止时或者 直线运行时完全不消耗任何能量,这样一来耗能就会相对较少。因此与液压 动力系统进行比较,可以节约能源80%到90%。而在不转向时,EPS燃油消耗 会降低2.5%;在使用转向系统时,则会减少5.5%。另外又因为在-40℃的低 温的状况下,EPS也可以较好地工作,而传统的液压系统只有液压油预热后 才可以工作,由于EPS没有起动时的预热过程,所以节省了许多能量。EPS也 不存在液态油的泄漏问题,从而也不会对环境造成严重的污染,符合了环保 的设计理念。 2)助力效果相对更好。EPS可根据汽车运行的不同工况,通过优化设计 助力特性曲线,获得准确的助力,助力效果十分理想。同时还可以通过控制 阻尼系数减小因为路面的干扰对转向系统产生的影响,保障车辆低速行驶时 的轻便性,提高汽车高速行驶时的稳定性,进而提高汽车的转向性能。
六、电动助力转向系统(EPS)工作原理
转向器选择齿轮齿条式,转向盘转矩通过扭矩传感器来测得。当没有转向动作时,助力 电机不工作;当驾驶员有转向操作时,扭矩传感器发出一个电压信号,电子控制单元(ECU) 根据电压信号值推算得到转向盘转矩的大小及方向,同时,车速传感器将检测到的当前车速 传递到电子控制单元(ECU),电子控制单元(ECU)先根据车速选择与之对应的助力特性曲 线,再根据转向盘转矩进行运算处理,得到目标助力转矩的大小以及方向,再经过一系列计 算确定助力电机的旋转方向和驱动电流的大小,助力电机根据得到的驱动电流提供相应的助 力转矩,减速增扭后作用到转向轴上,为转向系统提供与工况相适应的助力。
汽车电动助力转向系统资料文档

第二节 安全气囊系统的组成及工作原理
气体发 生器的 结构
第二节 安全气囊系统的组成及工作原理
气体发生器有压缩气体式(冷式)、燃 烧式(热式)、混合式三种 压缩气体式 主要与机械式传感器及 控制器连用。由于其产气量少、充气 速度慢等缺点,应用较少。
第二节 安全气囊系统的组成及工作原理
燃烧式 通过燃烧剂燃烧产生大量气体,产气量大, 容易控制,应用较多。燃烧剂有叠氮化钠等种类。叠 氮化钠燃烧产生无害的氮气,但产生大量的热量和固 体颗粒,所以要采取降温、过 滤等相应措施。为防止火药产生的热量对乘员造成伤 害,有些气袋内部涂有隔热涂层。叠氮化钠融于水后 有毒,对环保不利。各气袋生产厂家都在发展新型的 燃烧剂。可燃气体式是其中的一种,它将氢气和氧气 按一定比例混合加压储存在储气瓶中。它燃烧后产生 水,没有固体颗粒,燃烧前也没有害,是一种理想燃 烧剂。
ASR优点
提高行驶方向稳定性 保持转向操纵能力 提高加速性能和爬坡性能
ASR控制方式
控制发动机输出转矩 控制驱动轮的制动力 控制差速器锁止程度
第十一章 汽车行驶安全性控制系统
EBD
EDS
第十一章 汽车行驶安全性控制系统
汽车电子制动系统
汽车防/避撞控制系统 1.传感测距 2.碰撞报警与避免系统 3.雷达防撞系统
第十一章 汽车行驶安全性控制系统
第十一章 汽车行驶安全性控制系统
第十一章 汽车行驶安全性控制系统
第十一章 汽车行驶安全性控制系统
第十一章 汽车行驶安全性控制系统
汽车的制动过程 在制动时车轮由于制动力矩的作用,地面给车轮一个制动力。 随着制动力矩的增大,制动压力增大,车轮速度开始降低, 滑动率和车轮转矩增大。可以认为在最优滑动率之前,车轮 转矩和制动力矩同步增长,这就是说,在该阶段车轮减速度 和制动力矩增大速度成正比且在该区域制动主要是滑转。但 是,继续增大制动力矩,滑动率超过最优滑动率后进入不稳 定区域,车轮的滑转程度不断增加,制动附着系数将减少, 侧向附着系数将迅速降低。最终使车轮速度大幅度减少直至 车轮抱死,这期间的车轮减速度非常大。轮胎印迹的变化经 历了车轮自由滚动、制动和抱死三个过程。
电动助力转向 技术要求 国家强制标准

电动助力转向技术要求国家强制标准
电动助力转向技术是汽车制造业发展的重要方向之一,通过电子计算机控制汽车转向,能够提高驾驶员的驾驶舒适度和安全性,减少疲劳驾驶对驾驶员的身体危害,是汽车制造
业创新发展的方向之一。
为了约束和规范汽车制造业的发展,国家出台了一系列的强制性
标准,其中电动助力转向技术也有相应的标准。
国家强制标准
1、车速感知式电动助力转向系统的技术要求(GB/T 33837-2017):该标准规定了在电
子计算机的控制下,车速感知式电动助力转向系统所必须符合的技术要求。
具体包括转向
轮扭矩传感器要求、车速传感器要求、电机控制器要求、电机转矩选择要求等等。
2、车辆电子控制系统的通用技术要求(GB/T 31419-2015):该标准适用于汽车电子控
制系统的所有技术要求。
具体包括电气特性要求、功能要求、试验方法要求等等。
3、整车技术要求和试验方法(GB 7258-2017):该标准适用于机动车辆的整车技术要求和试验方法。
其中包括对电动助力转向技术的相关规定,如在不同车速下的转向稳定性要求、转向系统可靠性和安全性要求、转向精度和灵敏度要求等等。
技术要求
从技术上讲,汽车电动助力转向技术需要满足以下几个方面的要求:
1、降低驾驶员驾驶的心理负担:电动助力转向技术通过电子计算机的控制,减少驾
驶员对车辆方向的控制力度,从而可以让驾驶变得更加轻松、舒适,减少驾驶员的疲劳驾驶。
2、提高转向系统的安全性:传统的机械转向系统在转向过程中存在飞车现象,对驾
驶员的安全造成很大威胁,而电动助力转向技术可以通过电子计算机的控制来避免这种情
况的发生,提高驾驶者和车辆乘员的安全性。
汽车电动助力转向系统关键技术分析

汽车电动助力转向系统关键技术分析摘要:现阶段,汽车的电动助力转向系统技术,已经属于一种较为常见且成熟的应用技术,将其应用于汽车制造中,在很大程度上提升了汽车制造的质量,使得汽车制造能够更好地迎合未来汽车发展的需要。
将这一技术应用于汽车制造中,能够降低汽车在低速行驶时转弯上的阻力,从而使得整个转向操作更加轻便与灵活,同时,在汽车的高速行驶时,能够进一步加重转向重力,使得汽车的转向更加具有稳定性。
通过这种设置,能够在很大程度上避免由于转向操作失控问题而导致的汽车驾驶事故。
本文主要分析了汽车电动助力转向系统中的相关关键技术,以供参考。
关键词:汽车电动助力转向系统;控制单元;冗余设计在现代电子信息技术的高速发展推动下,当前我国汽车工业水平提升明显,现代化技术应用于现代汽车工业的生产制造中,在很大程度上提高了汽车性能,同时,也缓解了汽车转弯操作转向的问题。
电动助力转向系统在很大程度上规避了传统汽车电控系统与液压动力转向系统上存在的不足,能够进一步提升整个转向操作的安全性,突破传统转向的限制。
也因此,这种转向系统技术在汽车制造业中有着十分广泛的应用,所占据的市场比例逐渐提升,更有取代传统转向系统的趋势。
一、汽车电动助力转向系统的关键部件(一)传感器传感器是汽车电动助力系统中的关键部件之一,主要分为扭矩传感器与车速传感器两种。
其中,扭矩传感器主要负责对汽车驾驶员在传入轴上的作用力方向以及作用力的大小进行分析,其工作的主要目的在于更好地通过对驾驶员力的结构的分析,实现对汽车转向力的相应调整。
车速传感器顾名思义,是对汽车行驶速度的测量,通过对汽车行驶速度的测量,以自动化辨别转向系统应更加灵活或更加稳重。
这两种传感系统均为信号控制系统,相对而言,其工作原理较为复杂,且对精度有着极高的要求。
(二)电动机电动机的主要作用,在于为汽车电动助力转向系统提供动力,它能够将电子元件输出的控制指令转换为实际的操作提供辅助距扭,能够将控制指令转换为实际的动力元素,从而确保汽车的转向系统能够有效应用。
汽车电动助力转向系统的设计

汽车电动助力转向系统的设计概述汽车电动助力转向系统是一种电子辅助转向系统,为驾驶员提供操纵方向盘的力量辅助,以改善驾驶操控性和舒适性。
该系统通过电动助力装置来替代传统的液压助力转向系统,具有更高的效率和响应性。
本文将详细介绍汽车电动助力转向系统的设计原理和关键技术。
设计原理汽车电动助力转向系统的设计基于电动助力装置和转向控制单元的协同工作。
电动助力装置负责提供对转向系统的力量辅助,转向控制单元那么负责监测车辆的转向情况并根据驾驶员的输入进行控制。
电动助力装置电动助力装置由电机、减速器、传感器和控制单元组成。
电机负责提供动力,减速器那么用于降低电机的转速并增加转力。
传感器用于监测转向力和转向角度,并向控制单元提供反应信息。
控制单元根据传感器的反应信号来确定输出力的大小和方向。
转向控制单元转向控制单元由微处理器和控制算法组成。
微处理器负责处理传感器的数据和执行控制算法。
控制算法根据驾驶员的转向输入,计算出相应的助力输出指令,并通过电动助力装置将助力传递给转向系统。
关键技术功率电子技术汽车电动助力转向系统需要提供足够的力量辅助,因此需要采用功率电子技术来实现高效能的能量转换和控制。
功率电子技术包括电机驱动技术、功率开关技术和电源管理技术,它们的协同工作可以有效提高电动助力转向系统的效率和可靠性。
传感器技术传感器技术在汽车电动助力转向系统中起到了至关重要的作用。
传感器可以实时监测转向力和转向角度,从而提供准确的反应信息给控制单元。
常用的传感器包括转向力传感器和转向角度传感器,它们需要具有高精度和可靠性,以确保系统的准确性和稳定性。
控制算法控制算法是汽车电动助力转向系统的核心局部,它决定了系统的性能和操控性。
控制算法根据传感器的反应信息和驾驶员的转向输入,计算出相应的助力输出指令。
常用的控制算法包括比例-积分-微分〔PID〕控制算法和模糊控制算法,它们能够确保系统的稳定性和响应性。
设计考虑功率和效率汽车电动助力转向系统需要提供足够的助力,同时也要确保系统的功率和效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电动助力转向系统(Electric Power Steering,缩写EPS)是一种直接依靠电机提供辅助扭矩的动力转向系统,汽车电动助力转向电机主要结构由驱动电机、齿轮箱组装而成,具备减速功能;驱动电机提供高速低力矩转速输出,齿轮箱连接驱动电机,将驱动电机输出的高速转速降低,同时提升力矩,达到理想传动效果;为了更好的满足客户需求,通常采用定制电动助力转向系统电机齿轮箱技术参数服务,研发、设计、制造汽车驱动器齿轮箱、电动助力转向系统电机服务。
汽车电动助力转向电机齿轮箱技术参数:
电机齿轮箱直径分为:3.4mm、4mm、6mm、8mm、10mm、12mm、16mm、18mm、20mm、22mm、28mm、32mm、38mm;
齿轮箱材质分为:金属、塑胶材质结构;
电压(功率):3V-24V
输出转速:5-2000rpm;
减速比:5-1500;
输出力矩:1gf-cm到50kg-cm之间;
输出功率:0.5W-50W;
回转精度:2弧分;
EPS系统介绍
EPS系统又可以分为转向轴助力式、齿轮助力式、齿条助力式3种。
转向轴助力式EPS 的电动机固定在转向轴一侧,通过减速机构与转向轴相连,直接驱动转向轴助力转向。
齿轮助力式EPS的电动机和减速机构与小齿轮相连,直接驱动齿轮助力转向。
齿条助力式EPS的电动机和减速机构则直接驱动齿条提供助力。
生产厂家
深圳市兆威机电股份有限公司成立于2001年,是一家研发、生产精密传动系统及汽车精密注塑零组件的制造型企业,为客户提供传动方案设计,零件的生产与组装的定制化服务。