《几何画板》课件制作——圆锥曲线的形成和画法
圆锥曲线PPT优秀课件

y 2 x2 2 1( a b 0 ) , 2 a b
解析: (2)∵椭圆焦点在 y 轴上,故设椭圆的标准方程为
由椭圆的定义知,
3 5 3 5 3 1 2a ( )2 ( 2)2 ( )2 ( 2)2 10 10 2 10 , 2 2 2 2 2 2
A1
.F . . O M . F
2
0
A2
x
F1
其中 a2 b2 c2 , a 0, b c 0 , F0 , F1 , F2 是对应的焦点。 B1 (1)若三角形 F0 F1 F2 是边长为 1 的等边三角形,求“果圆”的方程;
b (2)若 A1 A B1 B ,求 的取值范围; a
焦点分别为 F1 , F2 ,点 P 在双曲线的右支上,且
| PF1 | 4 | PF2 | ,则此双曲线的离心率 e 的最大值为
8 解一:由定义知 | PF1 | | PF2 | 2a ,又已知 | PF1 | 4 | PF2 | ,解得 PF1 a , 3 2 PF2 a , 在 PF1F2 中 , 由 余 弦 定 理 , 得 3
1 1 1 1 a 2 16 将 2 和 2 看着整体,解得 , a b 1 1 b2 9
2 a y 2 x2 16 ∴ 2 即双曲线的标准方程为 1 。 16 9 b 9
点评:本题只要解得 a 2 , b 2 即可得到双曲线的方程,没有 必要求出 a , b 的值;在求解的过程中也可以用换元思想, 可能会看的更清楚。
x2 y2 1 有共同渐近线, (4) 与双曲线 9 16
且过点 (3,2 3) 。
用圆锥曲线的统一定义在《几何画板》中绘制圆锥曲线

用圆锥曲线的统一定义在《几何画板》中绘制圆锥曲线发表时间:2020-07-07T14:40:44.600Z 来源:《新纪实》2020年第2期作者:卢崇益[导读] 为了解决部分数学老师用统一定义在《几何画板》软件中绘制圆锥曲线的困难,笔者用三种不同的绘图原理,给出了在《几何画板》中如何利用统一定义绘制圆锥曲线的具体步骤和使用方法,使学生掌握三种类型圆锥曲线的之间的联系及离心率对圆锥曲线的影响。
册亨县民族中学贵州黔西南 552200【摘要】为了解决部分数学老师用统一定义在《几何画板》软件中绘制圆锥曲线的困难,笔者用三种不同的绘图原理,给出了在《几何画板》中如何利用统一定义绘制圆锥曲线的具体步骤和使用方法,使学生掌握三种类型圆锥曲线的之间的联系及离心率对圆锥曲线的影响。
【关键词】几何画板;统一定义;圆锥曲线;绘制方法圆锥曲线的统一定义,揭示了不同种类的圆锥曲线的内在联系,使焦点,准线,离心率等构成了一个和谐的整体,恰当而灵活地运用圆锥曲线的统一定义来解题,往往能化难为易,化繁为简,起到事倍功半的作用。
教学中,笔者发现了两种利用圆锥曲线统一定义绘制圆锥曲线的方法。
一、绘图方法1:绘制原理:相似三角形的对应边成比例。
绘图步骤:第一步:建系,构造焦点和准线。
(1)打开《几何画板》,单击绘制→定义坐标系,单击右键选择隐藏轨迹,得到平面直角坐标系。
(2)在x轴上任取一点F作为焦点,双击y轴标记为对称轴,选中点F,执行变换→反射,得到点K,选中点K及x轴,构造垂线作为准线。
第二步:新建参数e作为离心率,并改e的值为2。
第三步:构建参考线段。
(1)构造线段AB,并度量A,B两点的距离,选择数据→计算:AB距离÷e的值,并改标签为AC。
此时有AB÷AC为离心率e。
(2)在平面内任取一点D,构造两条过点D的直线m,n。
(3)选中点D及AB距离度量值构造圆与直线m交于点E作为驱动点,选中点D及AC的值构造圆与直线n交于点G,构造线段EG。
利用几何画板辅助圆锥曲线曲线的统一定义

利用“几何画板”辅助圆锥曲线曲线的统一定义炎陵一中范林华圆锥曲线曲线的定义统一为:平面内与一个定点的距离和一条定直线的距离之比等于常数e的点的轨迹,当0<e<1时,它是椭圆;当e=1时,它是抛物线;当e>1时,它是双曲线。
利用几何画板这一动态几何工具辅助教学,能更好地揭示圆锥曲线的规律,利于学生的认识和掌握。
下面介绍该课件的制作方法和步骤:一、确定对称轴、焦点、准线。
1.1 打开《几何画板》,新建文件;1.2 画一条水平直线x;1.3 作出直线x对象上的点K、F(焦点);1.4 过K作直线x的垂线l(准线)。
二、设置离心率。
2.1 画一条线段AB;2.2 作出线段AB对象上的点E;2.3 通过度量、计算,求得线段AE与EB的比(离心率);2.4 将比值标签改为e。
三、设置作轨迹所需的动态半径。
3.1 过任一点D作出两条相交直线m、n;3.2 以D为圆心,AE为半径画圆交直线m于M;3.3 以D为圆心,EB为半径画圆交直线n于N;作直线MN;3.4 作直线m上一点G,过G作MN的平行线交n于H;3.5 作出线段DG、DH。
四、作出轨迹。
4.1 以F为圆心,线段DG为半径画圆;4.2 以K为圆心,线段DH为半径画圆交直线x于P、Q两点,分别过P、Q 作x的垂线p 、q;4.3 改变E的位置或改变F的位置使圆F与直线p、q都相交,交点分别为P1、P2、P3、P4;4.4 选取P1(或P2、P3、P4)、点G、直线m,构造轨迹,即可作出所需轨迹。
4.5 添加操作按钮、隐藏不必显示的对象。
(若轨迹失真,可增加图象的采样数量)。
几何画板制作 圆锥曲线的画法

《几何画板》课件制作第二类课件圆锥曲线的画法一、由第二定义出发统一构造椭圆、抛物线和双曲线原理:到定点和定直线的距离之比等于定值m的点的轨迹:当0<m<1时,轨迹为椭圆;当=1时,轨迹为抛物线;当m>1时,轨迹为双曲线。
制作过程:1)如图(3)所示:打开一个新画板,画一条竖直的直线j(定直线)和直线外一点A(定点)。
在直线j上取点C,过点A,C作直线j的垂线l,k,点B,C 为垂足。
<图 3>2)取点C,B作圆C1,交直线k于E。
3)新建参数t,并标记比值,让点E以C为中心,按标记比进行缩放得E'。
4)取C,E'作圆C2,取CA的中点G和点C作圆C3,交C2于F。
5)用直线连接A,F交直线k于D,则AD/CD=CE/CE'=1/t。
6)选中C,D作轨迹,作点D关于直线l的对称点D',选中C,D'作轨迹,最后隐藏不必要的对象。
说明:(1)在圆C1中,CB=CE,在圆C2中,CF=CE',在⊿BCF和⊿ADC中,因为∠CFB=∠ACD=∠BAC,∠CBF=∠DAC(同弧上的圆周角相等),所以⊿BCF和⊿ADC 为相似三角形。
则CB/CF=AD/CD=CE/CE'=m=1/t,即定点A和定直线j距离之比等于定值m。
(2)单击"运动参数t"按钮,比值m 随之改变,这时可以动态地看到,当m 小于1的值逐渐变为1时,轨迹由椭圆变成抛物线;当m 大于1时,轨迹变成双曲线。
二、由第一定义出发,构造椭圆和双曲线及抛物线原理:椭圆(双曲线)——到定点的距离和定直线的距离之和(差)等于定值的点的轨迹;抛物线——到定点的距离和定直线的距离相等的点的轨迹。
制作过程:1.椭圆(或双曲线)的制作:<图 4> <图 5>()()1211221121,2()()x F x F F M F M MN N F M F N MN A B AB F F A F B 作出平面直角坐标系,在轴上任取两点作圆标记圆心的点记为,另一点隐藏。
圆锥曲线形成与画法

雙曲線畫法-焦點法
2. 以F1為圓心,任意大於線段AB之長為半徑(R)畫弧, 再以F2為圓心,(R-AB)之長為半徑畫弧,而與前 弧相交得C、D兩點。
資料來源:華興書局
雙曲線畫法-焦點法
3. 以相同的方法再求諸多點,用曲線板連接即得。
資料來源:華興書局
雙曲線畫法-等軸法
已知雙曲線之兩漸近線OA、OB及雙曲線上一點P,求 作雙曲線
外擺線: 一滾圓在另一圓外側滾動,滾圓上一點所經過的
軌跡。Leabharlann 擺線 內擺線: 一滾圓在另一圓內側滾動,滾圓上一點所經過的
軌跡。
漸開線
將一繩繞在圓形上,當一端放鬆轉開時,此端點 所形成的軌跡稱為漸開線,如下圖所示,常用於 齒輪輪齒之曲線繪製,為一種平面曲線。
4. 以相同方法,求得諸多點,,以曲線板連接即得。
資料來源:華興書局
拋物線畫法-包絡線法
已知X軸與Y軸,求作拋物線。 1. 在X軸及Y軸上作相同之等分與編號(X軸編號由
左向右,Y軸由上往下)。
資料來源:華興書局
拋物線畫法-包絡線法
2. 以相同號碼點連接。 3. 用曲線板畫曲線與各線段相切即得拋物線。
資料來源:華興書局
雙曲線畫法-等軸法
1. 過P點畫FG線平行OA線,畫DE線平行OB線。 2. 由O點畫數條傾斜線(於此設畫三條)與DE線相交得
1、2、3各點,與FG線相交得1' 、2' 、3'各點。
雙曲線畫法-等軸法
3. 由1、2、3各點畫與OA線之平行線,1' 、2' 、3' 各點畫與OB線之平行線。對應數字平行線之相交 點,即為雙曲線上之點。 (如點3之平利線與點3'之平行線相交於點3'' )
用_几何画板_制作平面截圆锥成圆锥曲线的方法

1.点击 作⊙, 点 击 标 圆 心 A, 圆 上 点 B, 用 作 直 线 AC, 用
同时选⊙A 和直线 AC, 用“作图—交点”得交点, 标注成点 C、D, 同
时选中 C、D, 用“作图—线段”得线段 CD, 点击 在⊙A 上任作一点 E
( 此时⊙A 变亮) , 同时选 E 和线段 CD, 用“作图—垂线”得垂线 j, 选线
科技信息
○教学研究○
SCIENCE INFORMATION
2007 年 第 15 期
用《几何画板》制作平面截圆锥成圆锥曲线的方法
王和文 ( 岳阳市巴陵中学 湖南 岳阳 414003)
全日制普通高级中学教科书( 必修) 数学第二册( 上) 第八章章头 图, 是用平面截圆锥得截面分别是椭圆、双曲线、抛物线的图形。下面 我们用《几何画板》画出此图, 并进行动态展示截面曲线改变的情形。
使用《几何画板》作图, 简便、易操作。但作图时应注意: 在任何一 次操作前, 一定要在 状态下; 选择目标时, 先用 在空白处点一 下, 取消上次的选择( 被选中的元素呈亮色) , 以确保作图意图的准确 实 现 。科
参考文献 [ 1] 高 职 高 专 院 校 人 才 培 养 工 作 水 平 评 估 资 料 汇 编 [ Z] .北 京 : 人 民 邮 电出版社, 2003. [ 2] 周晓健.对高职教材建设的探讨[ J] .职教论坛 2003.20. [ 3] 国家精品课程网上申报评审系统— ——公示课程.
图2
为中心旋转 1800 得 C`、D`, 作线段 CC`、DD`, 得顶点重合的两个圆锥。
3.在椭圆 l1 上任取一点 I, 以 H 为中心旋转 1800 得 椭 圆 l2 上 对 应 点 I`, 作线段 II`, AI( 选线段“显 示 —线 型 —虚 线 ”) , 选 线 段 II`“度 量—
论文:用《几何画板》探究“圆锥曲线”

用《几何画板》探究“圆锥曲线”摘要:数学具有抽象性,许多数学概念、数学模型之所以成为学生学习的难点和疑点,就是因为太抽象。
如果利用计算机进行动态、形象直观的信息显示,将能抓住重点,使新知化难为易,变抽象为具体。
利用几何画板能动态地揭示圆锥曲线的相关性,达到较好的教学效果。
关键词:几何画板;椭圆;双曲线;抛物线随着信息技术在教育领域的广泛应用,教育理念、教学内容、教学环境、教学方式等诸多方面正在发生深刻的变革。
我国2003年公布的《普通高中数学课程标准(实验)》中明确提出:“教师应当恰当地使用信息技术,改善学生的学习方式,引导学生借助信息技术学习有关数学内容、探索、研究一些有意义、有价值的数学问题”。
数学具有抽象性,许多数学概念、数学模型之所以成为学生学习的难点,就是因为太抽象。
如果仅凭教师的描述与讲解,往往是教师花了很大的力气,教学效果却事倍功半;如果利用计算机进行动态、形象直观的信息显示,将能抓住重点、突破难点,使新知化难为易,变抽象为具体。
高中数学中的圆锥曲线(椭圆、双曲线、抛物线)是平面解析几何的重点,也是学习高等数学的基础,如何用计算机动态地揭示圆锥曲线的相关性,是很多老师长期探索的一个问题,利用几何画板,能较好地解决这一问题,改变了单调乏味的运算、作图,取而代之的是赏心悦目的多媒体效果,提高了探究活动的效率。
美国著名数学家和数学教育家G·波利亚指出,“学习任何东西最好的途径是自己去发现”。
“实验—发现—证明”的学习环境,不仅能充分发挥学生在学习过程中的主动性,而且更利于教师关注学习的体验,情感和实践过程,体现“以学生发展为本”的教学理念。
下面就用几何画板来探究圆锥曲线。
一、 对抛物线进行探索与发现抛物线定义:到定点的距离与到定直线的距离相等的动点的轨迹叫做抛物线。
问题1:取一张长方形纸片ABCD ,将纸片折叠多次,使每次折叠时A 点都落在CD 边上,猜一猜,折出来的折痕的图形是什么?探究:动手操作后很容易猜想到答案是“抛物线”,但该抛物线是哪个点的轨迹?抛物线的焦点是什么?抛物线的准线是什么?图1 图2利用几何画板验证猜想结论的可行性。
3D课件分享——圆锥曲线的形成

3D课件分享——圆锥曲线的形成
写在前面:
本文动态课件下载方式:
(长按屏幕,直接复制粗体字在后台回复)
后台回复:圆锥曲线
圆锥曲线的形成
主要内容:
1、主要从3D模型以及2D平面给大家动态展示高中圆锥曲线的形成。
2、动态课件的打开方式以及使用方式。
多图预警!第一part
首先给大家介绍各个滑条的作用,
第一、改变平面的旋转角度
第二、改变圆锥的形态
接着给大家看个总汇,
各个曲线如何形成。
下面逐个介绍:
在β=30°,b=4.1的时候,只改变平面旋转角度,
一、椭圆
先来个椭圆的形成的动态图
静态图——俯视图
二、抛物线
静态图
三、双曲线
静态图
下面再来个平面内的圆锥曲线形成
一、椭圆第一定义
二、抛物线定义
第二part课件打开方式以及使用方式
课件打开分成两种模式:
一、用geogebra软件打开(需要安装geogebra软件)
二、用IE浏览器或者是谷歌浏览器打开(无需安装软件;适用于无网络情况)
使用方式:
直接用IE浏览器打开“HTML”格式的文档,拖动滑条即可。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《几何画板》课件制作——圆锥曲线的形成和画法作者:马现岭摘要《几何画板》是一个适用于几何(平面几何,解析几何,射影几何,立体几何)、部分物理、天文教学的专业学科优秀平台软件,它能辅助教师在教学中使用现代化教育技术并进行教学试验,也可以帮助学生在实际操作中把握学科的内在实质,培养其观察能力,问题解决能力,并发展思维能力。
它代表了当代专业工具平台类教学软件的发展方向。
在对《几何画板》进行系统的学习之后,我利用有关知识制作了两大类综合的数学课件。
主要包括:用动态效果展示圆锥曲线及截面的形成和圆锥曲线的画法。
这两类课件在教学上都有很重要的应用。
最新的《普通中学数学课程标准》中强调“教师应向学生展示平面截圆锥得到的椭圆的过程,使学生加深对圆锥曲线的理解,有条件的学校应充分发挥现代教育技术的作用,利用计算机演示平面截圆锥所得的圆锥曲线。
”这表明圆锥曲线的教学在以往的教学过程中存在着很大的困难,由于以往教育技术的落后,无法生动直观的进行讲解。
现在有了这个课件,我们就能达到既生动又直观的教学效果。
第二类利用《几何画板》实现了轨迹、函数图像的变换以及图像变换的动态演示,并由此法制作了几个有关函数图像变换的课件。
第二类课件系统介绍了圆锥曲线的画法,为在教学中提高学生学习兴趣,开展对圆锥曲线的研究,提供了良好的方法和方便的途径。
全文由三部分组成:第一部分:《几何画板》课件制作的选题原则。
第二部分:详细介绍了我所选择制作的数学课件及其制作过程。
第三部分:学习及应用《几何画板》的体会。
关键词:几何画板、标记向量、椭圆、圆锥曲线、圆锥截面、轨迹。
AbstractThe Geometer' s Sketchpad is an excellent platform for teaching of geometry (plane geometry, analytic geometry, projection geometry and solid geometry). It also applies to teaching of partial physics and astronomy. This platform not only can help teachers use the modern education technology in the course of teaching, but also can help students grasp the inwardness of science, and cultivate their ability of observation, solving question, and progressing their ideation. It represents the developing direction of the educative tool software.After I learn the Geometer’s Sketchpad, I have made kinds of comprehensive mathematics course wares, mainly including: Demonstrate the development of cone curve. These kinds of course wares have very important application on teaching. In "The newest ordinary middle school mathematics course standard ", it is emphasized that " teacher should demonstrate to student the plane section ellipse that cone gets, make student deepen the understanding for cone curve, under certain condition schools should play the role of modern educational technology fully, using computer to demonstration incoming of cone curve from cone by the plane. It shows that the teaching of cone curve has great difficulty in former teaching course, just because that educating technology fall behind before, and it can not be active and visual to explain. Now, here are these course wares, we can reach active and visual teaching effect. The second kind of side spread out problem is concerned with in former lesson, but the method to produce is fussy. The biggest advantage of my lesson lies in the method that I have used a unification to carry out, so that the time to produce is shortened greatly, and has reached very good demonstration effect.The paper text is composed of three parts:In the first part: I write some fundamental about what kinds of problem we can make the coursewares in the Geometer’s Sketchpad.In the second part: The mathematics coursewares and its produce course that I select to make are introduced in detail.In the last part: I relate the experience study by using the Geometer’s Sketchpad.Keywords:The Geometer’s Sketchpad、mark vector、ellipse、cone curve、cone section、trace.引言The Geometer’s Sketchpad 是美国优秀的教育软件。
由美国Nicholas Jackiw 和Scott Steketee程序实现,Steven Rasmussen领导的Key Curriculum出版社出版。
它的中文名是《几何画板─21世纪的动态几何》,以下简称《几何画板》。
它小巧玲珑,操作简单,是数学学习的有力助手。
它可以说是我们的数学实验室,因为它能够有效地使数形结合,使我们在数学学习中既理解了数学结论,又得到了数学经验。
众所周知数学是训练逻辑思维的,尤其几何。
通过教师的辅导,我们在自己的记忆中形成—套逻辑思维体系。
那么怎样才能使我们更好地理解几何知识、掌握逻辑思维方法呢?一个方法是多看、多想,增加我们的学习经验,另一个方法就是寻找良好的辅助工具,帮助我们在动态的几何之中,去观察,探索。
《几何画板》就是一个适用于几何(平面几何,解析几何,射影几何,立体几何)、部分物理、天文教学的专业学科优秀平台软件,它能辅助教师在教学中使用现代化教育技术并进行教学试验,也可以帮助学生在实际操作中把握学科的内在实质,培养其观察能力,问题解决能力,并发展思维能力。
它代表了当代专业工具平台类教学软件的发展方向。
在对《几何画板》进行系统的学习之后,我利用有关知识制作了两大类综合的数学课件,主要包括:用动态效果展示圆锥曲线的形成和圆锥曲线的画法。
这两类课件在教学上都有很重要的应用。
这里我所选择的《几何画板》版本为4.04版,目前最高的版本为5.0英文版,此外还有3.03版、4.03版和4.06版.下面我就课件的选题、制作及使用《几何画板》的感受几方面来展开我的论文。
第一部分几何画板的选题原则在数学教学过程中,不论是代数教学还是几何教学,遇到的最大困难就是:教师在教学过程重使用常规工具(如黑板,粉笔,圆规和直尺等)作图或是演示都有一定的局限性,而且无法达到动态地、任意地展示的目的,更多的时候无法揭示事物变化过程中的规律。
《几何画板─21世纪的动态几何》。
顾名思义,《几何画板》就是一个可以很好的解决以上难题的辅助教学工具。
《几何画板》在中学数学教学中有很多应用,不论在代数教学还是在几何教学中都显示出它的超凡魅力。
例如,在代数学教学中,它对函数、极限、复数和不等式等的教学起到了很大的作用。
在几何学教学中,平面、立体和解析几何更让《几何画板》大显身手。
当然,并不是所有教学都要利用《几何画板》来完成,也并不是所有教学内容都适合利用《几何画板》达到最好的效果,这就要遵循《几何画板》的选题原则:第一:《几何画板》可以动态地演示图形的变化过程。
例如:下面要展示的圆锥曲线和函数图象的变换的课件都体现了动态的特点;第二:《几何画板》可以有效地使数形结合。
例如:大量极值问题都可以通过《几何画板》来动态模拟。
第三:《几何画板》可以精确画出函数图形并表现其全部情况。
例如:函数教学中大量的绘图工作可以轻而易举地通过《几何画板》来完成。
而且对于一类函数,《几何画板》可以通过改变系数及参数而达到表现其全部情况的目的。
例如:三角函数中正弦函数y=A sin(ωx+φ)+d 的图像可以通过调整A,ω,φ,d的值得到不同的精确图像。
第四:《几何画板》最重要的是可以很好的表现图形的任意性。
例如:在让学生掌握三角形重心,内心,外心等概念时,在以往的教学过程中只能在黑板上画出几个三角形作代表,不能很好地说明三角形的任意性,而利用《几何画板》就可以任意拖动三角形的顶点以达到任意三角形的目的。
总之,在所做课件中我们能够充分体现出《几何画板》的以上优势,并能够恰当的应用到教学实践中,为教学服务。