线性代数全公式 线性代数公式定理总结

合集下载

线性代数公式定理

线性代数公式定理

线代公式定理章一、行列式1、n 阶行列式(1)(定义)由自然数1,2,···,n 组成的一个有序数组称为一个n 阶排列,记为j 1j 2…j n .(2)(定义)在一个排列中,若一个较大的数排在一个较小的数的前面,则称这两个数构成一个逆序.一个排列中所有逆序的总数称为这个排列的逆序数.用τ(j 1j 2…j n )表示排列j 1,j 2,…,j n 的逆序数.逆序数是偶数的排列称为偶排列,逆序数是奇数的排列称为奇排列。

(3)(定义)把一个排列中某两个数的位置互换,而其余的数不动,就得到一个新的排列,这种变换称为排列的一个对换。

(4)(定理)一次对换改变排列奇偶性。

(5)(推论)任何一个n 阶排列都可以通过对换化成标准排列,并且所作对换的次数的奇偶性与该排列的奇偶性相同。

(6)三阶行列式的计算:I 沙路法 II 对角线法则(7)三角行列式的计算:下(上)三角形行列式的值等于主对角线 上元素的乘积,即nna a a Λ2211=nnn n a a a a a a ΛM M M ΛΛ212221110002、行列式的性质(1)(性质)行列式与它的转置行列式相等,即。

(2)(性质)如果行列式某一行(列)元素有公因数k, 则k可以提到行列式符号外边。

(3)(推论)如果行列式中某一行(列)元素全为零, 那么行列式等于零。

(4)(性质)如果行列式中两行(列)互换,那么行列式只改变一个符号。

(5)(推论)若行列式中有两行(列)相同, 则行列式的值为零。

(6)(推论)如果行列式中两行(列)的对应元素成比例,那么行列式值为 0。

(7)(性质)如果行列式某行(列)的各元素都可以写成两数之和, 则此行列式等于两个行列式的和。

(8)(性质)如果将行列式中某行(列)的各元素同乘一数k后,加到另一行(列)的各对应元素上,则行列式的值不变。

(9)(性质)若a ij=a ji(i,j=1,2,…,n) ,则称行列式 D为对称的;若a ij=-a ji(i,j=1,2,…,n) ,则称行列式D为反对称. 由定义易知,在反对称行列式中, a ii=0(i=1,2,…,n)。

线性代数公式必背完整归纳清晰版

线性代数公式必背完整归纳清晰版

线性代数公式必背完整归纳清晰版线性代数是数学的一个重要分支,研究向量空间及其上的线性映射的理论和方法。

在学习线性代数的过程中,掌握一些重要的公式是非常重要的。

下面是线性代数中一些常见且重要的公式,希望能够帮助到你。

1.向量的加法和数乘:(a1, a2, ..., an) + (b1, b2, ..., bn) = (a1 + b1, a2 +b2, ..., an + bn)k(a1, a2, ..., an) = (ka1, ka2, ..., kan)这是线性代数的基本操作,向量的加法是对应元素分别相加,向量的数乘是将向量中的每个元素与常数相乘。

2.内积:向量a = (a1, a2, ..., an) 和向量b = (b1, b2, ..., bn) 的内积定义为:a ·b = a1b1 + a2b2 + ... + anbn内积有许多重要的性质:a·b=b·a-->内积的交换律(ka) · b = a · (kb) --> 内积的数乘关系a·(b+c)=a·b+a·c-->内积的分配律内积可以用来计算向量的夹角和向量的长度,是线性代数中的一个重要概念。

3.范数:向量a的范数定义为:a, = sqrt(a1^2 + a2^2 + ... + an^2向量的范数满足以下性质:a,>=0,且当且仅当a=0时取等ka, = ,k,,a,对于任意的实数a+b,<=,a,+,b,三角不等范数是一个度量向量长度的函数,也是线性代数中常用的概念。

4.矩阵的乘法:对于矩阵A(m×n)和矩阵B(n×p),它们的乘积C=A×B是一个m×p的矩阵,其中C的第i行第j列的元素可以表示为:C(i,j)=a(i,1)*b(1,j)+a(i,2)*b(2,j)+...+a(i,n)*b(n,j)矩阵乘法是线性代数中的核心概念,它在很多应用中都有重要的作用。

《线性代数》公式大全

《线性代数》公式大全

《线性代数》公式大全1.向量1.1向量的加法和减法v1=(x1,y1,z1)v2=(x2,y2,z2)v1+v2=(x1+x2,y1+y2,z1+z2)v1-v2=(x1-x2,y1-y2,z1-z2)1.2向量的数量乘法v=(x,y,z),k是一个实数kv = (kx, ky, kz)1.3向量的点积v1·v2=x1x2+y1y2+z1z21.4向量的模长v,=√(x^2+y^2+z^2)2.矩阵2.1矩阵的加法和减法A = (aij),B = (bij)是两个m x n矩阵A +B = (aij + bij)A -B = (aij - bij)2.2矩阵的数量乘法A = (aij)是一个m x n矩阵,k是一个实数kA = (kaij)2.3矩阵的乘法A = (aij)是一个m x n矩阵,B = (bij)是一个n x p矩阵AB = (cij)是一个m x p矩阵,其中cij = a1j*b1i + a2j*b2i+ ... + anj*bni2.4矩阵的转置A = (aij)是一个m x n矩阵A的转置为A^T = (aij)^T = (aji)2.5矩阵的逆A为可逆矩阵,A^-1为其逆矩阵,满足AA^-1=A^-1A=I,其中I为单位矩阵3.行列式3.1二阶行列式D=,abc d, = ad - b3.2三阶行列式D=,abcdeg h i, = aeI + bfG + cdH - ceG - afH - bd3.3n阶行列式D=,a11a12 (1)a21a22...a2...........an1 an2 ... ann, = (-1)^(i+j)*Mij,其中Mij为aij的代数余子4.线性方程组4.1齐次线性方程组Ax=0,其中A为一个mxn矩阵4.2非齐次线性方程组Ax=b,其中A为一个mxn矩阵,x为一个n维列向量,b为一个m维列向量4.3线性方程组的解法4.3.1矩阵消元法通过矩阵的初等行变换将线性方程组转化为行阶梯形或最简形4.3.2克拉默法则Ax = b的解可以表示为x = (Dx1/D, Dx2/D, ..., Dxn/D),其中D 为系数矩阵A的行列式,Di为将第i列的系数替换为b后的行列式4.3.3矩阵求逆法若A为可逆矩阵,则Ax=b的解可以表示为x=A^(-1)b以上是线性代数的一些重要公式,通过理解和掌握这些公式,可以帮助我们解决线性代数相关的问题和应用。

线性代数公式定理大全

线性代数公式定理大全

线性代数公式大全第一章 行列式1.逆序数 1.1 定义n 个互不相等的正整数任意一种排列为:12n i i i ⋅⋅⋅,规定由小到大为标准次序,当某两个元素的先后次序与标准次序不同时,就说有一个逆序数,该排列全部逆序数的总合用()12n i i i τ⋅⋅⋅表示,()12n i i i τ⋅⋅⋅等于它所有数字中后面小于前面数字的个数之和。

1.2 性质一个排列中任意两个元素对换,排列改变奇偶性,即 ()211ττ=-。

证明如下:设排列为111l m n a a ab b bc c ,作m 次相邻对换后,变成111l m n a a abb b c c ,再作1m +次相邻对换后,变成111l m n a a bb b ac c ,共经过21m +次相邻对换,而对不同大小的两元素每次相邻对换逆序数要么增加1 ,要么减少1 ,相当于()211ττ=-,也就是排列必改变改变奇偶性,21m +次相邻对换后()()2121111m τττ+=-=-,故原命题成立。

2.n 阶行列式的5大性质性质1:转置(行与列顺次互换)其值不变。

性质2:互换任意两行(列)其值变号。

性质3:任意某行(列)可提出公因子到行列式符号外。

性质4:任意行列式可按某行(列)分解为两个行列式之和。

性质5:把行列式某行(列)λ倍后再加到另一行(列),其值不变。

行列式的五大性质全部可通过其定义证明;而以后对行列式的运算主要是利用这五个性质。

对性质4的重要拓展: 设n 阶同型矩阵,()()(); ij ij ij ij A a B b A B a b ==⇒+=+,而行列式只是就某一列分解,所以,A B +应当是2n个行列式之和,即A B A B+≠+。

韦达定理的一般形式为:()121201201110; ; 1n nnn n n n n n n n n i i j i i i j i n n n a a aa x a xa xa x x x x a a a ------=≠==++++=⇒=-==-∑∑∏一、行列式定义 1.定义111212122212n n n n nna a a a a a a a a n n nj j j j j j a a a 221211)()1(τ∑-=其中逆序数 ()121n j j j j τ=后面的1j 小的数的个数 2j +后面比2j 小的数的个数+1n j -+后面比1n j -小的数的个数.2.三角形行列式1112122200n n nna a a a aa 11212212000n n nna a a a a a =1122nn a a a=1211000n n n nn nna a a a a -111212122100n n a a a a a a =()()12112111n n n n n a a a τ-⋅⎡⎤⎣⎦-=-()()1212111n n n n n a a a --=-二、行列式性质和展开定理1.会熟练运用行列式性质,进行行列式计算. 2.展开定理1122i k i k in kn ik a A a A a A A δ+++=A A a A a A a jk nk nj k j k j δ=+++2211三、重要公式 设A 是n 阶方阵,则 1.T A A =2.11A A--=3.1*n A A-=4.n kA k A =5.AB A B =,其中B 也是n 阶方阵6.设B 为m 阶方阵,则00A C A A B B CB ==()10mnAC A A BB CB==-7.范德蒙行列式()1222212111112111n ijnj i nn n n nx x x x x x x x x x x ≤<≤---=-∏四.有关结论 1.对于,n n n n A B ⨯⨯(1)00A A ⇒==⇐ (2) A B A B⇒==⇐2.A 为n 阶可逆矩阵A E A E ⇔→⇔→行变列变(A 与E 等价)0AX ⇔=只有惟一零解AX b ⇔=有惟一解(克莱姆法则) A ⇔的行(列)向量组线性无关 A ⇔的n 个特征值0,1,2,,i i n λ≠=⇔A 可写成若干个初等矩阵的乘积 ⇔)()(B r AB r = ⇔A A T 是正定矩阵⇔A 是n R 中某两组基之间的过渡矩阵3.A 为n 阶不可逆矩阵0=A 0AX ⇔=有非零解 ⇔n A r <)( ⇔0是A 的特征值 ⇔A A -=4.若A 为n 阶矩阵,)2,1(n i i =λ为A 的n 个特征值,则∏==ni i A 1λ5.若B A ~,则B A =行列式的基本计算方法:1. 应用行列式的性质化简行列式(例如化为三角形行列式就是一个常用方法)。

线性代数公式大全--最全最完美

线性代数公式大全--最全最完美

线性代数公式大全——最新修订1、行列式1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式;2. 代数余子式的性质:①、ij A 和ij a 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=-4. 设n 行列式D :将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)21(1)n n D D -=-; 将D 顺时针或逆时针旋转90,所得行列式为2D ,则(1)22(1)n n D D -=-;将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =;将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积(1)2(1)n n -⨯ -;③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2(1)n n -⨯ -;⑤、拉普拉斯展开式:A O A C AB CB O B==、(1)m n CA OA AB B OB C==-⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;6. 对于n 阶行列式A ,恒有:1(1)nnk n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;7. 证明0A =的方法:①、A A =-; ②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;2、矩阵1.A 是n 阶可逆矩阵:⇔0A ≠(是非奇异矩阵); ⇔()r A n =(是满秩矩阵) ⇔A 的行(列)向量组线性无关; ⇔齐次方程组0Ax =有非零解; ⇔n b R ∀∈,Ax b =总有唯一解; ⇔A 与E 等价;⇔A 可表示成若干个初等矩阵的乘积;⇔A 的特征值全不为0; ⇔T A A 是正定矩阵;⇔A 的行(列)向量组是n R 的一组基;⇔A 是n R 中某两组基的过渡矩阵;2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立;3.1**111**()()()()()()T T T T A A A A A A ----=== ***111()()()T T TAB B A AB B A AB B A ---===4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均A 、B 可逆:若12s A A A A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭,则: Ⅰ、12s A A A A =;Ⅱ、111121s A A A A ----⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭; ②、111A O A O O B O B ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭;(主对角分块) ③、111O A O B B O A O ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(副对角分块) ④、11111A C A A CB O B OB -----⎛⎫-⎛⎫=⎪ ⎪⎝⎭⎝⎭;(拉普拉斯) ⑤、11111A O A O C B B CA B -----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭;(拉普拉斯) 3、矩阵的初等变换与线性方程组1. 一个m n ⨯矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:rm nEO F OO ⨯⎛⎫= ⎪⎝⎭; 等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵A 、B ,若()()r A r B A B = ⇔ ; 2. 行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若(,)(,)rA E E X ,则A 可逆,且1X A -=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)cA B E A B - ~ ;③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x ,则A 可逆,且1x A b -=; 4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、12n ⎛⎫⎪⎪Λ= ⎪ ⎪⎝⎭λλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,iλ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1111111-⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k -=,例如:1111(0)11k k k -⎛⎫⎛⎫⎪⎪⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; ⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --⎛⎫⎛⎫ ⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;5. 矩阵秩的基本性质:①、0()min(,)m n r A m n ⨯≤≤;②、()()T r A r A =; ③、若AB ,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩) ⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※) ⑥、()()()r A B r A r B +≤+;(※) ⑦、()min((),())r AB r A r B ≤;(※)⑧、如果A 是m n ⨯矩阵,B 是n s ⨯矩阵,且0AB =,则:(※) Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-;6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律;②、型如101001a c b ⎛⎫⎪⎪ ⎪⎝⎭的矩阵:利用二项展开式;二项展开式:01111110()nnnn m n mmn n n nm m n mnnnnnn m a b C a C a b C ab Ca bC b C a b -----=+=++++++=∑;注:Ⅰ、()n a b +展开后有1n +项;Ⅱ、0(1)(1)!1123!()!--+====-m n n n n n n n m n C C C m m n mⅢ、组合的性质:111102---+-===+==∑nmn m mm m r nr r nnn n nnn n r C C CC CCrC nC ;③、利用特征值和相似对角化: 7. 伴随矩阵:①、伴随矩阵的秩:*()()1()10()1nr A n r A r A n r A n = ⎧⎪==-⎨⎪<-⎩;②、伴随矩阵的特征值:*1*(,)AAAX X A A A A X X λλλ- == ⇒ =;③、*1A A A -=、1*n A A-=8. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话)②、()r A n <,A 中有n 阶子式全部为0; ③、()r A n ≥,A 中有n 阶子式不为0;9. 线性方程组:Ax b =,其中A 为m n ⨯矩阵,则:①、m 与方程的个数相同,即方程组Ax b =有m 个方程;②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程; 10. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;11. 由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n n a x a x a x b a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩;②、1112111212222212n n m m mn m m a a a x b a a a x b Ax b a a a x b ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪⎪ ⎪=⇔= ⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭(向量方程,A 为m n ⨯矩阵,m 个方程,n 个未知数) ③、()1212n n x x a a a x β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭(全部按列分块,其中12n b b b β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭); ④、1122n n a x a x a x β+++=(线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)4、向量组的线性相关性1.m 个n 维列向量所组成的向量组A :12,,,m ααα构成n m ⨯矩阵12(,,,)m A =ααα;m 个n 维行向量所组成的向量组B :12,,,T TTmβββ构成m n ⨯矩阵12T T T m B βββ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭; 含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;(齐次线性方程组)②、向量的线性表出 Ax b ⇔=是否有解;(线性方程组) ③、向量组的相互线性表示 AX B ⇔=是否有解;(矩阵方程)3. 矩阵m n A ⨯与l n B ⨯行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14)4. ()()T r A A r A =;(101P 例15)5.n 维向量线性相关的几何意义:①、α线性相关⇔0α=; ②、,αβ线性相关 ⇔,αβ坐标成比例或共线(平行);③、,,αβγ线性相关 ⇔,,αβγ共面;6. 线性相关与无关的两套定理:若12,,,s ααα线性相关,则121,,,,s s αααα+必线性相关;若12,,,s ααα线性无关,则121,,,s ααα-必线性无关;(向量的个数加加减减,二者为对偶)若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减) 简言之:无关组延长后仍无关,反之,不确定;7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤(二版74P 定理7);向量组A 能由向量组B 线性表示,则()()r A r B ≤;(86P 定理3) 向量组A 能由向量组B 线性表示AX B ⇔=有解; ()(,)r A r A B ⇔=(85P 定理2)向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ ==(85P 定理2推论)8. 方阵A 可逆⇔存在有限个初等矩阵12,,,l P P P ,使12l A P P P =;①、矩阵行等价:~rA B PA B ⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解②、矩阵列等价:~cA B AQ B ⇔=(右乘,Q 可逆); ③、矩阵等价:~A B PAQ B ⇔=(P 、Q 可逆); 9.对于矩阵m n A ⨯与l n B ⨯:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,且A 与B 的任何对应的列向量组具有相同的线性相关性; ③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩; 10.若m s s n m n A B C ⨯⨯⨯=,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵;②、C 的行向量组能由B 的行向量组线性表示,T A 为系数矩阵;(转置)11.齐次方程组0Bx =的解一定是0ABx =的解,考试中可以直接作为定理使用,而无需证明; ①、0ABx = 只有零解0Bx ⇒ =只有零解;②、0Bx = 有非零解0ABx ⇒ =一定存在非零解;12. 设向量组12:,,,n r r B b b b ⨯可由向量组12:,,,n s s A a a a ⨯线性表示为:(110P 题19结论)1212(,,,)(,,,)r s b b b a a a K =(B AK =)其中K 为s r ⨯,且A 线性无关,则B 组线性无关()r K r ⇔=;(B 与K 的列向量组具有相同线性相关性) (必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴=;充分性:反证法)注:当r s =时,K 为方阵,可当作定理使用;13. ①、对矩阵m n A ⨯,存在n m Q ⨯,m AQ E = ()r A m ⇔=、Q 的列向量线性无关;(87P ) ②、对矩阵m n A ⨯,存在n m P ⨯,n PA E = ()r A n ⇔=、P 的行向量线性无关; 14. 12,,,s ααα线性相关⇔存在一组不全为0的数12,,,s k k k ,使得11220s s k k k ααα+++=成立;(定义)⇔1212(,,,)0s s x xx ααα⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭有非零解,即0Ax =有非零解;⇔12(,,,)s r s ααα<,系数矩阵的秩小于未知数的个数;15. 设m n ⨯的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-;16. 若*η为Ax b =的一个解,12,,,n r ξξξ-为0Ax =的一个基础解系,则*12,,,,n r ηξξξ-线性无关;(111P 题33结论)5、相似矩阵和二次型1. 正交矩阵T A A E ⇔=或1T A A -=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即1(,1,2,)0T i j i j a a i j n i j=⎧==⎨≠⎩;②、若A 为正交矩阵,则1T A A -=也为正交阵,且1A =±; ③、若A 、B 正交阵,则AB 也是正交阵; 注意:求解正交阵,千万不要忘记施密特正交化和单位化; 2. 施密特正交化:12(,,,)r a a a11b a =;1222111[,][,]b a b a b b b =-121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=----;3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交; 4. ①、A 与B 等价 ⇔A 经过初等变换得到B ;⇔=PAQ B ,P 、Q 可逆; ()()⇔=r A r B ,A 、B 同型;②、A 与B 合同 ⇔=T C AC B ,其中可逆; ⇔T x Ax 与T x Bx 有相同的正、负惯性指数; ③、A 与B 相似 1-⇔=P AP B ; 5. 相似一定合同、合同未必相似;若C 为正交矩阵,则T C AC B =⇒A B ,(合同、相似的约束条件不同,相似的更严格); 6. A 为对称阵,则A 为二次型矩阵; 7. n 元二次型T x Ax 为正定:A ⇔的正惯性指数为n ;A ⇔与E 合同,即存在可逆矩阵C ,使T C AC E =; A ⇔的所有特征值均为正数; A ⇔的各阶顺序主子式均大于0;0,0ii a A ⇒>>;(必要条件)。

线性代数重要公式

线性代数重要公式

线性代数重要公式在线性代数中,有许多重要的公式和定理,它们在解决线性方程组、矩阵运算、向量空间等问题中起到了关键作用。

接下来我们将介绍一些线性代数中的重要公式。

1.矩阵乘法的结合律:对于任意矩阵A、B和C,满足大小相容时,有(A·B)·C=A·(B·C)。

2.矩阵乘法的分配律:对于任意矩阵A、B和C,满足大小相容时,有A·(B+C)=A·B+A·C。

3.矩阵的转置:对于任意矩阵A,有(A^T)^T=A,其中A^T表示A的转置矩阵。

4.矩阵的转置与乘法:若A和B是满足乘法规则的矩阵,那么有(A·B)^T=B^T·A^T。

5.矩阵的逆:对于n阶方阵A,若存在逆矩阵A^-1,使得A·A^-1=A^-1·A=I,那么称A是可逆矩阵。

6.矩阵的伴随矩阵:对于n阶方阵A,将其每个元素的代数余子式组成的矩阵A*称为A的伴随矩阵。

7.克拉默法则:对于n个线性方程和n个未知数的线性方程组,如果行列式的值不为0,则该方程组存在唯一解,可以通过克拉默法则求解。

8.行列式的性质:-互换行列式的两行(列),行列式的值变号;-将行列式的行(列)乘以一个非零常数k,行列式的值变为原来的k 倍;-将行列式的行(列)加上另一行(列)的k倍,行列式的值不变。

9.矩阵的行列式和转置:对于矩阵A,有,A^T,=,A。

10.矩阵的秩:对于任意矩阵A,定义A的秩为矩阵A的行或列向量组的最大线性无关组中所含向量的个数。

11.矩阵的特征值和特征向量:对于n阶矩阵A,如果存在非零向量x,使得Ax=λx,其中λ是常数,那么称λ为矩阵A的特征值,x为对应的特征向量。

12.特征多项式和特征方程:对于n阶矩阵A,定义特征多项式为f(λ)=,λI-A,其中I为n阶单位矩阵。

将特征多项式f(λ)=0得到的方程称为特征方程。

13.矩阵的相似:对于n阶矩阵A和B,如果存在可逆矩阵P,使得P^-1AP=B,则称A 和B是相似的。

线性代数公式总结大全

线性代数公式总结大全

线性代数公式总结大全在线性代数中,有许多重要的公式被广泛应用于向量、矩阵和线性方程组的求解。

下面将对这些公式进行一个全面的总结,并说明它们的应用。

1. 向量的加法和减法- 向量加法:给定两个向量A和B,其加法可以表示为A + B = C,其中C的每个分量等于A和B对应分量的和。

- 向量减法:给定两个向量A和B,其减法可以表示为A - B = C,其中C的每个分量等于A和B对应分量的差。

2. 向量的数量积和向量积- 数量积:给定两个向量A和B,其数量积可以表示为A · B = |A| |B| cosθ,其中|A|和|B|分别表示向量A和B的模长,θ表示两个向量的夹角。

- 向量积:给定两个向量A和B,其向量积可以表示为A × B = |A| |B| sinθ * n,其中|A|和|B|分别表示向量A和B的模长,θ表示两个向量的夹角,n是垂直于A和B所在平面的单位向量。

3. 矩阵的基本运算- 矩阵加法:给定两个矩阵A和B,其加法可以表示为A + B = C,其中C的每个元素等于A和B对应元素的和。

- 矩阵减法:给定两个矩阵A和B,其减法可以表示为A - B = C,其中C的每个元素等于A和B对应元素的差。

- 矩阵数乘:给定一个矩阵A和一个标量k,其数乘可以表示为kA = B,其中B的每个元素等于A对应元素乘以k。

4. 矩阵的乘法- 矩阵乘法:给定两个矩阵A和B,其乘法可以表示为AB = C,其中矩阵C的元素等于A的行向量与B的列向量的数量积。

- 矩阵转置:给定一个矩阵A,其转置可以表示为A^T,其中A^T的第i行第j列元素等于A的第j行第i列元素。

- 矩阵的逆:给定一个可逆矩阵A,其逆可以表示为A^−1,其中AA^−1 = I,I是单位矩阵。

5. 线性方程组的解法- 列主元消去法:通过消去矩阵A的部分元素,将其转化为上三角矩阵,然后通过回代法求解线性方程组的解。

- 伴随矩阵法:利用矩阵的伴随矩阵和行列式的性质求解线性方程组的解。

线性代数全公式_线性代数公式定理总结

线性代数全公式_线性代数公式定理总结

线性代数全公式基本运算①A B B A +=+②()()C B A C B A ++=++③()cB cA B A c +=+ ()dA cA A d c +=+ ④()()A cd dA c =⑤00=⇔=c cA 或0=A 。

()A A TT=()TT TB A B A ±=±()()T TA c cA =。

()TT TA B AB =()()()212112-==-n n C n n n τn n A a A a A a D 2222222121+++=转置值不变A A T = 逆值变AA11=- A c cA n =γβαγβαγββα,,,,,,2121+=+()321,,ααα=A ,3阶矩阵 ()321,,βββ=B B A B A +≠+()332211,,βαβαβα+++=+B A332211,,βαβαβα+++=+B A B A B A B A =*=*00()()1,=c j i E有关乘法的基本运算nj in j i j i ij b a b a b a C +++= 2211 线性性质 ()B A B A B A A 2121+=+, ()2121AB AB B B A +=+ ()()()cB A AB c B cA == 结合律 ()()BC A C AB =()TT TA B AB =B A AB =l k l k A A A += ()kl lkA A =()kk kB A AB =不一定成立!A AE =,A EA =()kA kE A =,()kA A kE =E BA E AB =⇔=与数的乘法的不同之处()kk kB A AB =不一定成立!无交换律 因式分解障碍是交换性一个矩阵A 的每个多项式可以因式分解,例如 ()()E A E A E A A +-=--3322无消去律(矩阵和矩阵相乘) 当0=AB 时0=⇒/A 或0=B 由0≠A 和00=⇒/=B AB由0≠A 时C B AC AB =⇒/=(无左消去律) 特别的 设A 可逆,则A 有消去律。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基本运算①A + B =B +A② (A + B )+C =A +(B +C )③ c(A + B )=cA +cB (c + d A = cA +dA ④ c(dA )=(cd A⑤cA = 0二 c=0或 A=0。

(ATT=A(A±B y =A T±B T(cA T = C (A T L (AB T =B TA TT(n (n —1)"21)=C j = n (n ~1)2逆值变A 」CA =cnCt , P l + P 2, 丫=P i,Y y p 2,YA =©1,^2,^3 ), 3 阶矩阵B =(3l, 02,卩3 )A +B | H |A +|B |线性代数全公式B+ P l ®2 +P 233+P 3D = a21A21 + a22A2^^a2n A Zn转置值不变A T=AA +B =(%+ P l,% +6,03 +P 3)E(i,j(c)“1I有关乘法的基本运算C ij =a ii b ij +a i2b2j + …+a in b nj线性性质(A t + 民B=A1B +A2B ,A(Bi + B2 )= AB i + AB2 (cAB =c(AB )= A(cB )结合律(AB C = A(BC )(AB T =B T A TAB| =|A|B.k .l . k +A A =A(A k} A kl(AB (=A k B k不一定成立!A(kE )= kA , (kE A = kAAB = E u BA = E与数的乘法的不同之处(AB;= A k B k不一定成立!无交换律因式分解障碍是交换性一个矩阵A的每个多项式可以因式分解,例如2A —2A-3E =(A—3E )(A + E )无消去律(矩阵和矩阵相乘)当AB = 0时口A = 0或B=0由AH0和AB =0= B=0由AH0时AB=ACx B=C (无左消去律)特别的设A可逆,则A 有消去律。

左消去律:AB = AC二B = C。

右消去律:BA =CA=B=C。

如果A列满秩,则A有左消去律,即①AB =0= B =0②AB = AC = B = C可逆矩阵的性质i )当A 可逆时,TT -11 TA 也可逆,且(A ) =(A )。

(E (i,j )r =E (i,j )(E (i,j (c ))F =E (i,j (-c ))A k也可逆,且(A k广1 k =(A 」)。

数CHO , cA 也可逆,(cA ),二1A 」。

cii ) A , 1 1 1B 是两个n 阶可逆矩阵二AB 也可逆,且(AB )= B’A 」。

推论: 设A , B 是两个n 阶矩阵,则AB = E= BA = E 命题: 初等矩阵都可逆,且"1Pll c 丿(E (i (c )))」=E i l- I命题: 准对角矩阵A 11 0 00 A220 00 0 A kk每个A ii 都可逆,记A ;0 A2; 0 伴随矩阵的基本性质:关于矩阵右上肩记号:T ,i )任何两个的次序可交换,如(A T* =(A* T,(A*『N A -1* 等ii) (AB ^B TA T^ABf =B^A^(AB * =B* A*线性表示化1巴2,…«s X = P 有解(X =(X 1,…,X s f当A 可逆时,A* A ——=E AA-1=A*I A(求逆矩阵的伴随矩阵法)J. (A*)A f □.TT = (A 厂(A 」 X* = A 二(A 」j伴随矩阵的其他性质① I A*=\A ② (A T* =(A* T,3AB* =B* A*,⑤(A k* = (A*k ,I n_2⑥(A **=|A | A 。

AA ,n=2时,(A**=Af a -b 、 I l —c d丿P T f ,Xi % +%2«2 +…如$叫=P 有解Ax = P 有解,即P 可用A 的列向量组表示 AB =C =(r i ,「2,…,r s ), A = (set 2,…,^则 r i ,r 2,…,rs T 口1,口2,…,〜。

P l, ^2,…'P t T *^102,…^s ,(P l,P 2,…,P t )=(%,«2,…Q s C则 P i , P 2,…,P t T 「1,0…,r p 。

%卫2,…,y h , P 2,…,P t记作a 1,«2,…tt s 三 P 1, P 2,…,P t 。

线性相关S = 1,单个向量a , x a = 0 Ct 相关u Ct = 0s=2 , Ct 1,^2相关二 对应分量成比例a 102相关u a i :b i=a 2:b 2① 向量个数s=维数n ,则…a n 线性相(无)关二A =(%,a 2,…O n ), Ax = o 有非零解二则%02,…,°s 一定相关Ax=O 的方程个数n c 未知数个数S②如果%,aP s 无关,则它的每一个部分组都无关③如果牛宀,叫无关,而%,%,…,叫,P 相关,则P T…,叫则存在矩阵C ,使得 线性表示关系有传递性当 P 1, P 2,…,P t T (/1心2,…Q s T r",…,r p ,等价关系:如S …0s 与p 1,p 2,…,P t 互相可表示==a n :b n证明:设c ,,…,C s ,c 不全为0,使得C Q i +…+C s a s +c p =0+■■- +C s a s =0,与条件 a 1,…0sC s— —J 。

C(表示方式不唯一证明:记 A N%, , Ct S ),B = ( P ,, 'P t ),则存在S"矩阵C ,使得 B = AC 。

Cx=O 有S 个方程,t 个未知数,s e t ,有非零解n , c n=o 。

则=AC n =0,即n 也是Bx=0的非零解,从而 氏,…,^线性相关。

各性质的逆否形式%炉2,…,叫有相关的部分组,则它自己一定也相关。

推论:若两个无关向量组 ^1叫与Pj' P t 等价,则S=t 。

极大无关组①如果…,«s 无关,则s < n 。

③如果ct s 无关,而 PT"%,…,叫,则%,…,比卩无关。

⑤如果 P i …P t T 円…叫, 打…P t 无关,则t<s 。

则其中C H O ,否则C i ,…,C s 不全为0,GS 无关矛盾。

于是 ④当P T %,…C s 时,表示方式唯一二无关⑤若P i,…,P t T sQ s ,并且 t >S , 则P i ,…,P t —定线性相关。

②如果一个线性无关部分组(I ),若#(1 )等于秩a i,a2,a4,a6T (I ), (I )就一定是极大无关① a 1,^2,…0 s无关二Y (%,0 2,…,J )=s②P T "SUU丫(%,口2厂’,5用)=丫仙, 0另一种说法:取%卫2,…的一个极大无关组(I )(I )也是a 1,«2,…,a s,P的极大无关组吕(l)P相关。

证明:P T旳,…p s二P T(I冷(I )P相关。

③P可用a 1,…,%唯一表示二丫01,…,J,P)=Y 01,…,5 )=s④ P i,…,P t T %,…Q s U Y(%,…,叫用1,…,P t )= Y01,…0s=Y(P i,…,P t 庐丫(%,…Q s⑤%,…、叫三氏,…,A U 丫(%,…,叫)=丫(%…叫,氏…P t )= 丫(01,…,卩t)矩阵的秩的简单性质0 <r(A )<mi Km,n〉r(A)=O= A=0A行满秩:r(A)=mA列满秩:r(A)=nn阶矩阵A满秩:r(A)= nA满秩二A的行(列)向量组线性无关A HOU Ax =0只有零解,Ax = P唯一解。

矩阵在运算中秩的变化初等变换保持矩阵的秩① rg T )=r(A)② C 工0 时,r(cA)=r(A)③r(A±B )<r(A)+r(B )④r(AB )<min {r(A)r(B》⑤A可逆时,r(AB)=r(B)弱化条件:如果A列满秩,则Y(AB )=Y(B )证:下面证ABx = 0与Bx=0同解。

n 是ABx = 0 的解二ABE = 0=Bn=0u n 是Bx = 0 的解B可逆时, r(AB )=r(A)⑥若AB =0, 则r(A) + r(B)兰n ( A的列数,B的行数)⑦A列满秩时r(AB )=r(B )B行满秩时r(AB )=r(A)⑧ r(AB ) +n 屮A ) +r(B )解的性质1. Ax=0的解的性质。

如果叫亠,…,戈是一组解,则它们的任意线性组合C?^C^2 + C J e —定也是解。

=0= A(c〕十C2H2 +…+c J e)=0①如果©1,匕2,…,匕e是Ax = P的一组解,则c/i +C25 + …+c/e也是Ax = P 的解二0 +C2 + …+c e =1cc1+ C2 J十…+ C e %是Ax = 0的解二s + q十…十C e = 010A —P p iA (C i 匕1 + C 2 匕2 十"""+ C e 匕e ) = C i A 匕1 + C 2 A E 2 中"""+C e A E e=(C 1 + C 2 +…+ Ce 护特别的: 当是Ax = P 的两个解时,匕1 — J 是Ax= 0的解 则n 维向量匕也是Ax = P 的解二© —匕0是Ax = 0U Y(A| P )=Y(A )<n方程个数m :Y(A| P )兰 m,Y(A )兰 m①当Y (A )=m 时,Y (A|P)=m ,有解②当口<:门时,丫(人)<门,不会是唯一解 对于齐次线性方程组 Ax = 0,特征值特征向量几2= (x -A 1 I x -SI x ®②如果J 是Ax = P 的解,的解。

解的情况判别方程:Ax = P ,即 x 1ct^x ^2中…+x ^n = P=P T «1卫2,…Q n二 Y(A| P )=Y(A 疫丫紅1,5,…卫n , P )= 丫紅1宀,…S无画二 y(A ^>7(A )可二 ^(Al P )=Y(A )=n只有零解二■¥#)= n (即A 列满秩)(有非零解二 Y(A )< n )几是A 的特征值U 几是A 的特征多项式 xE — A 的根。

两种特殊情形: (1)A 是上(下)三角矩阵,对角矩阵时, 4 .特征值即对角线上的元素。

(2) r(A)=1 时:A的特征值为0,0,…,O,tr(A)特征值的性质命题:n阶矩阵A的特征值Z■的重数>n-r@E-A)命题:设A的特征值为入i A 2,…,h n,则② A 1 + A 2 +…+ A n = tr (A j命题:设n是A的特征向量,特征值为①对于A的每个多项式f(A ), f(A p = f(x P1②当A可逆时,A命题:设A的特征值为入1,心,…,几①f(A )的特征值为f仏I)f仏2 广,f G n)②A可逆时,A」的特征值为A*的特征值为③A的特征值也是入1,几2;-A n特征值的应用①求行列式I A 1= A仆A 2,…,扎②判别可逆性入是A的特征值二I几E—A|=0U A —A E不可逆A - A E可逆u扎不是A的特征值。

相关文档
最新文档