第5章 配合物的反应动力学及反应机理

合集下载

配合物反应机理和动力学

配合物反应机理和动力学

(2) 缔合机理(Associative), A机理
x
y xy
+ yrastleow determif_naxgst
中间体,
可检测
速率方程与进入基团y的浓度有关: r = k [ML5X][Y] (SN2双分子亲核取代)
(3).交换机理(Interchange), I机理 (Ia, Id)
XY
HH B
H
H B
H
H
B
H
HB
H H
BH
B 5 H 1 1 (3203)
arachno BnHn+6
3个BHB 6e 2个BBB 4e 0个BB 0 3 个BH2 6e 5个BH 10e 总电子: 26e
styx (3203)表示
三种硼烷之间的关系
斜线方向: –BH, +2H 水平方向: +2H
四. 碳硼烷及金属碳硼烷衍生物
B5H9 C2H2200C 1,5- C2B3H5+1,6- C2B4H6
讨论:实验室用Cr3+(aq)制备Cr(en)33+时,加 Zn的作用是什么?
(无机化学实验4)
第5章 非金属原子簇化合物
B
C
空轨道
1
N
O
F
孤电子对
1
2
3
原子簇
有机
P4 S8(链) 端基
固体硼的结构单元,B12 Ih点群(20面体)
30条边 电子数=123=36, 3610=26
一. 硼烷和碳硼烷 二. 富勒烯和碳纳米管
k2= fk1k2K (Marcus方程)
k: 总反应的速率常数 k1和k2: 两个交换反应的速率常数 K: 总反应的平衡常数 f是由速率常数和扩散速率组成的复合参数

配位化学-中科院总结(4-6章)

配位化学-中科院总结(4-6章)

(3) [Ni(en)3]2+ 和 [Fe(en)3]2+ 二者中心离子的d电子数不同,其CFSE不同。 [Ni(en)3]2+ : 3d8,电子排布为t2g6eg2,CFSE = -12Dq; [Fe(en)3]2+ : 3d6,电子排布为t2g6,CFSE = -24Dq。 所以, [Fe(en)3]2+ 更稳定。 (4) [Ni(H2O)6]2+ 和 [Ni(en)3]2+ en为螯合配体,其配合物具有螯合效应, 所以, [Ni(en)3]2+ 更稳定。
+ H2O
若为SN2机理: [Co(NH3)5 X]2+
v = k[Co(NH3)5X2+] + H2O 慢 [Co(NH3)5 X H2O]2+
[Co(NH3)5 X H2O]2+ 快 [Co(NH3)5 H2O]3+ + Xv = k[Co(NH3)5X][H2O]≈ k[Co(NH3)5X2+]
6.如何用晶体场理论判断配合物的活性和惰性。 比较活化配合物与反应物的CFSE确定。
7. [Co(NH3)5X]的水解反应机理和速率方程,如何验 证反应机理?
例如: [Co(NH3)5X]的酸式水解 若为SN1机理:[Co(NH3)5
[Co(NH3)5 ]2+ 慢 快
X]2+
[Co(NH3)5]3+ + X[Co(NH3)5H2O]3+
A5 A3 A2 A6 M B1 X4
A5
A5
-X
A2
A3
M B1 A6
4
+Y
A2
A3
M B1 A6

05 第五章 化学动力学基础

05 第五章  化学动力学基础
(0.7 1.0) rN 2 0.1(mol L-1 s -1 ) 3 1
(2.1 3.0) rH 2 0.1(mol L-1 s -1 ) 3 3
rNH 3 (0.6 0) 0.1(mol L-1 s -1 ) 3 2
化学与材料科学学院
r kc ( NO)c(O2 )
2
化学与材料科学学院
殷焕顺
2.应用速率方程的注意事项
①反应物是气体时,可用分压代替浓度。
如基元反应:
2 NO( g ) O2 (g) → 2 N O2 (g)
r kc ( NO)c(O2 ) rp k p p ( NO) p(O2 )
2
2
②固体或纯液体不写入速率方程。
mol· -1· -1 L min
化学与材料科学学院
殷焕顺
1.1 平均速率
对任一化学反应:
aA bB
选用产物表示时, 取 + 号;选用反 应物表示时,取 - 号,目的是使 反应速率为正值。
在时间间隔△t内,其平均速率为:
c( A ) rA t c( B ) rB t
化学与材料科学学院
化学与材料科学学院
殷焕顺
1. 速率方程
如任意反应:aA + bB = dD + eE
速率可表示为:
r k c c
x A
y B
k 为反应速率常数;
x、y 分别为反应物A、B的反应级数;
x + y为反应的总级数。
化学与材料科学学院
殷焕顺
质量作用定律-古德贝格(Guldberg)
质量作用定律
描述:在一定温度下,对简单反应(或复合反应中 的基元反应), 化学反应的速率与以反应方程式中 化学计量数为指数的反应物浓度的乘积成正比。

第五章配合物反应动力学

第五章配合物反应动力学

第五章配合物反应动⼒学第五章配合物反应动⼒学研究范围:取代、氧化还原、异构化、加成与消除、配体上进⾏的反应本章只讲述:取代反应和氧化还原反应第⼀节:取代反应动⼒学例:L5M-X+Y L5M-Y+X⼀、取代的反应机理1、离解机理(SN1机理,D)慢a.L5M-X = L5M+ X(配位数下降6 5)b.L5M+Y=L5M-Y速率⽅程:d[L5M-Y]/dt = k[L5M-X]速率与Y的浓度⽆关,是对[L5M-X]的⼀级反应2、缔合机理(SN2机理,A)慢a、L5M-X+Y = L5MXY(配位数升⾼6 7)b、L5MXY = L5M-Y + X反应速率:d[L5M-Y]/dt = k[L5M-X][Y]动⼒学上属于⼆级反应。

* SN1和SN2是两种极限情況,⼤多数反应都是按照这两种极限情况的中间机理进⾏的。

3、交换机理(I)离解机理是旧键断裂,缔合机理是新键形成,前者是先破后⽴,后者是先⽴后破,在实际的取代反应中旧键的断裂与新键的形成是同时发⽣的。

取代反应最可能进⾏的⽅式是:取代的配体接近的同时,被取代的配体逐渐离去,即配合物发⽣取代反应时配位数没有变化,新键的⽣成和旧键断裂同时进⾏,彼此相互影响,这种机理称交换机理或称I机理。

I机理⼜可进⼀步分为I a和I d机理:I d机理是取代反应中离去配体的影响⼤于进⼊配体的影响。

I a机理是取代反应中进⼊配体的影响⼤于离去配体的影响。

DML n X + Y ML n + X +Y ML n Y + X (1) (3) X (7) I ML n ML n X ...... Y (4) Y ML n Y (X)(2) A X (6) MLn (5) YD 机理:途径(1)→(3)→(7) A 机理:途径(1)→(2)→(5)→(6)→(7) I 机理:途径(1)→(2)→(4)→(6)→(7) ⼆、活性与惰性配合物及取代机理的理论解释配离⼦发⽣配位体交换反应的能⼒, 是⽤动⼒学稳定性的概念来描述的, 配体交换反应进⾏得很快的配合物称为活性的配合物,⽽那些交换反应进⾏得很慢或实际上观察不到交换的配合物则称为惰性配合物。

第五章配合物反应机理和动力学

第五章配合物反应机理和动力学

研究范围
过渡金属配合物的反应类型有很多,归纳起来有五大类:
(1)取代反应
(2)氧化还原反应(电子转移反应)
(3)异构化反应(如顺反异构,键合异构等)
(4)加成和消除反应
(5)配位配体的反应(以不断裂配位配体的金属-配位键为特征,
因此反应过程中不会发生颜色的变化)
如:[(NH3)5Co─NCS]2+
反应速率= k[ML5 X] ( 速率方程与进入基团y的浓度无关,SN1单分子亲核)
例:Co(CN)5H2O2
k1 k2
Co(CN)52 + H2O
Co(CN)52 + Y k3
k4
Co(CN)5Y3
Y分别为Br, I, SCN, N3时, k1值均为1.6103s1 说明反应与进入基团无关。
酸性水解(酸性条件下的水合作用)
反位影响
大量试验数据表明:配体的反位影响实际上往往比顺位影响大得多。 对于σ电子体系的反位影响的大小,可用振动光谱,X射线结构分 析和其它试验方法观察。其伸缩振动频率与键的强度成正比,与键 长成反比。
对于π成键配体对金属与其它配体的π键的影响,实验上一般采用 红外光谱法。 例如,金属羰基络合物中CO的伸缩振动频率取决于多少电子密度由 金属的满充d轨道反馈到CO的π*反键上,其反馈的量多少与C、O之 间的键强度及CO的伸缩振动频率成反比。 如果CO的π*反键轨道上的电子密度被络合物的反位π受主配体所拉 走,则CO的伸缩振动频率就增大。
反位效应 苏联学者契尔纳耶夫首先发现了平面正方形络合物取代反应的动
力学反位效应。他指的是反位配体对离场基团被取代速度的特殊 效应。在金属络合物取代反应中反位配体的效应最引人注目。
动力学反位效应(kinetic trans effect)序列 CN- ~ CO ~ C2H4 > H- ~ [SC(NH2)2] ~ PR3 ~ SR2 > CH3- > C6H5~ NO2- ~ I- ~ SCN- > Br- > Cl- > RNH2 ~ NH3 > OH- > H2O

中科院研究生课件《催化原理》第五章配合物催化剂及其作用机理

中科院研究生课件《催化原理》第五章配合物催化剂及其作用机理
Cu-Zn-Al Zeolit CO + H2 CH3OH Gasoil (Mobil) 低压
催化原理
第三章:催化作用的化学基础 化学反应的电子概念;基元化学 反应机理;晶体场和配位场理论;均相、多相和酶催
化反应机理的同一性;催化剂结构对其催化性能的影
响 第四章:酸、碱催化及其作用机理 酸、碱的定义;一般酸、碱
催化反应;特殊酸碱催化反应;一般酸、碱和特殊
酸、碱催化反应的区别;酸函数和酸强度; Bronsted 规 规则; Lewis酸催化 第五章 配合物催化剂及其作用机理 配合物催化剂分类;配合 物催化剂的作用特点;配位催化中的有效原子规则及 其基元反应分类;配位催化中的多催化剂体系;各种
热烈欢迎
来自五湖四海的朋友们
进入中科院研究生院深造
催化原理
无机化学 有机化学 物理化学 分析化学 无机化工 化学工程 化学工艺 应用化学 生物化工 工业催化
催化科学与 化工机械 应用化学
化学工程
与技术
我国1971年开始
催化原理
无机:合成氨、硝酸和硫酸 ,自然涉及Fe, Pt, V2O5催化剂, 有机:生产甲醇、乙酸(甲醇+CO)和苯乙烯(乙苯脱氢)就 会涉及Cu-Zn-Al,Rh络合物,Fe3O4-K2O-Cr2O3; 分析:化学传感器;
加热方法
光化学方法 电化学方法 辐射化学方法
缺乏足够的化学选择性,消耗能量
消耗额外的能量
催化方法 既能提高反应速度,又能对反应方向进行控制, 且催化剂原则上是不消耗的。 应用催化剂是提高反应速度和控制反应方向较为有效的方法。 故催化作用和催化剂的研究应用,成为现代化学工业的重要 课题之一。
催化原理
第一章 绪论 1.1 催化科学和技术的发展历史 1.1 1.催化剂的发展历程 1.1 2.催化理论的发展过程 1.1 3.催化原理的有关资料 1.1 4.催化研究进展对工艺的影响 1.2 催化作用的化学本质 1.3 催化研究中的方法论

有机化学第5章

有机化学第5章

CH3 C CHCH2CH2OH
(80%)
亲电加成
• 由于Π键较弱,且Π电子云分布在σ键所在平 面的上方和下方,受原子核束缚力较小,流动 性较大,容易极化,也容易给出电子,起到电 子源的作用。 • 因此含有Π键的烯烃和炔烃均易受缺电子的亲 电试剂的进攻而发生反应,称为亲电加成。
加卤素
C C + X2 C X C X
• 烯烃和炔烃都不溶于水,溶于有机溶剂,如苯、 乙醚、氯仿和石油醚中。
不饱和烃的化学性质
• 加成反应 • 氧化反应 • 聚合反应
加成反应
• 加成反应:不饱和键中Π键断开,分别 与试剂中的两个1价的原子或基团结合, 形成两个新的σ键而生成加成产物。
C C + Y Z C Y C Z Y C C + Y Z C Y C Z Y Z C Y Z C Z
CH
+ E (亲电试剂)
+
RC (sp)
+
CHE
(1)
烯基碳正离子
• 在烯基碳正离子(1)中,中心碳原子是sp杂化, 虽然两个σ 键处在同一直线,键角180o,相距 较远。 • 但余下的两个相互垂直的p轨道只有一个是空 轨道,另一个形成Π键的p轨道是电子占有轨 道,它和两个σ 键呈90o角,相距较近,排斥 力较大,能量较高,需要较大的活化能,因 而反应速度小。
CH3 C CH3
OSO 2OH
硫酸氢酯水解生成醇
C H3C H2O S O O H 2
+
HO H
C H3C H2O H
+
HO S OO H 2
H3C
H C
CH3
+
HO H
H3C

有机合成课件第5章缩合反应

有机合成课件第5章缩合反应

phCHO+C3 H C2 H C2 HCC3 H
O
浓 HClPhCCHCC3 H
C2 H C3 H
O
phCHO +
CH3
O
PhCH
CH3
NaOH,ROH
回流
O
HCl PhC2H
63%
CH3 略
CHO +
C3 H
H2C CO
Байду номын сангаас
EtONa
CHO H2C
C3 H
C3 H O
C3 H
ph C C ph
ph
a. 反应机理:碱催化
O
O
RCH 2 RCH 2 RCH 2
C
R' + B -
O
O
C + CH C R'
R'
R
OH
O
C C C R'
RCH
C R' + HB
O
O
H RCH 2 C C C R'
R' R
HB
OH
O
B-
H
RCH 2 C C C R'
R' R
O
R' R
HB RCH 2 C C C R' + H 2O + B -
第五章 缩合反应
一.概述 1.概念
凡两个或两个以上有机化合物分子之间相 互反应,形成一个新链,同时放出简单分 子 ;(H2O,ROH, 氨 , HX 等 ) 或 两 个 有 机 物 分 子通过加成形成较大分子的反应均称为缩 合反应(Condensation Reaction)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(4)若两个前线轨道均为成键分子轨道,则在反应过程中,HOMO对应于要破裂 的旧键,LUMO对应于要生成的新键;若两者均为反键轨道,则HOMO对应于要 生成的新键,LUMO对应于要破裂的旧键。
符合上述规则 对称性允许反应 不符合上述规则 对称性禁阻反应
1. 基本概念
顺式加成 反式加成
LUMO(g*)
2.1 取代反应机理的分类
(1)离解机理(D机理,SN1机理)
[M(H2O)x ]n Lm [M(H2O)x1L]nm H2O
(M
Al3
,
Sc3
,
Be2
,
etc.;
L
SO
2 4
,
S2O32
,
edta,
etc.)
反应速率只与水合金属离子溶度有关,与外来配体L无关。
反应机理:
r k[M(H2O)x ]
1. 基本概念
1.7 活化参数
通常反应机理不能够ΔG =ΔH -TΔS
h: 普朗克常数, h=6.62610-23 J·s; R: 摩尔气体常数; T: 温度 H: 活化焓变——过渡态与反应物之间的焓变之差 S: 活化熵变——过渡态与反应物之间的熵变之差 G: 活化自由能
电子转移反应机理: H. Taube (1983年Nobel 化学奖) 溶液中电子传递理论:R. A. Marcus (1992年Nobel 化学奖)
研究内容 & 反应机理的推断: (1)各种因素(分子结构、浓度、温度、催化剂等)对反应速率的影响; (2)反应物结构和性质、过渡态结构、中间体及产物的检出和鉴定 (3)反应速率方程 确定速率控制步骤 反应机理 意义: (1)了解配合物的电子结构在反应过程中的相互作用,从而控制反应; (2)预测化合物的反应性,指导新化合物的合成。
顺式加成
平面四方形Ir(I)配合物的氧化加成反应中对称性匹配的两种前线轨道相互作用形式 注:(a) 与(c)中另两个配体L分别在纸面上下
1. 基本概念
1.4 活性(liable)配合物和惰性(inert)配合物
——取代反应的难易,动力学性质 活性配合物:
0.1mol/L配合物和配位剂,25oC,1分钟之内完成反应。 惰性配合物:
1. 基本概念
(3)氧化还原反应(电子迁移反应)——中心原子的氧化态发生变化
(4)加成和离解反应(氧化加成和还原消除)——配位数发生变化
(5)配体的反应
COCH3
H3P O4
CO CH3
AlCl3
COCH3
COCH3
Fe
Fe
Fe
+
Fe
(CH3CO)2O
(CH3CO)2O
COCH3
1. 基本概念
1. 基本概念
配合物尺寸的变化——键长键角的变化,新键形成与否 ΔVsol,溶剂化活化体积 (solvation activation volum);反映溶剂重组引
起的体积改变。
由反应物到过渡态时配体实体没有形式氧化态改变, ΔVsol变化较小,可忽略; 当形式氧化态改变, ΔVsol不能忽略。
2. 配体的取代反应
ln(k/T) 1/T, 斜率ΔH 截距ΔS
ΔH(大、+) & ΔS (+) 离解/交换离解机理 ΔH( 小、+) & ΔS (-) 缔合/交换缔合机理
1. 基本概念
ΔVexp = ΔVintr + ΔVsol
ΔV,活化体积,过渡态与反应物之间的偏摩尔体积差; D机理(+)、A机理(-) ΔVintr,固有活化体积 (intrisic activation volum);体现从反应物到活化
[M(H2O)x ]n slow[M(H2O)x1]n H2O [M(H2O)x1]n Lm fast[M(H2O)x1L]nm
键的断裂是反应速率的决定步骤
2. 配体的取代反应
(2)缔合(置换)机理(A机理,SN2机理)
[Pt(NH3)3Cl] Br [Pt(NH3)3 Br] Cl r k[Pt(NH3)3Cl ][Br ]
1. 基本概念
1.2 配合物的反应类型
(1)取代反应——中心原子的氧化数及配位数均不变
[Cu(H2O)4 ]2 4NH3 [Cu(NH3)4 ]2 4H2O
[Cr(H2O)6 ]Cl3
Cl[CrCl( H2O
H
2O)5
]Cl2
Cl[CrCl H2O
2
(H
2O)
4
]Cl
紫色
绿色
(2)异构化反应
1.3 前线轨道对称性规则(双分子基元反应)
(1)在基元反应中,起决定性作用的是两个反应物分子的前线轨道——HOMO 和LUMO。当分子接近时,电子从一个分子的HOMO流入另一个分子的LUMO; (2)HOMO和LUMO的对称性匹配,能产生净重叠;
(3) HOMO和LUMO的能量(能级)接近(约6eV以内);
配合物的反应动力学 及反应机理
1. 基本概念
1.1 反应机理&研究目的
金属配合物生成反应机理(快速化学反应): M. Eigen, R. G. W. Norrish, G. Porter (1967年 Nobel 化学奖)
前线轨道理论&分子轨道对称守恒原理:K. Fukui,R. Hoffmann (1981年Nobel 化学奖)
上述条件下,反应进行得很慢,但也许很完全。
[Co(NH3 )6 ]3
6H3O
[Co(H2O)6 ]3
6NH
4
(K
1025 )
惰性,不稳定
活性,稳定(lgb4=20)
1. 基本概念
含CN-配合物的稳定常数和交换反应速度的比较
配合物
lgbn
[Ni(CN)4]2- 22
[Mn(CN)6]3- 27
弛豫法 (Eigen, 10-1 s > t1/2 > 10-9 s):通过外界因素(温度、压力、电场强度等) 的急剧变化来连续扰动某个反应的平衡位置,测定达到新平衡过程所需的的弛豫时 间,从而测定反应速率。
1. 基本概念
1.6 势能曲线
活化(自由)能
过渡态:瞬间存在的不稳定物种; 中间体:相对稳定的过渡化合物,在慢反应中能检测其存在;
[Fe(CN)6]4- 37
[Hg(CN)4]2- 42
[Fe(CN)6]3- 44
交换反应速度 非常快 中等程度 非常慢 非常快 非常慢
热力学 动力学
活 性
稳 定 性
1. 基本概念
1.5 研究方法
由反应进行的快慢,即反应所需时间范围决定 慢反应(t1/2 1 min):常规方法( 滴定法、光谱法、同位素示踪等) 快反应:波谱法 等
相关文档
最新文档