高一数学对数函数及其性质完美版
《对数函数及其性质》课件

THANK YOU
对数函数的定义域和值域
理解对数函数的定义域和值域,并能够判断特定函数的定义域和值 域。
对数函数的单调性
理解对数函数的单调性,并能够判断特定函数的单调性。
进阶题目
01
02
03
复合对数函数
理解复合对数函数,并能 够求解复合对数函数的值 。
对数函数的图像
理解对数函数的图像,并 能够根据图像判断函数的 性质。
分析对数函数的值域和定义域。对于自然对数函数y=log(x) ,其值域为R;对于以a为底的对数函数y=log(x),其定义域 为(0, +∞)。对于复合对数函数y=log(u),其值域和定义域取 决于u的取值范围。
03
对数函数的应用
实际应用场景
金融计算
在复利、折旧等计算中 ,对数函数有广泛应用
。
《对数函数及其性质》ppt课件
• 对数函数的定义与性质 • 对数函数的图像与性质 • 对数函数的应用 • 对数函数与其他知识点的联系 • 习题与练习
01
对数函数的定义与性质
定义与表示
总结词
对数函数是一种特殊的函数,其 定义域为正实数集,值域为全体 实数集。常用对数函数以10为底 ,自然对数函数以e为底。
么以a为底N的对数等于b。
对数函数和指数函数在解决实际 问题中经常一起出现,例如在计 算复利、解决声学和光学问题时
。
对数函数与三角函数的联系
对数函数和三角函数在形式上有些相似,特别是在自然对数函数和正弦函数中。
在复数域中,对数函数和三角函数有更密切的联系,它们都可以用来表示复数的幂 。
在解决一些物理问题时,例如波动和振动问题,可能需要同时使用对数函数和三角 函数。
高一数学对数函数课件

目录
• 对数函数的定义与性质 • 对数函数的运算 • 对数函数的应用 • 对数函数与其他函数的关系 • 对数函数的综合题解析
01
对数函数的定义与性质
定义与表示
总结词
对数函数是指数函数的反函数,其定义是指数函数的自变量和因变量互换位置 后得到的函数。
详细描述
对数函数的一般形式为 (y = log_{a}x)(其中 (a > 0) 且 (a neq 1)),其中 (x) 是自变量,(y) 是因变量。对数函数表示的是以 (a) 为底数,(x) 的对数。
计算机科学
在计算机科学中,对数函数常被用 于数据结构和算法设计,如二叉查 找树、哈希表等。
04
对数函数与其他函数的关 系
与指数函数的关系
指数函数和对数函数互为反函数,它 们的图像关于直线y=x对称。
对数函数和指数函数在解决实际问题 中经常一起出现,例如在计算复利、 解决声音强度问题等。
对数函数的定义是基于指数函数的, 即如果a的x次方等于N(a>0,a不等 于1),那么x叫做以a为底N的对数, 记作x=logₐN。
与三角函数的关系
对数函数和三角函数在形式上没有直接的关系,但在一些特定情况下可以相互转化 。例如,对于正弦函数和余弦函数的值可以通过对数函数进行计算。
三角函数和对数函数在解决实际问题中经常一起出现,例如在信号处理、振动分析 等领域。
对数函数和三角函数在一些数学问题中可以相互转化,例如在求解一些复杂的积分 问题时,可以将积分转化为对数函数的求解问题。
综合题类型与解题思路
01
类型三:对数方程求解
02
对数方程是常见的题型,需要掌握解对数方程的方法和步骤。
高一上学期数学必修课件第章对数函数的概念对数函数y=logx的图像和性质

在金融领域中的应用
复利计算
在金融领域,对数函数被广泛应用于复利计算。通过对数函 数,可以方便地计算出本金在固定利率下经过一段时间后的 累积金额。
风险评估
在金融风险评估中,对数函数可用于描述极端事件(如市场 崩盘)发生的概率分布,帮助投资者更好地管理风险。
在科学研究中的应用
数据分析
在统计学和数据分析中,对数函数常 用于数据转换和处理,以便更好地揭 示数据间的关系和趋势。
单调性的应用
利用对数函数的单调性,可以比较两 个同底数的对数的大小,也可以解决 一些与对数函数相关的不等式问题。
奇偶性判断
对数函数的奇偶性
对于底数为正数且不等于1的对数函数y=logax,其既不是奇函数也不是偶函数 ,即它不具有奇偶性。
奇偶性的应用
虽然对数函数本身不具有奇偶性,但是在解决一些与对数函数相关的问题时,可 以考虑利用其他函数的奇偶性来简化问题。
指数式与对数式的互化
$a^x=N Leftrightarrow x=log_a N$
指数函数与对数函数的关系
指数函数$y=a^x$与对数函数$y=log_a x$互为反函数。这意味着它们的图像 关于直线$y=x$对称。
02
对数函数y=logx图像分些x和对应的y值,然 后在坐标系中描点,最后用平滑 曲线连接各点即可得到对数函数 的图像。
对数函数的底数$b$必须大于0且不等于1,否则函数无意义。同时,对于不同的底数,对 数函数的图像和性质也会有所不同。
对数运算规则
对数运算有特定的运算法则,如$log_b(mn) = log_b(m) + log_b(n)$、$log_b(m/n) = log_b(m) - log_b(n)$等。在解题过程中,需要正确运用这些法则进行化简和计算。
对数函数及其性质

A.a>b>c
B.a>c>b
C.b>a>c
D.b>c>a
解析 a=log3π>1,b=12log23,则12<b<1,
c=12log32<12,
∴a>b>c.
跟踪训练 1 求下列函数的定义域: (1)y=log3(1-x);(2)y=log12x;(3)y=log71-13x;
(4)y= log3x.
解 (1)由 1-x>0 得 x<1,∴所求函数定义域为{x|x<1}; (2)由 log2x≠0,得 x≠1,又 x>0, ∴所求函数定义域为{x|x>0 且 x≠1};
730 1
P
,都
有唯一确定的年代 t 与它对应,
2
所以,t 是 P 的函数.
问题 2
在问题
1
中,t= log 5
730 1
P就是一个对数函数,据此,
2
你能归纳出这类函数的定义吗?
答 一般地,我们把函数 y=loga x(a>0,且 a≠1)叫做对数 函数,其中 x 是自变量,定义域为 x∈(0,+∞).
3
说明前者在(0,+∞)上是增函数,后者在(0,+∞)上是
减函数.
问题 3 你能根据函数 y=log3x 及 y=log1x 的性质,归纳出 3 函数 y=logax(a>0 且 a≠1)的性质吗?
答 函数 y=logax(a>0 且 a≠1)的定义域为(0,+∞),值 域为 R,过定点(1,0),当 a>1 时,在(0,+∞)上是增函数, 当 0<a<1 时,在(0,+∞)上是减函数.
问题 3 判断一个函数是不是对数函数的依据是什么? 答 对数函数的定义与指数函数类似,只有满足函数解析 式右边的系数为 1,底数为大于 0 且不等于 1 的常数,真数 仅有自变量 x 这三个条件,才是对数函数.如:y=logax2; y=loga(4-x) ;y=2logax 都不是对数函数.
对数函数的图像与性质

你能口答吗?
变一变还能口答吗?
log10 6 < log10 8 log10 m< log10 n 则 m < n
log0.5 6 > log0.5 8 log0.5 m> log0.5 n 则 m < n
log2 0.6 > log2
0.8
log2 m > log2 n 则
3
3
m < n
你知道指数与对数的关系吗?
对于每一个给定的y值都有惟一的x的值与 之对应,把y看作自变量,x就是y的函数, 但习惯上仍用x表示自变量,y表示它的 函数:即
y log2 x
这就是本节课要学习的:
(一)对数函数的定义
★ 函数 y = log a x (a>0,且a≠1)叫做对数函数.
其中x是自变量,定义域是(0,+∞)
对称性:y loga x 和 y log1 x 的图像关于y轴对称. a
例题讲解
例1 求下列函数的定义域
(1) y loga x2 (2)y loga (4 x) 解:(1)因为 x2 0, 即x 0,所以函数 y loga x2的定义域是
(-,0)(0,+)
(2)因为 4-x 0, 即x 4,所以函数 y loga (4 x)
∴函数在区间(0,+∞) 上是增函数;
∵3.4<8.5
∴ log23.4< log28.5
∴ log23.4< log28.5
• 例8:比较下列各组中,两个值的大小: • (1) log23.4与 log28.5 (2) log 0.3 1.8与 log 0.3 2.7
解2:考察函数y=log 0.3 x , ∵a=0.3< 1, ∴函数在区间(0,+∞)上是减函数; ∵1.8<2.7 ∴ log 0.3 1.8> log 0.3 2.7
高一对数知识点高中总结

高一对数知识点高中总结对数是数学中的一个重要概念,它在高中数学中扮演着重要角色。
在高一阶段,我们学习了许多关于对数的知识点,通过总结和归纳,可以更好地理解和应用这些知识。
本文将对高一阶段的对数知识点进行整理和总结。
一、对数的定义和性质对数的定义是:如果一个正数a不等于1,且b大于0,那么称符号logₐb为以a为底b的对数,记作logₐb=c。
对数具有以下性质:1. logₐ1=0,因为a的0次方等于1。
2. logₐa=1,因为a的1次方等于a。
3. logₐ(㏑ₐb+㏑ₐc)=logₐb+c,对数的乘法公式。
4. logₐ(b/c)=logₐb-logₐc,对数的除法公式。
二、换底公式和常用对数对数的底数可以是任意正数,但常用的对数底数是10和e(自然对数)。
1. 换底公式:如果知道了一个数的对数以及底数,可以通过换底公式将其转化为另一个底数的对数。
换底公式为:logₐb=㏑b/㏑a。
2. 常用对数:以10为底的对数称为常用对数,常用对数的符号是㏑,常用对数表是我们常用的工具之一。
三、对数方程和对数不等式对数方程和对数不等式是对数的应用之一,要解决对数方程和对数不等式,需要利用对数的性质和换底公式,通过变量的替换和代数运算来求解。
1. 对数方程:是形如logₐx=b的方程,其中a、b为已知常数,x为未知数。
求解对数方程时,可以通过对数的性质和换底公式进行变换,最终得出x的值。
2. 对数不等式:是形如㏑ₐx>b的不等式,其中a、b为已知常数,x为未知数。
求解对数不等式时,需要注意不等式的取值范围,并通过对数的性质和换底公式进行变换,找到x的取值范围。
四、指数函数与对数函数的图像和性质在高一阶段,我们学习了指数函数和对数函数的图像和性质,这对我们理解对数与指数的关系、解决相关问题非常有帮助。
1. 指数函数的图像和性质:指数函数y=a^x的图像呈现出递增或递减的特点,且过原点。
指数函数具有指数遇加法、指数遇乘法和指数函数的值域等性质。
高一数学对数函数及其性质课件

分享解决对数函数相关问题的技巧和方法,提高学生的问题解决能力。
3
与其他数学领域的关系
探讨对数函数与其他数学领域的交叉应用和互动作用。
拓展
复对数函数和超越函数
介绍对数函数的推广形式,如 复对数函数和超越函数,拓展 学生的数学视野。
物理学中的应用
未来发展和应用前景
探究对数函数在物理学中的应 用,如描述衰减、增长等现象。
介绍对数函数的定义和基本 表示形式,深入理解对数的 本质。
性质
探究对数函数的各种性质, 如定义域、值域、增减性等, 为后续学习奠定基础。
图像和图像变换
通过绘制对数函数的图像和 变换,直观地理解对数函数 的特点和变用
探索对数函数在实际问题中的应用,如物理、经济领域等。
2
解题技巧与方法
高一数学对数函数及其性 质课件
本课件介绍高一数学对数函数及其性质,包括对数函数的概念和历史背景, 对数函数与指数函数的关系等。
引言
概念和历史背景
探索对数函数的起源和发展,了解其在数学 领域的重要性。
对数函数与指数函数的关系
揭示对数函数与指数函数之间的密切联系, 探讨其相互转换的原理。
基础知识
定义和表示
展望对数函数的未来研究方向 和应用前景,激发学生的兴趣 和探索欲望。
结论与展望
1 重要性和应用广泛
性
2 跨学科的融合和创
新
总结对数函数的重要性 和广泛应用领域,强调 其在数学学科中的地位。
探讨对数函数与其他学 科的交叉融合,激发学 生的创新思维和跨学科 能力。
3 未来研究方向和发
展趋势
展望对数函数研究的未 来方向和发展趋势,鼓 励学生参与数学的前沿 研究。
高中数学必修一(人教版)《4.4.2 对数函数的图象和性质》课件

3
3
3
(2)因为函数 y=log1.5x 是(0,+∞)上的增函数,且 1.6>1.4,所以 log1.51.6>log1.51.4.
(3)因为 0>log70.6>log70.5,所以log170.6<log170.5,即 log0.67<log0.57.
(4)因为 log3π>log31=0,log20.8<log21=0,所以 log3π>log20.8.
(3)取中间值 1,因为 log23>log22=1=log55>log54,所以 log23>log54.
[方法技巧] 比较对数值的大小的策略
(1)比较两个底数为同一常数的对数的大小,首先要根据对数的底数来判断对 数函数的单调性,然后比较真数的大小,再利用对数函数的单调性判断.
(2)比较两个对数值的大小,对于底数是相同字母的,需要对底数进行讨论. (3)若不同底但同真,则可利用图象的位置关系与底数的大小关系解决或利用 换底公式化为同底后再进行比较. (4)若底数和真数都不相同,则常借助中间量1,0,-1等进行比较.
综上所述,当 a>1 时,原不等式的解集为{x|x>4};
当 0<a<1 时,原不等式的解集为x52<x<4
.
[方法技巧] 对数不等式的三种考查类型
(1)形如logam>logan的不等式,借助y=logax的单调性求解. (2)形如logam>b的不等式,应将b化成以a为底数的对数式的形式(b=logaab), 再借助y=logax的单调性求解. (3)形如logf(x)a>logg(x)a(f(x),g(x)>0且不等于1,a>0)的不等式,可利用换底 公式化为同底的对数进行求解,或利用函数图象求解. 提醒:底数中若含有参数,一定要注意底数大于0且不等于1,同时要注意对 底数是大于1还是大于0且小于1进行分类讨论.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学对数函数及其性质(一)说课稿
一、教材分析
“对数函数”的内容出现在人教课标版高一数学第二学期第五章§5.9节,它是在学过对数与常用对数,反函数以及指数函数的基础上,以类比的方法进行学习,这有利于学生加深和巩固对函数、反函数以及对数函数和指数函数的认识与函数性质的理解;同时对数函数作为常用数学模型在解决社会生活中的实例(统计、规划等)有广泛的应用,本节课的学习为学生进一步学习、参加生产和实际生活提供必要的基础知识。
本节内容安排两课时,第一课时是理解对数函数的意义及图像与性质的掌握;第二课时是对数函数图像、性质的应用,本节课是第一课时。
二、学生情况分析
进校时大部分学生数学基础较差,表现在理解能力,运算能力,思维能力等方面较差,学习缺乏主动性,有一部分学生对学好数学的信心不足,有畏难情绪。
三、教学目标的确定:
根据教学大纲,对数函数及其相关知识历来是高考的考点。
它的具体要求是能在学习指数函数的基础上,利用反函数的思想来研究对数函数的定义、图象及其性质。
根据教材要求,学生的认知结构,学生情况及年龄特点,确定教学目标如下:
1、知识与技能:(1)理解对数函数的概念,理解指数函数与对数函数的内在关系;
(2)掌握对数函数的概念、图象和性质,以及初步应用。
(3)培养学生自主学习、综合归纳、数形结合的能力。
2、过程与方法:培养学生用类比方法探索研究数学问题及其反思学习的素养
3、情感态度与价值观:(1)培养学生对待知识的科学态度、勇于探索和创新的精神。
(2)在民主、和谐的教学气氛中,促进师生的情感交流,树立学生学好
数学的自信心。
教学重点、难点:
重点:对数函数的概念、图象和性质;
难点:由指数函数的图象和性质得到对数函数的图象和性质;
四、教学方法和手段:
1、本节课采用建构式教学法,流程是:创设情景、提出问题---合作交流、联想类比---数形结合、加深理解---练习反馈、巩固提高---归纳小结、布置作业。
教学过程是教师和学生共同参与的过程,是学生在已具备对数、反函数以及指数函数的一定的情境背景下,以学生为主体,教师为主导,充分发挥学生的主动性、积极性和首创精神,最终在学习过程中达到帮助学生很好地掌握对数函数的概念、图象和性质,并对指数函数与对数函数的内在关系达到较深刻的理解的意义建构的目的。
2、教学手段:计算机多媒体教学
(1)通过动画课件让学生直观、深刻的了解指数函数和对数函数这对反函数的图象之间的关系。
(2)通过列表,对比指数函数与对数函数的性质以达到对对数函数的意义建构的目的。
(3)通过多媒体教学,加大教学容量,提高教学质量和教学效率。
教学过程:
一、创设情景、提出问题
前些时候我们讲到,我们班一位同学大学毕业后到一家厂当了统计员,假设是你。
现知道该厂从今年起年产值每年比上一年平均增长6%,如果以这样的速度发展x年,那么该厂的年产值增长到原来的y倍,于是得到该厂年产值y关于年份x的函数解析式为y=1.06x,这是一个指数函数。
现在研究其相反的问题:要该厂的年产值增长到原来的2、3等倍,需以这样的速度各发展几年,那么发展年份x是该厂的年产值y的函数。
显然这个问题就是要研究指数函数y=1.06x的反函数。
(设计意图:为显示数学与我们的生活息息相关,因此问题中设置了以学习者作为主角的背景,使学生感觉在解决自己的事情,提高了学生的注意力、学习兴趣和积极性,也拉近了师生的感情关系。
)
那么,问题1:你认为指数函数y=1.06x存在反函数吗?指数函数y=a x存在反函数吗?
问题2:若指数函数存在反函数,你能表示出它吗?
(设计意图:学生学习了反函数及其互为反函数图象间的关系、指数函数等知识,因此研究指数函数的反函数在知识的积累上已具备条件,学生有能力完成这一课题,从而激发了学生求知欲,使学生自主的学习,渴望知道问题的答案。
)
二、合作交流、联想类比:
让全班同学自主组合,分组讨论研究,教师同时巡查,给予点拨。
然后由一个小组代表先作发言,其余各小组作补充。
(设计意图:自主分组合作交流,为学生提供一个轻松、开放的学习环境,有助于让所有的学生(包括差生)参与到积极动脑、动手、动口的探究去,有助于培养学生对待知识的科学态度、勇于探索和创新的合作精神。
)
问题3:对这个解析式,你认为这是个什么函数?
教师引导学生得到:
函数y=log a x(a>0且a≠1)叫做对数函数;其中x是自变量。
函数的定义域是(0,+∞)。
它是指数函数y=a x(a>0且a≠1)的反函数
这就是我们今天要研究的内容(板书)§5.9对数函数
(设计意图:使学生理解对数函数的概念,理解指数函数与对数函数的内在关系)
问题4:对数函数有怎样的性质?
教师引导:既然对数函数是指数函数的反函数,能否由指数函数的性质推导出对数函数
(设计意图:学生在研究指数函数的反函数(即对数函数)的性质时,自然地回忆指数函数的性质、研究方法及反函数的意义,层现联想、类比思想,使学生更好地构建指数函数的反函数的相关知识,进一步加深学生对原函数(指数函数)与反函数(对数函数)的相互关系的理解。
)
教师提问:刚才从代数角度由指数函数类比所得的对数函数的性质,是否有其它方法得出或验证其性质?
(学生思考后回答:图象)
三、数形结合、加深理解
方法一(描点法)首先列出x,y=log1。
06x值的对应表,因为对数函数的定义域为x>0,因此可取x=…,1/5,1/4,1/3,1/2,1,2,3,4,5…,计算出对应的y值,然后在坐标系内描点、画出它们的图象.
方法二(图象变换法)因为对数函数和指数函数互为反函数, 图象关于直线y=x对称,所以只要画出y=1.06x的图象关于直线y=x对称的曲线,就可以得到y =log1。
06x的图象。
教师待学生画好后,用动画将第二种方法演示了一下。
(设计意图:数形结合思想是一个很重要的数学思想方法,利用这种思想,1、可以以形助数,提高和加深对指数函数及其反函数(对数函数)的本质理解;2、协调左、右脑,开发学生的潜力;3、对还没有很好理解对数函数的性质的个别学生进行补漏。
)
四、练习反馈、巩固提高
例1、求下列函数的定义域:(1)y=ln(4x-x2);(2)
)2
(
2
1
log
x y
(设计意图:(1)是再现型题,加深对性质的理解,强化概念。
⑵是提高型题,拓宽
学生视野,增强学生思考问题的逻辑性,严密性。
)
例2、利用对数函数性质,比较下列两数的大小:(1)log25和log26(2)log0.63和log0.64(3)log a1/2和log a1/3(a>0且≠1)(4)log35和log54
(设计意图:(1)(2)(3)是再现型题,较简单;(4)是提高型题,解题方法在指数函数一节内容中讲过,在此让学生联想、反思一下,使印象深刻一些。
例3、实数x为何值时,log4x(9x-2)值为正数?
(设计意图:是能力提高型题,在理解概念的基础上提高,能拓宽学生视野,增强学生思考问题的逻辑性,严密性。
)
五、归纳小结
将两个表格合在一起,让学生讨论一下,自己在何处可能出现问题,如何克服。
(设计意图:1、由学生将总结与图形整合,使学生头脑中的知识条理化、系统化。
2、反思他们的思维建构活动,及时补救。
)
六、布置作业
练习册P8,8,9,10。