集合,函数中的分类讨论问题

合集下载

数学 专题:解析一次函数中的分类讨论问题

数学  专题:解析一次函数中的分类讨论问题

一次函数中的分类讨论问题分类讨论是是一种重要的数学思想,也是一种重要的解题策略,同时也体现了化整为零、积零为整的思想与归类整理的方法。

有关分类讨论思想的数学问题具有明显的逻辑性、综合性、探索性,能训练人的思维条理性和概括性,所以在中考试题中占有十分重要的位置。

在一次函数学习过程中,除了首先要运用数形结合的思想方法去深刻理解和掌握一次函数的有关概念外,还要使学生学会用分类讨论的思想去研究一次函数的解题方法和技巧,做到不重复解和不漏解,现举例加以说明。

一、遇到有坐标轴名称不明确的需要讨论例1:已知正比例函数y=k1x和一次函数y=k2x+b的图象都经过点P(-2,1),且一次函数y=k2x+b 的图象与y轴交点坐标是A(0,3),求直线y=k1x和直线y=k2x+b与坐标轴围成的三角形的面积。

分析:由已知条件可以求出正比例函数和一次函数的解析式,但求两条直线与坐标轴围成的三角形的面积,并没有指明是与x轴围成的三角形的面积,还是与y轴围成的三角形的面积。

所以需要进行分类讨论。

二、遇到有点的位置不明确时需要讨论例2:在平面直角坐标中,已知点A(-3,0),B(2,6),在x轴上有一点C,满足SΔABC=12,试求点C的坐标。

三、遇到有两个量大小关系不明确时需要讨论例3:已知一次函数y=x+3的图象与x轴,y轴分别交于A、B两点;直线l经过原点,与直线AB交于C点;直线l把ΔAOB的面积分成2:1两部分,试求直线l的解析式。

四、遇到有几个相等线段位置不确定时需要讨论例4:已知一次函数y=43x+4的图象分别交x、y轴于A、B两点,C为x轴上一点,且ΔABC为等腰三角形,求C点的坐标。

分析:要在x轴上求一点C,使ΔABC为等腰三角形。

由于没有指明哪一个角为顶角(或哪一条边为底边),所以要分⑴点A为顶角;⑵点B为顶角;⑶点C为顶角三种情况进行分类讨论。

五、遇到有一次函数y=kx+b中k或b的符号不确定时需要讨论例5:一次函数y=kx+b的图象与x轴、y轴分别交于A、B两点,且SΔAOb=4,OA:OB=1:2,试求一次函数的解析式。

分类讨论思想在高中数学解题中的应用

分类讨论思想在高中数学解题中的应用

分类讨论思想在高中数学解题中的应用摘要分类讨论思想是数学中的一个重要思想,其在高中数学解题中得到了广泛的应用。

本文将详细阐述分类讨论思想的定义、重要性、应用及具体案例,以便更好地展示其在高中数学解题中的应用价值。

分类讨论思想;高中数学;解题应用;具体案例一、分类讨论思想是一种数学思想,在高中数学中得到了广泛的应用。

它可以有效地降低解题难度,提高解题效率。

本文将重点研究其在高中数学解题中的应用。

二、分类讨论思想的定义分类讨论思想指的是将问题分为若干小问题,根据不同的情况分别进行讨论,最终得到问题的解决方法的一种数学思想。

使用这种方法,问题就可以逐步分解,降低难度,提高解题效率。

三、分类讨论思想的重要性分类讨论思想的重要性主要体现在以下几个方面:1.降低问题难度采用分类讨论思想,将问题分为若干小问题进行处理,可以使问题难度逐步降低,最终简化问题难度,得到问题的解决方法。

2.提高解题效率分类讨论思想可以使问题分解成若干小问题,这样可以使解决问题的速度更快,提高解题效率。

3.避免遗漏采用分类讨论思想,将问题分为若干小问题进行处理,可以避免因为考虑不全面而遗漏某些情况,从而得到更为全面的解决方法。

四、分类讨论思想在高中数学解题中的应用分类讨论思想在高中数学中的应用非常广泛,下面将以具体案例来说明其应用方法。

1.解决数列问题在解决数列问题时,可以采用分类讨论思想,将数列分成等差数列和等比数列两种情况进行讨论。

例如,如下:已知数列{a_n}满足a_1=-3,a_n+1=2a_n+7,求数列的前n项和。

解:由题意得,a_n+1=2a_n+7化简可得:a_n=2^(n-2)a_1+7(2^(n-2)-1)/(2-1)若数列为等差数列,则d=a_n-a_1=(2^(n-2)-1)*2若数列为等比数列,则q=a_n/a_(n-1)代入公式得:q=2综上所述,当数列为等差数列时,前n项和为n/2(2a_1+(n-1)d)。

分类讨论数学思想

分类讨论数学思想
当q=- 时,a1= =6.综上可知,a1= 或a1=6.
(3)6位同学在毕业聚会活动中进行纪念品的交换,任意两位同学之间最多交换一次,进行交换的两位同学互赠一份纪念品.已知6位同学之间共进行了13次交换,则收到4份纪念品的同学人数为()
A.1或3B.1或4C.2或3D.2或4
解析设6位同学分别用a,b,c,d,e,f表示.
(6)从3名骨科、4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有1人的选派方法种数是________.(用数字作答)
解析分三类:①选1名骨科医生,则有C (C C +C C +C C )=360(种).
②选2名骨科医生,则有C (C C +C C )=210(种);
当a≤-1时,f(x)在(0,+∞)上单调递减;
当-1<a<0时,f(x)在 上单调递增,
解∵A={0,-4},B⊆A,于是可分为以下几种情况.
(1)当A=B时,B={0,-4},
∴由根与系数的关系,得 解得a=1.
(2)当B A时,又可分为两种情况.
①当B≠∅时,即B={0}或B={-4},
当x=0时,有a=±1;
当x=-4时,有a=7或a=1.
又由Δ=4(a+1)2-4(a2-1)=0,
(8)排列、组合、概率中的分类计数问题.
(9)去绝对值时的讨论及分段函数的讨论等.
分类讨论的原则
(1)不重不漏.(2)标准要统一,层次要分明.
(3)能不分类的要尽量避免或尽量推迟,决不无原则地讨论.
热点一 由数学概念、性质、运算引起的分类讨论
例1 (1)(2014·浙江)设函数f(x)= 若f(f(a))≤2,则实数a的取值范围是________.

浅谈分类讨论思想在高中数学教学中的应用

浅谈分类讨论思想在高中数学教学中的应用

浅谈分类讨论思想在高中数学教学中的应用一、引言二、分类讨论思想的概念和特点分类讨论思想是指将问题进行分类归纳,再逐个分别讨论的一种思维方式。

它包括将一般问题分为特例问题,将问题细分为几个部分,细分后各个部分问题易于解决。

分类讨论思想可以帮助人们清晰地认识问题的本质,从而找到解决问题的方向,提高问题解决的效率。

(1)清晰明了:分类讨论思想可以将复杂的问题分解为若干简单的部分,每个部分更易于理解和处理。

(2)有利于系统化:分类讨论思想有利于系统地整合和总结问题,更加有助于理清问题的脉络。

(3)提高解决问题的效率:分类讨论思想可以通过分析各种情况,找到解决问题的最佳途径,提高解决问题的效率。

1. 分类讨论思想在解题方法中的应用数学解题本身就是一个分类讨论的过程,通过将问题分解为简单的部分,利用不同的方法和途径来解决问题。

在高中数学教学中,老师可以引导学生运用分类讨论思想,合理地划分解题的步骤和方法,从而更好地解决问题。

在高中数学教学中,许多概念和定理都是通过分类讨论的方式进行讲解和理解的。

在集合论中,老师可以引导学生从分类讨论的角度去理解交集、并集、差集、补集等概念;在函数的讲解中,也可以通过分类讨论的方式帮助学生更好地理解函数的性质和特点。

在高中数学中,很多问题都可以通过分类讨论的方式来解决。

例如在数列和数学归纳法中,根据数列的前n项的和的差异,可以将数列分为等差数列、等比数列和其他数列,分别对每种数列进行分类讨论,从而更好地解决各类数列的问题。

四、分类讨论思想在高中数学教学中的实际案例1. 实例一:高中数学理论课程中的应用2. 实例二:高中数学解题技巧的教学3. 实例三:高中数学思维训练的案例在高中数学思维训练中,老师可以通过精心设计的案例,来培养学生的分类讨论思维能力。

通过给出一些挑战性较强的数学问题,鼓励学生从分类讨论的角度去解决问题,培养他们的逻辑思维和创造性思维能力。

1. 培养学生的逻辑思维能力2. 提升学生的解题能力通过分类讨论思想的引导和培养,能够提高学生的问题解决能力。

高中数学教学中分类讨论思想的应用

高中数学教学中分类讨论思想的应用

高中数学教学中分类讨论思想的应用高中数学教学中,分类讨论是一种常见的解题方法和思维方式。

分类讨论就是在不同的情况下进行不同的措施。

其实质是对问题进行分析、归纳和总结,以确定问题的解决方案,并进行必要的检验和确定。

分类讨论思想在数学教学中的应用非常广泛,可以用来解决各类数学问题和提高学生的思维能力。

分类讨论可以帮助学生更好地理解数学问题,在解题过程中,分类讨论可以帮助学生合理分析、分类考虑问题,确定问题的解决方案。

同时,分类讨论也有助于学生发现数学问题的共性和规律性,形成对数学知识的自然理解。

一、平面几何中的分类讨论分类讨论在平面几何中运用广泛。

例如,当我们求两线段之间的夹角时,可以分类讨论两线段的方向,然后分别用余弦定理求夹角。

又如求正多边形的对角线数量时,我们可以分类讨论正多边形的边数,然后应用公式解决问题。

二、函数的分类讨论在函数的教学中,分类讨论也是非常常见的。

例如,当我们考虑二次函数的图象与x轴的交点时,可以分类讨论二次函数的判别式的值,然后确定x轴交点的个数。

又如,在讨论函数的单调性时,可以分类讨论函数的增减性,然后用函数的导数进行判断。

在概率中,分类讨论也是常常运用的一种思想。

例如,在计算事件的概率时,可以根据事件的分类讨论,确定每一类事件发生的概率,然后将概率进行相应的加、乘运算以得出最终概率。

数列中,分类讨论可以用来解决很多问题。

例如,在讨论数列的极限时,可以分为单调有界数列和发散数列两种情况进行分类讨论,然后使用不等式证明定理求其极限。

又如,在讨论数列的递推公式时,可以对数列的特殊情况进行分类讨论,然后求出递推公式的通项公式。

综上所述,分类讨论是高中数学教学中重要的思维方法和解题思路。

在数学的研究中,分类讨论不仅可以帮助学生快速找到解决问题的途径,同时也能够帮助学生发展创新性思维和拓展思路。

因此,在高中数学教学中,分类讨论应该得到充分的运用和推广。

高中数学分类讨论归纳总结(二):集合中的分类讨论

高中数学分类讨论归纳总结(二):集合中的分类讨论

高中数学分类讨论归纳总结(二):集合中的分类讨论一、参数取值引起的分类讨论1.已知函数y =2x ,x ∈[2,4]的值域为集合A ,y =log 2[-x 2+(m +3)x -2(m +1)]的定义域为 集合B ,其中m ≠1.设全集为R ,若A ⊆∁R B ,求实数m 的取值范围.解析: 由-x 2+(m +3)x -2(m +1)>0,得(x -m -1)(x -2)<0,若m >1,则B ={x |2<x <m +1},所以∁R B ={x |x ≤2或x ≥m +1}.因为A ⊆∁R B ,所以m +1≤4,所以1<m ≤3.若m <1,则B ={x |m +1<x <2},所以∁R B ={x |x ≤m +1或x ≥2},此时A ⊆∁R B 成立.2.已知集合A ={a -2,2a 2+5a,12},且-3∈A ,则a =__________.解析:∵-3∈A ,∴-3=a -2或-3=2a 2+5a . ∴a =-1或a =-32. 当a =-1时,a -2=-3,2a 2+5a =-3,与元素互异性矛盾,应舍去.当a =-32时,a -2=-72,2a 2+5a =-3. ∴a =-32满足条件.答案:-32二、空集引起的分类讨论1、已知集合A ={x|-2≤x ≤7},B ={x|m +1<x <2m -1}.若B ⊆A ,则实数m 的取值范围是( )A .-3≤m ≤4B .-3<m <4C .2<m ≤4D .m ≤4思维启迪:若B ⊆A ,则B =∅或B ≠∅,要分两种情况讨论.解析:当B =∅时,有m +1≥2m -1,则m ≤2.当B ≠∅时,若B ⊆A ,如图.则⎩⎪⎨⎪⎧ m +1≥-2,2m -1≤7,m +1<2m -1,解得2<m ≤4.综上,m 的取值范围为m ≤4,故选D .2、.已知全集U =R ,非空集合A ={x |x -2x -(3a +1)<0},B ={x |x -a 2-2x -a<0}.命题p :x ∈A ,命题q :x ∈B ,若q 是p 的必要条件,求实数a 的取值范围.解析:∵a 2+2>a ,∴B ={x |a <x <a 2+2}.①当3a +1>2,即a >13时,A ={x |2<x <3a +1}.∵p 是q 的充分条件,∴A ⊆B .∴⎩⎪⎨⎪⎧a ≤2,3a +1≤a 2+2,即13<a ≤3-52. ②当3a +1=2,即a =13时,A =∅,符合题意; ③当3a +1<2,即a <13时,A ={x |3a +1<x <2}, 由A ⊆B 得⎩⎪⎨⎪⎧a ≤3a +1,a 2+2≥2,∴-12≤a <13. 综上所述,实数a 的取值范围是⎣⎢⎡⎦⎥⎤-12,3-52. 针对性练习:1. A ={1,2,3},B ={x ∈R |x 2-ax +1=0,a ∈A },则A ∩B =B 时,a 的值是( )A .2B .2或3C .1或3D .1或2解析 D 当a =1时,B ={x ∈R |x 2-x +1=0}=∅,A ∩B =B ;当a =2时,B ={x ∈R |x 2-2x +1=0}={1},A ∩B =B ;当a =3时,A ∩B =B 不成立.2.关于x 的不等式[x -(3-a )](x -2a )<0的解集为A ,函数y =m (-x 2+3x -2)的定义域 为B .若A ∪B =A ,求实数a 的取值范围.解析:由-x 2+3x -2>0,得x 2-3x +2<0,故1<x <2,即B =(1,2).由A ∪B =A ,知B ⊆A .(1)若3-a <2a ,即a >1时,A =(3-a,2a ).∵(1,2)⊆(3-a,2a ),∴⎩⎪⎨⎪⎧ a >1,3-a ≤1,2a ≥2.解得a ≥2.(2)若3-a =2a ,即a =1时,A =∅,不合题意;(3)若3-a >2a ,即a <1时,A =(2a,3-a ).∵(1,2)⊆(2a,3-a ). ∴⎩⎪⎨⎪⎧ a <1,2a ≤1,3-a ≥2.解得a ≤12. 综上,实数a 的取值范围是a ≤12,或a ≥2. 3.设集合A ={x |-1≤x ≤2},B ={x |x 2-(2m +1)x +2m <0}.(1)若A ∪B =A ,求实数m 的取值范围;(2)若(∁R A )∩B 中只有一个整数,求实数m 的取值范围.解析: (1)若A ∪B =A ,则B ⊆A . A ={x |-1≤x ≤2},①当m <12时,B ={x |2m <x <1},此时-1≤2m ,∴-12≤m <12; ②当m =12时,B =∅,B ⊆A 成立; ③当m >12时,B ={x |1<x <2m },此时2m ≤2,∴12<m ≤1. 综上所述,所求m 的取值范围是-12≤m ≤1. (3)∵A ={x |-1≤x ≤2},∴∁R A ={x |x <-1或x >2},(9分)①当m <12时,B ={x |2m <x <1}, 若(∁R A )∩B 中只有一个整数,则-3≤2m <-2, ∴-32≤m <-1; ②当m =12时,B =∅,不符合题意; ③当m >12时,B ={x |1<x <2m }, 若(∁R A )∩B 中只有一个整数,则3<2m ≤4, ∴32<m ≤2. 综上,m 的取值范围是-32≤m <-1或32<m ≤2.。

函数问题中的分类讨论

函数问题中的分类讨论
厂( 2 ) 一3 —4 a .
I J
2 ] 的 最大值 和 最 小值 . 首先 , 你 要 先 理 解 题 意. 这 道 题 已知 量 是 什 么? 二 次 函数 的 定 义 域 和 含 参 数 解 析 式. 要求 量 是 什 么? 二 次 函 数 最 值 . 我 们 以 前 做过 类 似 的 题 目吗? 你 之 前 应 该 都 解 决 过 常系 数 的二次 函数 求最 值 的题 目. 那 我们 就要 学 会 类 比 , 先 将 参 数 当 成 常
数 来处 理 , 将 函数 配 方 为 厂 ( - z ) 一( - -a ) 一1 一n , 可 得 到 对 称 轴 为 z—a . 其次 , 二 次 函数
I l ' ’ 、 8 6 4 2 / l

、 、

D / 2



' 2 - 4 _

f , , ,

4 6







- —
2 -

, ,
, }

_
、 、
一 2
| 。

、 p 、 \ / 2
图 2
图 4
从 上面 的分析 可知 , 求 此 函 数 的 最 小
N e w U n i v e r s i t y E n t r a n c e E x a mi n a t i o n 2 9
和 右端 点都有 可 能 取 到最 大 , 所 以求 这个 区
问 内的最大 值还需 再 分类.
由 /( O ) = = = 一1 , ( 2 ) 一3 —4 a,

高考核心解题方法总结—第六期【分类讨论法】-解析版

高考核心解题方法总结—第六期【分类讨论法】-解析版
于是,通过第一问的玩法,试求试算,这样是不是在暗示我们,这题的基本路线?
(2)要证明原命题,只需证明 f (x) x c 对任意 x R 都成立, f (x) x c 2 | x c 4 | | x c | x c (等价转化到同等命题)
即只需证明 2 | x c 4 || x c | +x c (你看,依然不用讨论,去绝对值)
15
3
三、因绝对值大小不确定,取绝对值而进行分类讨论:
例 1: 已知 f (x) x | x a | b, x R .
(1)当 a 1, b 0 时,判断 f (x) 的奇偶性,并说明理由;
(2)当 a 1, b 1 时,若 f (2x ) 5 ,求 x 的值; 4
(3)若 b 0 ,且对任何 x 0,1 不等式 f (x) 0 恒成立,求实数 a 的取值范围.
1)若
a
3
,则
2a 3 a 1
2a
3a
1
0
,此时方程有两个正根,算作
2
个交点.
2)若
3 4
a
1,则对称轴
t
2a 3(a 1)
0
,则方程有两个负根,故算作
0
个交点.
3)若
a
1 ,则对称轴
t
2a 3(a 1)
0
,此时方程一个正根一个负根,算作
1
个交点.
3°若 0 ,即 3 a 3 时,则方程无解,故算作 0 个交点. 4
立,求实数 m 的取值范围. 解: (1) 由 1+x≥0 且 1-x≥0,得-1≤x≤1,所以定义域为 [1,1] ,
又 f (x)2 2 2 1 x2 [2, 4], 由 f (x) ≥0 得值域为[ 2, 2] ,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

集合与函数中的分类讨论问题
在解答某些数学问题时,有时会遇到多种情况,需要对各种情况加以分类,并逐类求解,然后综合得解,这就是分类讨论法。

分类讨论是一种逻辑方法,是一种重要的数学思想,同时也是一种重要的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法。

有关分类讨论思想的数学问题具有明显的逻辑性、综合性、探索性,能训练人的思维条理性和概括性,所以在高考试题中占有重要的位置。

引起分类讨论的原因主要是以下几个方面:
①问题所涉及到的数学概念是分类进行定义的。

如|a|的定义分a>0、a=0、a<0三种情况。

这种分类讨论题型可以称为概念型。

②问题中涉及到的数学定理、公式和运算性质、法则有范围或者条件限制,
b讨论其单调性,值域等一般要对a分a>1、0<a<1或者是分类给出的。

如对数log
a
两种情况讨论
③解含有参数的题目时,必须根据参数的不同取值范围进行讨论。

如解不等式ax>2时分a>0、a=0和a<0三种情况讨论。

这称为含参型。

进行分类讨论时,我们要遵循的原则是:分类的对象是确定的,标准是统一的,不遗漏、不重复,科学地划分,分清主次,不越级讨论。

其中最重要的一条是“不漏不重”。

解答分类讨论问题时,我们的基本方法和步骤是:
首先要确定讨论对象以及所讨论对象的全体的范围;其次确定分类标准,正确进行合理分类,即标准统一、不漏不重、分类互斥(没有重复);再对所分类逐步进行讨论,分级进行,获取阶段性结果;最后进行归纳小结,综合得出结论。

典型例题:
1.集合A={x||x|≤4,x∈R},B={x||x-3|≤a,x∈R},若A B,那么a的范围是_____。

2.函数y=x+1
x
的值域是_____。

3. 设函数f(x)=ax2-2x+2,对于满足1<x<4的一切x值都有f(x)>0,求实数a的取值范围。

4. 解不等式()()
x a x a
a
+-
+
46
21
>0 (a为常数,a≠-
1
2
)
5. 函数f(x)=(|m|-1)x2-2(m+1)x-1的图像与x轴只有一个公共点,求参数m的值及交点坐标。

反馈练习:
1. 已知集合}31{≤≤-=x x A ,},{2A x y x y B ∈==,},2{A x a x y y C ∈+==,若满足B C ⊆,求实数a 的取值范围.
2. 已知A=}3|{+≤≤a x a x ,B =}6,1|{-<>x x x 或.
(Ⅰ)若=B A φ,求a 的取值范围;
(Ⅱ)若B B A = ,求a 的取值范围.
3. 对于函数()()21f x ax bx b =++-(0a ≠).
(Ⅰ)当1,2a b ==-时,求函数()f x 的零点;
(Ⅱ)若对任意实数b ,函数()f x 恒有两个相异的零点,求实数a 的取值范围.。

相关文档
最新文档