数学必修四三角函数题型分类
高中数学必修四----常见题型归类

高中数学必修四 题型归类山石第一章 三角函数1.1任意角和弧度制题型一:终边相同角1.与2003-终边相同的最小正角是______________,最大负角是_________。
2.终边在y 轴上的角的集合为________。
3.若角α与5α的终边关于y 轴对称,则角α的集合________ __ 。
题型二:区域角1.第二象限的角的集合为______ __2.如图,终边落在阴影部分(含边界)的角的集合是______ __3.若α是第二象限的角,确定2α的终边所在位置 .确定2α的终边所在位置 .题型三:弧度制1.若扇形的面积是1cm 2,它的周长是4cm 2,则扇形圆心角的弧度数为 .2.若扇形周长为一定值c (c >0),当α= ,该扇形面积最大.1.2任意角的三角函数题型一:三角函数定义y45030x1.α是第二象限角,P (x ,5)为其终边上一点,且cos α=42x,则sin α的值为 .2.已知角α的终边在直线3x+y=0上,则sin α= ,tan α=题型二:三角函数值的符号与角所在象限的关系1.4tan 3cos 2sin 的值。
A 小于0 B 大于0 C 等于0 D 无法确定 ( )2.已知|cos θ|=cos θ,|tan θ|=-tan θ,则θ2的终边在 ( )A .第二、四象限B .第一、三象限C .第一、三象限或x 轴上D .第二、四象限或x 轴上题型三:三角函数线1.设MP 和OM 分别是角1819π的正弦线和余弦线,则MP 、OM 和0的大小关系为______2.1sin 、1cos 、1tan 的大小关系为_______________题型四:同角公式1.化简1-2sin200°cos160°=________.2.222tan1tan 2tan 88tan 89sin 1sin 2sin 89οοοοοοο⨯⨯⋅⋅⋅⨯⨯++⋅⋅⋅+的值为________. 3.已知ααcos sin 21=,求下列各式的值: (1)ααααcos 9sin 4cos 3sin 2--; (2) 4sin 2α-3sin αcos α-5cos 2α.4.tan110°=k ,则sin70°的值为 ( )A .-k 1+k 2 B.k 1+k2C.1+k 2k D .-1+k2k5.已知51cos sin =-θθ ()πθ,0∈ 求值:(1)θθcos sin ; (2)θθcos sin -;(3)θtan ; (4) θθ33cos sin -1.3三角函数的诱导公式题型:诱导公式1.437tan323cos 641sin πππ-= ________.2.已知cos(3π2+α)=-35,且α是第四象限角,则cos(-3π+α)=3.已知锐角α终边上一点P 的坐标是(2sin2,-2cos2),则α等于 ( )A .2B .223-πC .2-π2D.π2-24.已知sin α是方程5x 2-7x -6=0的根,α是第三象限角,则sin(-α-3π2)sin(3π2-α)tan 3αcos(π2-α)cos(π2+α)=1.4.三角函数的图像与性质题型一:三角函数的定义域1.(1)函数)12sin 2lg(+-=x y 的定义域是(2)函数y =1)43tan(-+πx 的定义域是________________.题型二:三角函数的值域1.(1)函数y =cos 2x +sin x -1的值域为___________.(2)函数xx y cos 31cos 2+-=的值域为___________.(3)函数f(x)=sin xsin(x -π3)在⎣⎡⎦⎤-π6,π3上的最大值与最小值的和为________.(4) 函数y =sin x +cos x +sin xcos x 在⎣⎡⎦⎤-π6,π3的值域为____ 2.设函数f (x )=A +B sin 2x ,若B <0时,f (x )的最大值是32,最小值是-12,则A =________,B =________.3.(1)(2012·高考湖南卷)函数f (x )=sin x -cos ⎝⎛⎭⎫x +π6的值域为( )A .[-2,2]B .[-3,3]C .[-1,1]D .[-32,32]题型三:三角函数的周期1.画出函数x y tan =的图象并指出函数的周期______2.(1)函数y =2sin (4π-2x)+1的周期为_____.(2)函数y =-2tan ⎝⎛⎭⎫3x +π4的周期____(3)函数21)42sin(-+=πx y 的周期_______3.设函数f(x)=3sin ⎝⎛⎭⎫π2x +π4,若存在这样的实数x 1,x 2,对任意的x ∈R ,都有f(x 1)≤f(x)≤f(x 2)成立,则|x 1-x 2|的最小值为________.4.已知函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,-π2≤φ≤π2的图象上的两个相邻的最高点和最低点的距离为22,则ω=________.题型四:三角函数的奇偶性1.判断下列函数的奇偶性 (1))234cos(2π-=x x y (2)3tan 2-=x y(3)xxx y sin 1cos sin 12+-+=2.函数()f x =(x +1)2+sin xx 2+1的奇偶性_________________3.函数f (x )=sin(x+φ-π12) 是R 上的奇函数,则ϕ的值是__________________4.已知f (x )=cos(3x +φ)-3sin(3x +φ)为偶函数,则φ可以取的一个值为( )A.π6B.π3 C .-π6 D .-π3题型五:三角函数的单调性1.将52sinπ,56cos π,57tan π按从小到大的顺序排列,依次是_________________2.指出下列函数的的单调递减区间 (1)y =2)24sin(x-π+1(2)y =-2tan ⎝⎛⎭⎪⎫3x +π4 .(3)x y 2sin log 3.0= .3.下列函数中,周期为π,且在(0, π2)上单调递增的是 ( )A .y =tan|x|B .y =sin|x|C .y =|sinx|D .y =|cosx|4.函数f (x )=M sin(ωx +φ)(ω>0)在区间[a ,b ]上是增函数,且f (a )=-M ,f (b )=M ,则函数g (x )=M cos(ωx +φ)在[a ,b ]上 ( )A .是增函数B .是减函数C .可以取得最大值MD .可以取得最小值-M5.已知ω是正实数,函数f (x )=2sin ωx 在[-π3,π4]上是增函数,那么ω的取值范围是________.6.★已知函数f (x )=sin(ωx +φ)(ω>0,0≤φ≤π)是R 上的偶函数,其图象关于点M ⎝⎛⎭⎫3π4,0对称,且在区间⎣⎡⎦⎤0,π2上是单调函数,求ω和φ的值.7.已知函数y =x x x cos sin 23cos 212+ +1,x ∈R.(1)当函数y 取最大值时,求自变量x 的集合;(2)指出此函数的振幅、周期、初相、频率和单调区间;题型六:三角函数的对称性1.函数y =cos ⎝⎛⎭⎫2x +π3图象的对称轴为 ,对称中心为 .2. 函数y =2sin(3x +φ)⎝⎛⎭⎫|φ|<π2的一条对称轴为x =π12,则φ=________;3.函数y =cos(3x +φ)的图象关于原点成中心对称图形,则φ=________.4.已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f(x)=sin (ωx+φ)图象的两条相邻的对称轴,则φ=( )A.π4 B.π3 C.π2 D.3π45.如果函数x a x y 2cos 2sin +=的图象关于直线8π-=x 对称,那么=a( )A ,2B ,2-C ,1D ,1-6.把函数y x -sin x 的图象向左平移m (m >0)个单位,所得的图象关于y 轴对称,则m 的最小正值是 .7.已知函数f(x)=3sin (ωx -π6)(ω>0)和g(x)=3cos(2x +φ)的图象的对称中心完全相同,若x ∈[0,π2],则f(x)的取值范围是( )A .[-32,3]B .[-3,3]C .[-12,32]D .[0,32]8.函数f(x)=sin xsin(x -π3)的最小正周期、最值、对称中心、单调区间.1.5 函数y=Asin(ωx+φ)图象题型一:三角函数的图象变换1.要得到y =)2sin(x -的图象,只需将y =)62sin(π--x 的图象( ) A .向左平移π3个单位 B .向右平移π3个单位C .向左平移π6个单位 D .向右平移π6个单位2.已知函数y =23sin (2x +6π)(1)当[)+∞∈,0x ,指出此函数的振幅、周期、初相、相位、频率;(2)用五点作图法画出函数y =23sin (2x +6π)[]0,4x π∈的图象;(3)说明此函数的图象可以由y =sin x 的图象经怎样的变换得到?3. (2013·济宁模拟)给出下列六种图象变换方法:①图象上所有点的纵坐标不变,横坐标缩短到原来的12;②图象上所有点的纵坐标不变,横坐标伸长到原来的2倍;③图象向右平移π3个单位长度;④图象向左平移π3个单位长度;⑤图象向右平移2π3个单位长度;⑥图象向左平移2π3个单位长度.请用上述变换中的两种变换,将函数y =sin x 的图象变换到函数y =sin(x 2+π3)的图象,那么这两种变换正确的标号是________________(要求按变换先后顺序填上一种你认为正确的标号即可).4.已知函数21cos sin 3cos )(2++=x x x x f (1)先将)(x f y =化成B x A y ++=)sin(ϕω)0,0(>>ωA 的形式,再求函数()f x的周期;(2)列表、描点画出)(x f y =在⎥⎦⎤⎢⎣⎡-ππ1211,12上的图象。
三角函数高考题型分类总结

三角函数高考题型分类总结根据出现频率和难度程度,三角函数的高考题型可以分为以下几类:1.求解三角函数值:给定某个角度,求其正弦、余弦、正切等函数值。
这是三角函数的基本应用,通常难度较低。
2.证明恒等式:要求学生运用三角函数的基本公式和性质,证明某些三角函数的恒等式。
难度较高。
3.解三角形:给定某些三角形的一些角度或边长,要求学生利用三角函数的基础知识求解其余角度或边长。
难度较高。
4.求解三角方程:给定某些三角函数的式子,要求学生解出该式的解集。
这种题型通常需要学生掌握一定的三角函数公式,难度较高。
5.综合应用:要求学生将三角函数运用到实际问题中,如求解高度、距离等。
考察学生对三角函数的理解和应用能力。
难度较高。
除了以上几种常见的题型,还可能出现一些变形题,需要学生根据题目情况灵活运用三角函数的知识。
总的来说,三角函数在高考中的重要性不言而喻,学生需要扎实掌握相关知识和技能。
6.三角函数的图像与性质:考察三角函数的图像、周期、奇偶性、单调性等性质,需要学生掌握函数图像的绘制和相关概念的理解。
7.复合三角函数:考察学生对三角函数复合的概念和公式的掌握,需要注意不同变换下函数值的变化。
8.三角函数的导数:考察学生对三角函数的导数概念和计算方法的掌握,包括链式法则、求导公式等内容。
9.反三角函数:考察学生对反三角函数的定义、性质和公式的掌握,需要注意定义域、值域和解的判断。
10.三角函数的应用:考察学生将三角函数用于实际问题的解决,如解决三角形、距离等问题。
总的来说,三角函数是高中数学中重要的一部分,掌握好三角函数的知识对于高考的成绩至关重要。
在复习中,学生需要注重基础知识的巩固,深入理解概念和定理,做好练习题和真题的训练,同时灵活应用所学知识解决实际问题。
人教版高中数学必修四第2讲:任意角的三角函数(学生版)

人教版高中数学 任意角的三角函数__________________________________________________________________________________ __________________________________________________________________________________1.能根据三角函数的定义导出同角三角函数的基本关系式及它们之间的联系;2.熟练掌握已知一个角的三角函数值求其它三角函数值的方法。
3.牢固掌握同角三角函数的两个关系式,并能灵活运用于解题.(一)任意角的三角函数: 任意点到原点的距离公式:=r ____________________1.三角函数定义:在直角坐标系中,设α是一个任意角,α终边上任意一点P (除了原点)的坐标为(,)x y ,它与原点的距离为2222(||||0)r r x y x y =+=+>,那么(1)比值y r 叫做α的正弦,记作sin α,即sin y r α=; (2)比值x r 叫做α的余弦,记作cos α,即cos xr α=;(3)比值y x 叫做α的正切,记作tan α,即tan yxα=;(4)比值x y 叫做α的余切,记作cot α,即cot x yα=; 正弦、余弦、正切、余切是以角为自变量,比值为函数值的函数,以上四种函数统称为三角函数。
(二)单位圆与三角函数线:1.三角函数线的定义:当角的终边上一点(,)P x y 的坐标满足____________时,有三角函数正弦、余弦、正切值的几何表示——三角函数线。
2.有向线段:____________________________规定:与坐标轴方向一致时为_____,与坐标方向相反时为______。
3.三角函数线的定义:设任意角α的顶点在原点O ,始边与x 轴非负半轴重合,终边与单位圆相交与点P (,)x y ,过P 作x 轴的垂线,垂足为M ;过点(1,0)A 作单位圆的切线,它与角α的终边或其反向延长线交与点T .由四个图看出:当角α的终边不在坐标轴上时,有向线段,OM x MP y ==,于是有sin 1y y y MP r α====_________________, cos 1x x x OM r α====_______________,tan y MP AT AT x OM OA α====_______________ 我们就分别称有向线段,,MP OM AT 为正弦线、余弦线、正切线。
必修四任意角的三角函数(附规范标准答案)

任意角的三角函数(一)[学习目标] 1.借助单位圆理解任意角的三角函数定义.2.掌握正弦、余弦、正切函数在各象限内的符号.3.通过对任意角的三角函数的定义理解终边相同角的同一三角函数值相等.知识点一 三角函数的概念1.利用单位圆定义任意角的三角函数如图,在平面直角坐标系中,设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么:(1)y 叫做α的正弦,记作sin α, 即sin α=y ;(2)x 叫做α的余弦,记作cos α,即cos α=x ; (3)y x叫做α的正切,记作tan α,即tan α=y x(x ≠0).对于确定的角α,上述三个值都是唯一确定的.故正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,统称为三角函数.2.一般地,设角α终边上任意一点的坐标为(x ,y ),它与原点的距离为r ,则sin α=y r,cosα=x r ,tan α=yx.思考 角α三角函数值的大小与角α终边上的点P 离原点距离的远近有关吗?答案 角α的三角函数值是比值,是一个实数,这个实数的大小与点P (x ,y )在终边上的位置无关,只由角α的终边位置决定,即三角函数值的大小只与角有关. 知识点二 正弦、余弦、正切函数值在各象限的符号口诀概括为:一全正、二正弦、三正切、四余弦(如图).思考三角函数在各象限的符号由什么决定?答案三角函数值的符号是根据三角函数定义和各象限内坐标符号推导出的.从原点到角的终边上任意一点的距离r总是正值.因此,三角函数在各象限的符号由角α的终边所在象限决定.知识点三诱导公式一终边相同的角的同一三角函数的值相等,即:sin(α+k·2π)=sin α,cos(α+k·2π)=cos α,tan(α+k·2π)=tan α,其中k∈Z.题型一三角函数定义的应用例1 已知θ终边上一点P(x,3)(x≠0),且cos θ=1010x,求sin θ,tan θ.解由题意知r=|OP|=x2+9,由三角函数定义得cos θ=xr=xx2+9.又∵cos θ=1010x,∴xx2+9=1010x.∵x≠0,∴x=±1.当x=1时,P(1,3),此时sin θ=312+32=31010,tan θ=31=3.当x=-1时,P(-1,3),此时sin θ=3-12+32=31010,tan θ=3-1=-3.跟踪训练1 (1)已知角α的终边经过点P (-4a,3a )(a ≠0),求sin α,cos α,tan α的值; (2)已知角α的终边在直线y =3x 上,求sin α,cos α,tan α的值.解 (1)r =-4a2+3a2=5|a |.若a >0,则r =5a ,α是第二象限角,则 sin α=y r =3a 5a =35,cos α=x r =-4a5a =-45,tan α=y x =3a-4a =-34,若a <0,则r =-5a ,α是第四象限角,则 sin α=-35,cos α=45,tan α=-34.(2)因为角α的终边在直线y =3x 上,所以可设P (a ,3a )(a ≠0)为角α终边上任意一点. 则r =a 2+3a2=2|a |(a ≠0).若a >0,则α为第一象限角,r =2a , 所以sin α=3a 2a =32,cos α=a2a =12,tan α=3a a=3.若a <0,则α为第三象限,r =-2a , 所以sin α=3a -2a =-32,cos α=-a 2a =-12,tan α=3a a=3.题型二 三角函数值符号的判断 例2 判断下列三角函数值的符号: (1)sin 3,cos 4,tan 5; (2)sin(cos θ)(θ为第二象限角). 解 (1)∵π2<3<π<4<3π2<5<2π,∴3,4,5分别在第二、三、四象限, ∴sin 3>0,cos 4<0,tan 5<0. (2)∵θ是第二象限角, ∴-π2<-1<cos θ<0,∴sin(cos θ)<0.跟踪训练2 若sin θ<0且tan θ<0,则θ是第 象限的角. 答案 四解析 ∵sin θ<0,∴θ是第三或第四象限或终边在y 轴的非正半轴上的角,又tan θ<0,∴θ是第四象限的角.题型三 诱导公式一的应用 例3 求下列各式的值:(1)sin(-1 395°)cos 1 110°+cos(-1 020°)sin 750°;(2)sin ⎝ ⎛⎭⎪⎫-11π6+cos 12π5·tan 4π. 解 (1)原式=sin(-4×360°+45°)cos(3×360°+30°)+cos(-3×360°+60°)sin(2×360°+30°)=sin 45°cos 30°+cos 60°sin 30°=22×32+12×12=64+14=1+64.(2)原式=sin ⎝ ⎛⎭⎪⎫-2π+π6+cos ⎝⎛⎭⎪⎫2π+2π5·tan(4π+0)=sin π6+cos 2π5×0=12.跟踪训练3 求下列各式的值:(1)cos 25π3+tan ⎝ ⎛⎭⎪⎫-15π4; (2)sin 810°+tan 765°-cos 360°.解 (1)原式=cos ⎝ ⎛⎭⎪⎫8π+π3+tan ⎝⎛⎭⎪⎫-4π+π4=cos π3+tan π4=12+1=32;(2)原式=sin(90°+2×360°)+tan(45°+2×360°)-cos 360°=sin 90°+tan 45°-1=1+1-1=1.利用任意角的三角函数的定义求值,忽略对参数的讨论而致错例4 已知角α的终边上有一点P (24k,7k ),k ≠0,求sin α,cos α,tan α的值. 错解 令x =24k ,y =7k ,则有r =24k 2+7k 2=25k ,∴sin α=y r =725,cos α=x r =2425,tan α=y x =724.错因分析 点P (24k,7k )中参数k 只告诉了k ≠0,而没有告诉k 的符号,需分k >0与k <0讨论,而上述解法错在默认为k >0. 正解 当k >0时,令x =24k ,y =7k , 则有r =24k2+7k 2=25k ,∴sin α=y r =725,cos α=x r =2425,tan α=y x =724. 当k <0时,令x =24k ,y =7k ,则有r =-25k , ∴sin α=y r =-725,cos α=xr =-2425,tan α=y x =724.1.cos(-11π6)等于( )A.12 B .-12 C.32 D .-32 2.当α为第二象限角时,|sin α|sin α-cos α|cos α|的值是( )A .1B .0C .2D .-2 3.如果角α的终边过点P (2sin 30°,-2cos 30°),则cos α的值等于( ) A.12 B .-12 C .-32 D.324.若点P (3,y )是角α终边上的一点,且满足y <0,cos α=35,则tan α= .5.已知角α的终边经过点P (2,-3),求α的三个函数值.一、选择题1.若sin θcos θ>0,则θ在( ) A .第一、二象限 B .第一、三象限 C .第一、四象限D .第二、四象限2.sin(-1 380°)的值为( )A .-12 B.12 C .-32 D.323.设角α终边上一点P (-4a,3a )(a <0),则2sin α+cos α的值为( ) A.25 B.25或-25 C .-25D .与a 有关 4.若tan x <0,且sin x -cos x <0,则角x 的终边在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限5.已知角α的终边上一点的坐标为⎝ ⎛⎭⎪⎫sin 2π3,cos 2π3,则角α的最小正值为( ) A.5π6 B.2π3 C.5π6 D.11π6 6.角α的终边经过点P (-b,4)且cos α=-35,则b 的值为( )A .3B .-3C .±3D .5 二、填空题7.使得lg(cos αtan α)有意义的角α是第 象限角.8.已知α终边经过点(3a -9,a +2),且sin α>0,cos α≤0,则a 的取值范围为 . 9.若角α的终边与直线y =3x 重合且sin α<0,又P (m ,n )是α终边上一点,且|OP |=10,则m -n = .10.函数y =|sin x |sin x +|cos x |cos x -2|sin x cos x |sin x cos x 的值域是 .三、解答题11.已知角α的终边落在直线y =2x 上,求sin α,cos α,tan α的值.12.求下列各式的值.(1)a 2sin(-1 350°)+b 2tan 405°-2ab cos(-1 080°); (2)tan 405°-sin 450°+cos 750°.当堂检测答案1.答案 C解析 cos(-116π)=cos(-2π+π6)=cos π6=32.2.答案 C解析 ∵α为第二象限角,∴sin α>0,cos α<0, ∴|sin α|sin α-cos α|cos α|=sin αsin α-cos α-cos α=2. 3.答案 A解析 ∵2sin 30°=1,-2cos 30°=-3,∴r =2,∴cos α=12.4.答案 -43解析 ∵cos α=332+y 2=35,∴32+y 2=5,∴y 2=16,∵y <0,∴y =-4,∴tan α=-43. 5.解 因为x =2,y =-3, 所以r =22+-32=13.于是sin α=y r=-313=-31313,cos α=x r=213=21313,tan α=y x =-32.课时精练答案一、选择题 1.答案 B 2.答案 D解析 sin(-1 380°)=sin(-360°×4+60°)=sin 60°=32.3.答案 C 解析 ∵a <0,∴r =-4a2+3a 2=5|a |=-5a ,∴cos α=x r =45,sin α=yr =-35,∴2sin α+cos α=-25.4.答案 D解析 ∵tan x <0,∴角x 的终边在第二、四象限, 又sin x -cos x <0,∴角x 的终边在第四象限.故选D. 5.答案 D解析 ∵sin 2π3=32,cos 2π3=-12.∴角α的终边在第四象限,且tan α=cos 2π3sin 2π3=-33, ∴角α的最小正角为2π-π6=11π6. 6.答案 A解析 ∵r =b 2+16,cos α=-b r =-b b 2+16=-35. ∴b =3.二、填空题7.答案 一或二解析 要使原式有意义,必须cos αtan α>0,即需cos α,tan α同号,所以α是第一或第二象限角.8.答案 -2<a ≤3解析 ∵sin α>0,cos α≤0,∴α位于第二象限或y 轴正半轴上,∴3a -9≤0,a +2>0,∴-2<a ≤3.9.答案 2解析 ∵y =3x ,sin α<0,∴点P (m ,n )位于y =3x 在第三象限的图象上,且m <0,n <0,n =3m .∵|OP |=m 2+n 2=10|m |=-10m =10.∴m =-1,n =-3,∴m -n =2.10.答案 {-4,0,2}解析 由sin x ≠0,cos x ≠0知x 的终边不能落在坐标轴上,当x 为第一象限角时,sin x >0,cos x >0,sin x cos x >0,y =0;当x 为第二象限角时,sin x >0,cos x <0,sin x cos x <0,y =2;当x 为第三象限角时,sin x <0,cos x <0, sin x cos x >0,y =-4;当x 为第四象限角时,sin x <0,cos x >0,sin x cos x <0,y =2,故函数y =|sin x |cos x +|cos x |cos x -2|sin x cos x |sin x cos x的值域为{-4,0,2}. 三、解答题11.解 当角α的终边在第一象限时,在角α的终边上取点P (1,2),由r =|OP |=12+22=5, 得sin α=25=255,cos α=15=55,tan α=2; 当角α的终边在第三象限时,在角α的终边上取点Q (-1,-2),由r =|OQ |=-12+-22=5, 得sin α=-25=-255, cos α=-15=-55, tan α=2.12.解 (1)原式=a 2sin(-4×360°+90°)+b 2tan(360°+45°)-2ab cos(-3×360°)=a 2sin 90°+b 2tan 45°-2ab cos 0°=a 2+b 2-2ab =(a -b )2.(2)tan 405°-sin 450°+cos 750°=tan(360°+45°)-sin(360°+90°)+cos(720°+30°)=tan 45°-sin 90°+cos 30°=1-1+32=32.。
必修四-第一章-三角函数知识点及例题详解

第一章 三角函数 知识点详列一、角的概念及其推广 正角:一条射线绕着端点以逆时针方向旋转形成的角1、任意角 零角:射线不做任何旋转形成的角 负角:一条射线绕着端点以顺时针方向旋转形成的角记忆法则:第一象限全为正,二正三切四余弦.ααcsc sin 为正 全正ααcot tan 为正ααsec cos 为正例1、(1)判断下列各式的符号: ①,265cos 340sin∙ ②,423tan 4sin ⎪⎭⎫⎝⎛-∙π③)cos(sin )sin(cos θθ其中已知)0tan ,cos cos (<-=θθθ且答案:+ — —2、象限角:角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角.第一象限角的集合为{}36036090,k k k αα⋅<<⋅+∈Z第二象限角的集合为{}36090360180,k k k α⋅+<⋅+∈Z第三象限角的集合为{}360180360270,k k k αα⋅+<<⋅+∈Z 第四象限角的集合为{}360270360360,k k k αα⋅+<<⋅+∈Z3、终边相同的角:一般地,所有与α角终边相同的角连同α在内(而且只有这样的角),cot α<0tan α<0cos α>0sin α<0cot α>0tan α>0cos α<0sin α<0cot α<0tan α<0cos α<0sin α>0sin α>0tan α>0cot α>0cos α>0可以表示为.,360Z k k∈+∙α4、特殊角的集合:(1)终边在X 轴非负半轴上的角的集合为{};,2Z k k ∈=παα(2)终边在X 轴非正半轴上的角的集合为(){};,12Z k k ∈+=πα (3)终边在X 轴上的角的集合为{};,Z k k ∈=παα(4)终边在Y 轴非负半轴上的角的集合为;,22⎭⎬⎫⎩⎨⎧∈+=Z k k ππαα (5)终边在Y 轴非正半轴上的角的集合为;,22⎭⎬⎫⎩⎨⎧∈-=Z k k ππαα(6)终边在Y 轴上的角的集合为;,2⎭⎬⎫⎩⎨⎧∈+=Z k k ππαα (7)终边在坐标轴上角的集合为;,2⎭⎬⎫⎩⎨⎧∈=Z k k παα(8)终边在一、三象限角平分线上的角的集合为;,4⎭⎬⎫⎩⎨⎧∈+=Z k k ππαα (9)终边在二、四象限角平分线上的角的集合为.,4⎭⎬⎫⎩⎨⎧∈-=Z k k ππαα 二、弧度1、定义:长度等于半径长的弧所对的圆心角叫做1弧度2、弧度制与角度制的换算公式:2360π=,1180π=,180157.3π⎛⎫=≈ ⎪⎝⎭. 3、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是lrα= 4、两个公式:若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l r α=,2C r l =+,21122S lr r α==.三、三角函数1.设α是一个任意角,在α的终边上任取(异于原点的)一点P (x,y )则P 与原点的距离02222>+=+=y x yx r2.比值r y 叫做α的正弦 记作: r y =αsin 比值r x 叫做α的余弦 记作: r x =αcos比值x y 叫做α的正切 记作: x y =αtan比值y x叫做α的余切 记作: yx =αcot比值x r 叫做α的正割 记作: x r =αsec 比值y r叫做α的余割 记作: yr =αcsc 以上六种函数,统称为三角函数.2.同角三角函数的基本关系式: (1)倒数关系:tan cot 1αα⋅=;(2)商数关系:sin cos tan ,cot cos sin αααααα==; (3)平方关系:22sin cos 1αα+= .3.诱导公式,奇变偶不变,符号看象限.()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.口诀:函数名称不变,符号看象限.()5sin cos 2παα⎛⎫-=⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭. ()6sin cos 2παα⎛⎫+=⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭. 口诀:正弦与余弦互换,符号看象限.例2.化简(1)sin()cos()44ππαα-++;(2)已知32,cos(9)5παπαπ<<-=-,求11cot()2πα-的值. ry)(x,αP解:(1)原式sin()cos[()]424πππαα=-++-sin()sin()044ππαα=---=.(2)3cos()cos(9)5απαπ-=-=-,∴3cos 5α=,∵2παπ<<,∴4sin 5α=-,sin 4tan cos 3ααα==,∴1134cot()cot()tan 223ππααα-=--=-=.例3 确定下列三角函数值的符号(1)cos250° (2))4sin(π-(3)tan (-672°) (4))311tan(π解:(1)∵250°是第三象限角 ∴cos250°<0(2)∵4π-是第四象限角,∴0)4sin(<-π(3)tan (-672°)=tan (48°-2×360°)=tan48°而48°是第一象限角,∴tan (-672°)>0(4) 35tan)235tan(311tanππππ=+= 而35π是第四象限角,∴0311tan<π. 例4 求值:sin(-1320°)cos1110°+cos(-1020°)sin750°+tan495°. 解:原式=sin(-4×360°+120°)·cos(3×360°+30°)+cos(-3×360°+60°)sin(2×360°+30°)+tan(360°+135°) =sin120°·cos30°+cos60°·sin30°+tan135°=21212323⨯+⨯-1=0 题型一 象所在象限的判断 例5(1)如果α为第一象限角,试问2α是第几象限角?(2)如果α为第二象限角,试问:απαπα+--,,分别为第几象限角?答案:(1)第一或者第三;(2)第三,第一,第四。
(word完整版)高一数学必修4三角函数知识与题型归类

必修4三角函数基础知识与题型归类(1)4、①1弧度角的定义_____________________________________________________________________________________________________________________________________________正角:按 _______ 方向旋转形成的角1、任意角负角:按__________ 方向旋转形成的角零角:不作任何旋转形成的角2、用弧度制表示终边在特殊位置上的角的集合1)_______________________________________________________________ 、与a终边相同的角的集合:_______________________________________________________2)_______________________________________________________________________ 、终边落在X轴正半轴上的角的集合:________________________________________________3)_______________________________________________________________________ 、终边落在X轴负半轴上的角的集合:________________________________________________4)_______________________________________________________________________ 、终边落在y轴正半轴上的角的集合: ________________________________________________5)_______________________________________________________________________ 、终边落在y轴负半轴上的角的集合: ________________________________________________6)_________________________________________________________________ 、终边落在X 轴上的角的集合:_______________________________________________________7)_________________________________________________________________ 、终边落在y 轴上的角的集合:_______________________________________________________8)__________________________________________________________________ 、终边落在坐标轴上的角的集合:____________________________________________________9)_______________________________________________________________________ 、终边落在y = v3x上的所有角的集合:_______________________________________________10)________________________________________________________________ 、终边落在第一象限的角的集合:____________________________________________________11) _______________________________________________________________ 、终边落在第二象限的角的集合:____________________________________________________12) _______________________________________________________________ 、终边落在第三象限的角的集合:____________________________________________________13) _______________________________________________________________ 、终边落在第四象限的角的集合:____________________________________________________14)、终边在一、三象限的平分线上角的集合:_______________________________ 15)、终边在二、四象限的平分线上角的集合:_______________________________ 16)、写出图中所表示的区间角:③弧度制下,扇形弧长公式:;半径公式:;扇形面积公式:;其中为弧所对圆心角的弧度数。
必修四同角三角函数的基本关系题型总结题型分类非常经典满分必做

同角三角函数的基本关系题型总结知识回顾:平方关系sin 2α+cos 2α=1,商数关系sin αcos α=tan α.(同角三角函数的基本关系是三角函数题型中隐藏的条件,要求学生对于公式必须特别熟系以及要掌握相应的灵活变动技巧。
)题型一、已知一个三角函数值,求解另外两个三角函数值(知一求二)例1.若的值,是第四象限角,求ααααtan cos 53sin -=分析:在α角象限已知的情况下,三角函数值得正负也就确定了,若角所在象限不确定,则应分类讨论。
变式练习:1.已知α是第三象限角,tan α=2,则cos α=_____.2.已知tan α=2,则cos α=_____.3.已知12cos 13α=,求sin α和tan α4.已知ααααtan cos ,1312sin ,是第二象限角,求且=已知三角函数值求其他三角函数值的方法(1)若已知sin α=a ,先应用公式cos α=±1-sin 2α,求得cos α的值,再由公式tan α=sin αcos α求得tan α的值.(2)若已知cos α=a ,可以先应用公式sin α=±1-cos 2α,求得sin α的值,再由公式tan α=sin αcos α求得tan α的值.(3)若已知tan α=m,可以应用公式tan α=sin αcos α=m ⇒sin α=m cos α及sin2α+cos 2α=1,求得cos α=±11+m2,sin α=±m1+m2的值.题型二、根据αtan 求解ααcos sin ,的齐次分式(弦化为切)例1.已知3tan =θ,则θθθθsin 3cos cos 2sin 4++=例2已知sin α+3cos α3cos α-sin α=5,则sin 2α-sin αcos α的值例3已知tan α=4,,求34sin 2α+cos 2α.变式练习:1.若tan α=2,求sin α-cos αsin α+cos α2.若2tan -=α,求sin 2α-2sin α·cos α-cos 2α4cos 2α-3sin 2α3.已知tan α=4,求下列各式的值:(1)2sin α-3cos α4sin α-9cos α;(2)4sin 2α-3sin αcos α+2cos 2α.弦化切的方法技巧总结(要求分子分母指数相同)(1)已知tanα=n ,可以求a sin α+b cos αc sin α+d cos α或a sin 2α+b sin αcos α+c cos 2αd sin 2α+e sin αcos α+f cos 2α的值,将分子分母同除以cos α或cos 2α,化成关于tan α的式子,从而达到求值的目的.(2)对于a sin 2α+b sin αcos α+c cos 2α的求值,可看成分母是1,利用1=sin 2α+cos 2α进行代替后分子分母同时除以cos 2α,得到关于tan α的式子,从而可以求值.题型三、三角函数的化简例1、化简:002048cos 48sin 2148cos 148cos ---分析:此题中分母凑完全平方式,去根式。
高一数学必修4三角函数知识与题型归类

14)、终边在一、三象限的平分线上角的集合:
;
15)、终边在二、
二、任意角的三角函数:
y
y
(1)任意角的三角函数定义:
以角 的顶点为坐标原点,始边为 x 轴正半轴建立直角坐标系,在角 的终边上任取一个异于原点
O
x
O
x
;
的点 P(x, y) ,点 P 到原点的距离记为 r ,则 sin
,
(四)倍角公式及变形
公式变形: sin tan •cot 1
(二)三角函数的诱导公式:
cos
1sin2k _________ , cos2k ________ , tan2k _________ k .
2sin _________ , cos ________ , tan _________ .
1) 39 5
2) 16 3
4)-315
2、已知 2 弧度的圆心角所对的弦长为 2,那么这个圆心角所对的弧长为( )
( A)2
(B)sin 2
(C) 2
( D)2 sin 1
sin1
3、 已知 为第三象限角,则 所在的象限是( ) 2
(A)第一或第二象限
(B)第二或第三象限
10)、终边落在第一象限的角的集合:
; cos
; tan
;
cot
; sec
; csc
;
;
请浏览后下载,资料供参考,期待您的好评与关注!
y
P v O Ax
依据三角函数定义可得,角 终边上任一点 P 的坐标为
必修 4 三角函数基础知识与题型归类(2)
(2)在图中画出角 的正弦线、余弦线、正切线;
y
y
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数题型分类总结题型一:求值(1)直接求值:一般角→0至360度之间的角→第一象限的角 (2)已知sin A ,求cos A 或tan A :1sin22=+ααcon αααcon sin tan =记住两类特殊的勾股数:3、4、5;5、12、13 (3)运用公式化简求值(4)齐次式问题(5)终边问题(6)三角函数在各象限的正负性1、sin330︒= tan690° = o585sin =2、(1)(07全国Ⅰ) α是第四象限角,12cos 13α=,则sin α= (2)(09北京文)若4sin ,tan 05θθ=->,则cos θ= .(3) (07陕西) 已知sin ,5α=则44sin cos αα-= .(4)(07浙江)已知cos()22πϕ+=,且||2πϕ<,则tan ϕ= 3、α是第三象限角,21)sin(=-πα,则αcos = )25cos(απ+= 4、 若2tan =α ,则ααααcos sin cos sin -+=5、2sin cos sin 2cos =-+αααα,则α在第_____象限;6、 (08北京)若角α的终边经过点(12)P -,,则αcos = 7、已知 3)tan(=+απ,则)(απα-3sin)cos(⋅-=________ 8、31tan -=α,则αααα22cos 3cos sin 2sin -+=_________. 9、若2cos 3α=,α是第四象限角,则sin(2)sin(3)cos(3)απαπαπ-+---=___10、已知sin 4πα⎛⎫+= ⎪⎝⎭3sin 4πα⎛⎫-⎪⎝⎭值为________; 11、αααsin 3cos sin 2=-,则αcos =________;1、设)34sin(π-=a ,)35cos(π-=b ,)411tan(π-=c ,则 ( ) A .a b c <<B .a c b <<C .b c a <<D .b a c <<2、已知tan160o=a ,则sin2000o的值是 ( )A.a1+a2B.-a1+a2C.11+a2D.-11+a23、已知tan100k =o,则sin80o的值等于 ( )A21k + B 21k-+ C 21k k + D 21k k +- 4、已知f (cosx )=cos3x ,则f (sin30°)的值是 ( )A .1B .23C .0D .-1 5、若)cos()2sin(απαπ-=+,则α的取值集合为( )A .}42|{Z k k ∈+=ππαα B .}42|{Z k k ∈-=ππαα C .}|{Z k k ∈=πααD .}2|{Z k k ∈+=ππαα6、已知1sin()63πα+=,则cos()3πα-的值为( )A 12B 12- C 13 D 13-7、如果1cos()2A π+=-,那么sin()2A π+=( )A 12- B 12 C 3D3 8、已知53)2cos(=-πα,则αα22cos sin -的值为 ( ) A .257 B .2516- C .259D .257-9.若,5sin 2cos -=+a a 则a tan =( ) (A )21(B )2 (C )21- (D )2- 10、若角α的终边经过点⎪⎪⎭⎫ ⎝⎛-21,23P ,则αtan 的值为 ( ) A .12-B .3. 3 D .33-11、下列各三角函数值中,取负值的是( )A.sin(-6600) B.tan(-1600) C.cos(-7400) D.sin(-4200)cos57012、α角是第二象限的角,│2cosα│=2cosα-,则角2α属于: ( )A . 第一象限;B .第二象限;C .第三象限;D .第四象限.13、已知cos tan 0θθ⋅<,那么角θ是 ( ) A.第一或第二象限角B.第二或第三象限角C.第三或第四象限角D.第一或第四象限角 14、已知()2,A a -是角α终边上的一点,且5sin α=-,求cos α的值. 15、已知:关于x 的方程22(31)0x x m -++=的两根为sin θ和cos θ,(0,2)θπ∈。
求:⑴tan sin cos tan 11tan θθθθθ+--的值; ⑵m 的值; ⑶方程的两根及此时θ的值。
16、已知关于x 的方程()22310x x m -++=的两根为sin θ和cos θ:(1)求1sin cos 2sin cos 1sin cos θθθθθθ+++++的值;(2)求m 的值.题型二:定义域1、函数y=224log sin x x -+的定义域是________(区间表示)2、函数y=x sin log 21的定义域是________.3、函数tan()3y x π=+的定义域为___________。
题型三:周期性(1)函数sin()y A x ωϕ=+及函数cos()y A x ωϕ=+,x R ∈的最小正周期2||T πω=; (2)函数的最小正周期为两者周期的最小公倍数;(3)函数y=|sin wx |的最小正周期为正常周期的一半 1、函数2cos()35y x π=-的最小正周期是 ( ) A 5π B 52π C 2π D 5π2、(07江苏卷)下列函数中,周期为2π的是 ( )A .sin 2x y =B .sin 2y x =C .cos 4xy = D .cos 4y x =3、函数|tan |x y =的周期和对称轴分别为( ) A. )(2,Z k k x ∈=ππ B. )(,2Z k k x ∈=ππC. )(,Z k k x ∈=ππD. )(2,2Z k k x ∈=ππ 4、已知函数()2cosxx f =,则下列等式中成立的是: ( )A .()()x f x f =-π2B .()()x f x f =+π2C .()()x f x f =-D .()()x f x f -=- 5、下列四个函数中,既是(0,)2π上的增函数,又是以π为周期的偶函数的是( )A sin y x =B |sin |y x =C cos y x =D |cos |y x =6、(08江苏)()cos 6f x x πω⎛⎫=-⎪⎝⎭的最小正周期为5π,其中0ω>,则ω= 7、(04全国)函数|2sin |xy =的最小正周期是 .8、(04北京)函数x x x f cos sin )(=的最小正周期是 . 9、函数()sin 2cos 2f x x x =-的最小正周期是 题型三:单调性一、求单调区间:(1)sin()y A x ωϕ=+中,A,w 为正,且x 的定义域为R ; (2)sin()y A x ωϕ=+中,A 或w 为负,且x 的定义域为R ; (3)sin()y A x ωϕ=+中,A,w 为正,且x 的定义域为限定的区间;1、函数y= sin(x-3π)的一个增区间是 ( ) 4.[-65,6ππ] B. [-6,65ππ] C. [-2,2ππ] D. [-32,3ππ] 2、函数y= sin(2x+4π)的一个增区间是( )A. [-4,4ππ]B. [-8,83ππ]C. [-0,2π] D. [-83,8ππ] 3、 函数)62sin(π+-=x y 的单调递减区间是( )A .)](23,26[Z k k k ∈++-ππππB .)](265,26[Z k k k ∈++ππππC .)](3,6[Z k k k ∈++-ππππ D .)](65,6[Z k k k ∈++ππππ 4、(04天津)函数]),0[()26sin(2ππ∈-=x x y 为增函数的区间是 ( ).A. ]3,0[πB. ]127,12[ππC. ]65,3[ππ D. ],65[ππ 5、函数sin y x =的一个单调增区间是 ( )A .ππ⎛⎫- ⎪44⎝⎭,B .3ππ⎛⎫ ⎪44⎝⎭,C .3π⎛⎫π ⎪2⎝⎭,D .32π⎛⎫π⎪2⎝⎭, 6、若函数f (x)同时具有以下两个性质:①f (x)是偶函数,②对任意实数x ,都有f (x +4π)=f (x -4π),则f (x)的解析式可以是 ( )A .f (x)=cosxB .f (x)=cos(2x 2π+) C .f (x)=sin(4x 2π+) D .f (x) =cos6x7、函数12cos()([0,2])23y x x ππ=+∈的递增区间__________ 二、比较大小:根据图象描点分析1、(09重庆文)下列关系式中正确的是 ( )A .0sin11cos10sin168<< B .0sin168sin11cos10<< C .0sin11sin168cos10<< D .0sin168cos10sin11<<2、下列不等式中,正确的是( )A .tan513tan413ππ<B .sin )7cos(5ππ-> C .sin(π-1)<sin1oD .cos )52cos(57ππ-<3、已知tan1a =,tan 2b =,tan3c =,则 ( )A a b c <<B c b a <<C b c a <<D b a c <<4、已知α、β是第二象限的角,且βαcos cos >,则 ( ) A.βα<; B.βαsin sin >; C.βαtan tan >;D.以上都不对. 三、解三角函数不等式:1、若02,sin απαα≤≤>,则α的取值范围是: ( )(A),32ππ⎛⎫ ⎪⎝⎭ (B),3ππ⎛⎫⎪⎝⎭ (C)4,33ππ⎛⎫ ⎪⎝⎭ (D)3,32ππ⎛⎫⎪⎝⎭2、已知-≤6πx<3π,cosx=11+-m m ,则m 的取值范围是( )A .m<-1 B. 3<m ≤7+43 C. m>3 D. 3<m ≤7+43或m<-1 3、 满足sin(x -4π)≥21的x 的集合是____________________;4、若集合1sin ,02M θθθπ⎧⎫=≥≤≤⎨⎬⎩⎭,1cos ,02N θθθπ⎧⎫=≤≤≤⎨⎬⎩⎭,求M N I .题型四:奇偶性1、已知()f x 是以π为周期的偶函数,且[0,]2x π∈时,()1sin f x x =-,则当5[,3]2x ππ∈时,()f x 等于 ( )A 1sin x + B 1sin x - C 1sin x -- D 1sin x -+ 题型五:对称性(对称轴与对称中心)从最原始的y=sin x 、y=cos x 、y= tan x 出发;选择题的简便方法:对称轴对应着最大最小值,对称中心对应着0; 1、(08安徽)函数sin(2)3y x π=+图像的对称轴方程可能是( ) A .6x π=-B .12x π=-C .6x π=D .12x π=2、下列函数中,图象关于直线3π=x 对称的是 ( )A .)32sin(π-=x y B .)62sin(π-=x y C .)62sin(π+=x y D .)62sin(π+=x y3、(07福建)函数πsin 23y x ⎛⎫=+⎪⎝⎭的图象( ) A.关于点π03⎛⎫ ⎪⎝⎭,对称 B.关于直线π4x =对称 C.关于点π04⎛⎫⎪⎝⎭,对称 D.关于直线π3x =对称 4、函数sin(3)4y x π=-的图象是中心对称图形,其中它的一个对称中心是 ( )A .,012π⎛⎫-⎪⎝⎭ B . 7,012π⎛⎫- ⎪⎝⎭ C . 7,012π⎛⎫ ⎪⎝⎭ D . 11,012π⎛⎫ ⎪⎝⎭5、(09全国)如果函数3cos(2)y x φ=+的图像关于点4(,0)3π中心对称,那么φ的最小值为 ( ) (A)6π (B) 4π (C) 3π (D) 2π6、已知函数y=2sinwx 的图象与直线y+2=0的相邻两个公共点之间的距离为32π,则w 的值为( )A .3 B .23 C .32D .317、设函数y =cos 12πx 的图象位于y 轴右侧所有的对称中心从左依次为A 1,A 2,…,A n ,….则A 50的坐标是________.8、关于函数()(),32sin 4R x x x f ∈⎪⎭⎫ ⎝⎛+=π有下列命题: ①由()()021==x f x f 可得21x x -必是π的整数倍;②()x f y =的表达式可改写为()⎪⎭⎫ ⎝⎛-=62cos 4πx x f ;③()x f y =的图象关于点⎪⎭⎫ ⎝⎛-0,6π 对称;④()x f y =的图象关于直线6π-=x 对称.以上命题成立的序号是__________________.9、关于3sin(2)4y x π=+有如下命题:①若12()()0f x f x ==,则12x x -是π的整数倍,②函数解析式可改为cos3(2)4y x π=-,③函数图象关于8x π=-对称,④函数图象关于点(,0)8π对称。