(提取公因式因式分解练习题)

合集下载

11提取公因式法因式分解-提取公因式练习题测试

11提取公因式法因式分解-提取公因式练习题测试

提取公因式法因式分解巩固练习【课堂林】1.杷P列各式分解因式:<l:'8f7r:n + 2/n/r: - _____________________ :⑵D.nT-9.v:y: - ____________________________ :⑶ 2a(y-z)-3b(z - y)- ___________________________ : «)-3/na1 + 6/tia z - 12)na- _____________________ : 2.分解因式:< I:' 36aby - 12ahx • 6ab:⑵-6.rv+x:⑶ 6p(p + q)-4q(p + q):⑷ x: y+.n,: - xy:⑸.v(nr - xX;n - v)- >n(x - mXv-/n):⑹(tr・b)(a + b-l)-a-b + l:<7)a(.v-v)2 + b(y-*)' + c(y-.v):.⑻盹-才⑼严一F" 3.利用因式分Will?:(l)978-:S54-978x7+978-:S:⑵ 95-9:+S X9.4.已知a + B・13(b・40・+ ・5.(”H江苏曲迪)分解因式:3刖心一护一3初:6.多取式15a s fe3+5<r:fr:-20u:h s ffi公因式后肋另_个因式魁 ___________________ •7.苏現式3uS+b分解因式>A.3a(a-2b)B. k/(a-2b + l)C.从好_6u) D・b(3“:-& + l)8.下列备式分解W式疋确的址I )A.(a2 +62)-(a+h)- +B.3x* - 6.n -A-x(3x- 6y)C.a z b z- Adb:(4a-fc)D.-« + dfe-ac---a(a + ft-r)9・分解因式:<1) ( 2011 醱庆江潭 > 2c3- r:⑵ UOM叫川凉山州》:一j + “讪-扌ab2:⑶ 6(加一-12(n-m)2: (4)m(5ar • ay一1)-m{lax-^y-1):⑸(7a -訪肋 _ %)+ (a - S% - 2ft):⑹(tn - /rf + m(m一口)' + n(n - nif .10.两个小孩的年龄分M是舟尹且x z^xy・99・试求这两个小按的年般.【课后巩瞳】1.刘断下列我杉过收・畔个址冈式分解?2X-V+ 2)— x* —4:(<2)x: -4+3.v- (.v-2Xx+2)+3x: <(3)7/n - 7n - 7 - 7(m - w -1):(《4)4" ■ 4 ■ 4.i(.v —— |.2・下式中•从彳到右的哽衫处因龙分解的址(>A. 6a z b^2a2 -3bB・ x z -3x-4-.v(x-3)-4C.ab: - 2ah ■ ab(h- 2)D.(2-a)(2 + a)・4-a:3. <2011河北)下列分解的建(A.--</(l + a2)B.2u—U»+2-2 ia-2b)c.宀u:4. «nr(a-2)+m(2-d)分解因式等干(》A. B. (a-2)(/M2 -«r)C.w(a-2Xw-l) />• /n(«-2X»r*l) 5 •因式分解(2x-5)+ y(5-lt)W结果心 )A・(2x-5Xl+y) B.(2x-5Xl-y)C.(5-2x)(1* y)D. (5-2xXl-y)6・分解因式时.WffilttlVj 公冈式是< )A. aB. 6"(a-b)・C. 8u(a-b)D. 2(a-/>):心―卜丁一卜旷吩m 咚下列各式二①宓-adn②2x2y + 6,r.::③8m s-4/n: + 2m+l④a' +a:b*ab::®(p*^h:y-5x:(p + g)*6(" + qY:⑥a2 (x + y Xx - v)~ 4fc(v + x) )t 中可以用捷公因式法分解因式的冇__________ -(W7号)9.(x+y-*_yD*_x)U_x_y)齐顼的公因式为________________ •10.?J5!^-Sx:y: +12.ty s z-W ft-JJIW公W式工_____________ •11.K( X + y y - .n (x + y) - (x + y) • A ・WA为___________________12.^x n-y"分解凶式・JI结果为X + y:X"y)(Y->・)・附刃的值为 ____________13.卜列女咬式中•繼用楼収公因式法分解因式的有<>c. .v: + y2n. .t:-.n + y:14.下列务取式中.公囲式lt5a:b的址(》・4・ 15a:b+20c『b:B. 3(k/b:・10u诂C. 10a:b十20ab'D. 5ab+l"b15.Ifl空:⑴"-4xy-2x・ _________________ (x-2y-l):⑵牝给:-13咕’ -2a z b z _________________ >:<3)(1 - <r)r;w _______________________ :<4) (inn — l^f(m — n)' — (/i —加)° —_________<5)(x+3y)* -(x + 3y)- _________________________ :⑹(a_b)° —(6 —a)' ■ __________________________ :16.把下列冷式分解W^:<l)x2 <2)x s +x:+.v(3)-24.r-12i>*28x <4)(x-y)tr-.r*y⑸3/fta z +3a:⑹ 4x(° - b F - 6y(6 - a )2⑻(S + b X2a -3b)+ (2a * 5"贮(1 + b)<9)(7/n-S/zXx + y)- (lm-2nXx+y)Ol'6x(x-2): + x:(2-x)17.利用冈式分tfitW:(1)6.15x3.16 + 1JA0.316 十二53x3 16⑵ 95-9:-S X92IS. il»: 3s-4x3-+10x3- ____________________ :3*_4x3, + 10x3:- _________________ :3:_4x34 + 10x3s - _______________ : WJKitffii程・列冷式WM®:3津- 4x3沁+10*3如- _____________________ : 3^=_4x3-l*10x3n . _____________________________19.求证:刘• (ffiHtte JV* 丁*-2■爰被3 整除. :0.化简并求(ft・N中.V--2・l+x + x(l + x)+x(l+x):+ …+x(li 严1.21. ftx:*3x・2・求2A'+6F-4.Y的(ft.<7)(x-y)s*2x(v-.v):。

三十道因式分解练习题

三十道因式分解练习题

三十道因式分解练习题一、提取公因式类1. 因式分解:$6x^2 + 9x$2. 因式分解:$8a^3 12a^2$3. 因式分解:$15xy 20xz$4. 因式分解:$21m^2n 35mn^2$5. 因式分解:$4ab^2 + 6a^2b$二、公式法类6. 因式分解:$x^2 9$7. 因式分解:$a^2 4$8. 因式分解:$4x^2 25y^2$9. 因式分解:$9m^2 16n^2$10. 因式分解:$25p^2 49q^2$三、分组分解类11. 因式分解:$x^3 + x^2 2x 2$12. 因式分解:$a^3 a^2 3a + 3$13. 因式分解:$3x^2 + 3x 2x 2$14. 因式分解:$4m^2 4m 3m + 3$15. 因式分解:$5n^3 10n^2 + 3n 6$四、十字相乘法类16. 因式分解:$x^2 + 5x + 6$17. 因式分解:$a^2 7a + 10$18. 因式分解:$2x^2 9x 5$20. 因式分解:$4n^2 13n + 3$五、综合运用类21. 因式分解:$x^3 2x^2 5x + 10$22. 因式分解:$a^3 + 3a^2 4a 12$23. 因式分解:$2x^2 + 5x 3$24. 因式分解:$3m^2 7m + 2$25. 因式分解:$4n^2 + 10n 6$六、特殊因式分解类26. 因式分解:$x^4 16$27. 因式分解:$a^4 81$28. 因式分解:$16x^4 81y^4$29. 因式分解:$25m^4 49n^4$30. 因式分解:$64p^4 81q^4$一、平方差公式类1. 因式分解:$x^2 25$2. 因式分解:$4y^2 9$3. 因式分解:$49z^2 100$4. 因式分解:$25a^2 121b^2$5. 因式分解:$16m^2 36n^2$二、完全平方公式类6. 因式分解:$x^2 + 8x + 16$7. 因式分解:$y^2 10y + 25$8. 因式分解:$z^2 + 14z + 49$10. 因式分解:$b^2 + 22b + 121$三、交叉相乘法类11. 因式分解:$x^2 + 7x + 12$12. 因式分解:$y^2 5y 14$13. 因式分解:$z^2 + 11z + 30$14. 因式分解:$a^2 13a 42$15. 因式分解:$b^2 + 17b + 60$四、多项式乘法公式类16. 因式分解:$x^3 + 3x^2 + 3x + 1$17. 因式分解:$y^3 3y^2 + 3y 1$18. 因式分解:$z^3 + 6z^2 + 12z + 8$19. 因式分解:$a^3 6a^2 + 12a 8$20. 因式分解:$b^3 + 9b^2 + 27b + 27$五、分组分解法类21. 因式分解:$x^4 + 4x^3 + 6x^2 + 4x + 1$22. 因式分解:$y^4 4y^3 + 6y^2 4y + 1$23. 因式分解:$z^4 + 8z^3 + 18z^2 + 8z + 1$24. 因式分解:$a^4 8a^3 + 18a^2 8a + 1$25. 因式分解:$b^4 + 12b^3 + 54b^2 + 108b + 81$六、多项式长除法类26. 因式分解:$x^5 x^4 2x^3 + 2x^2 + x 1$27. 因式分解:$y^5 + y^4 + 2y^3 2y^2 y + 1$28. 因式分解:$z^5 3z^4 + 3z^3 z^2 + z 1$29. 因式分解:$a^5 + 3a^4 3a^3 + a^2 a + 1$30. 因式分解:$b^5 5b^4 + 10b^3 10b^2 + 5b 1$答案一、提取公因式类1. $6x^2 + 9x = 3x(2x + 3)$2. $8a^3 12a^2 = 4a^2(2a 3)$3. $15xy 20xz = 5x(3y 4z)$4. $21m^2n 35mn^2 = 7mn(3m 5n)$5. $4ab^2 + 6a^2b = 2ab(2b + 3a)$二、公式法类6. $x^2 9 = (x + 3)(x 3)$7. $a^2 4 = (a + 2)(a 2)$8. $4x^2 25y^2 = (2x + 5y)(2x 5y)$9. $9m^2 16n^2 = (3m + 4n)(3m 4n)$10. $25p^2 49q^2 = (5p + 7q)(5p 7q)$三、分组分解类11. $x^3 + x^2 2x 2 = (x^2 + 2)(x 1)$12. $a^3 a^2 3a + 3 = (a^2 3)(a 1)$13. $3x^2 + 3x 2x 2 = (3x 2)(x + 1)$14. $4m^2 4m 3m + 3 = (4m 3)(m 1)$15. $5n^3 10n^2 + 3n 6 = (5n^2 3)(n 2)$四、十字相乘法类16. $x^2 + 5x + 6 = (x + 2)(x + 3)$17. $a^2 7a + 10 = (a 2)(a 5)$18. $2x^2 9x 5 = (2x + 1)(x 5)$19. $3m^2 + 11m + 4 = (3m + 1)(m + 4)$20. $4n^2 13n + 3 = (4n 1)(n 3)$五、综合运用类21. $x^3 2x^2 5x + 10 = (x^2 5)(x 2)$22. $a^3 + 3a^2 4a 12 = (a^2 + 4)(a 3)$23. $2x^2 + 5x 3 = (2x 1)(x + 3)$24. $3m^2 7m + 2 = (3m 1)(m 2)$25. $4n^2 + 10n 6 = (2n 1)(2n + 6)$六、特殊因式分解类26. $x^4 16 = (x^2 + 4)(x + 2)(x 2)$27. $a^4 81 = (a^2 + 9)(a + 3)(a 3)$28. $16x^4 81y^4 = (4x^2 + 9y^2)(2x + 3y)(2x 3y)$29. $25m^4 49n^4 = (5m^2 + 7n^2)(5m + 7n)(5m 7n)$30. $64p^4 81q^4 = (8p^2 + 9q^2)(4p + 3q)(4p 3q)$一、平方差公式类1. $x^2 25 = (x + 5)(x 5)$2. $4y^2 9 = (2y + 3)(2y 3)$3. $49z^2 100 = (7z + 10)(7z 10)$4. $25a。

完整版)提公因式法练习题

完整版)提公因式法练习题

完整版)提公因式法练习题提公因式法一、课堂练1.把一个多项式拆分成几个乘积的形式,这个操作叫做因式分解,也可以说是把这个多项式分解成若干个因式的乘积。

2.填写公因式:1) x(x-5y)。

(2) -3m2(n-4)。

(3) 4b(3b2-2b+1)4) -4ab2(a+3b)。

(5) xy(x2y2-xy+2)3.填写括号中的多项式:1) -4b(a+1)。

(2) 4xy(2x-3y)。

(3) 9m2(m+3)4) -3p(5q+3p)。

(5) 2ab(a2-2ab+b2)。

(6) -x(x-y+z)7) a(2a-1)二、选择题1.正确的因式分解变形是选项B:x2+3x-4=x(x+3)-4.2.正确的因式分解变形是选项C:(x-y)2=x2-2xy+y2.3.错误的因式分解是选项C:a2b2-1/3ab2=4ab(4a-b)。

4.多项式-6a3b2-3a2b2+12a2b3因式分解时,应提取的公因式是选项D:-3a2b2.5.应提取公因式2x2y2的是选项B:2x2y2(1/2xy+y-1)。

提公因式法一、课堂练1.把一个多项式拆分成若干个因式的乘积形式,这个操作叫做因式分解。

2.填写公因式:1) x(x-5y)。

(2) -3m^2(n-4)。

(3) 4b(3b^2-2b+1)4) -4ab^2(a+3b)。

(5) xy(x^2y^2-xy+2)3.填写括号中的多项式:1) -4b(a+1)。

(2) 4xy(2x-3y)。

(3) 9m^2(m+3)4) -3p(5q+3p)。

(5) 2ab(a^2-2ab+b^2)。

(6) -x(x-y+z)7) a(2a-1)二、选择题1.正确的因式分解变形是选项B:x^2+3x-4=x(x+3)-4.2.正确的因式分解变形是选项C:(x-y)^2=x^2-2xy+y^2.3.错误的因式分解是选项C:a^2b^2-1/3ab^2=4ab(4a-b)。

4.多项式-6a^3b^2-3a^2b^2+12a^2b^3因式分解时,应提取的公因式是选项D:-3a^2b^2.5.应提取公因式2x^2y^2的是选项B:2x^2y^2(1/2xy+y-1)。

因式分解练习题

因式分解练习题

因式分解练习题(提取公因式)专项训练一:确定下列各多项式的公因式。

2、36mx my -3、2410a ab + 5、22x y xy - 6、22129xyz x y - 7、()()m x y n x y -+- 9、3()()abc m n ab m n --- 10、2312()9()x a b m b a ---专项训练二:利用乘法分配律的逆运算填空。

1、22____()R r R r ππ+=+2、222(______)R r πππ+=3、2222121211___()22gt gt t t +=+ 4、2215255(_______)a ab a +=专项训练三、在下列各式左边的括号前填上“+”或“-”,使等式成立。

3、__()z y y z -+=- 4、()22___()y x x y -=- 5、33()__()y x x y -=- 6、44()__()x y y x --=-7、22()___()()nna b b a n -=-为自然数 8、2121()___()()n n a b b a n ++-=-为自然数9、()1(2)___(1)(2)x y x y --=-- 10、()1(2)___(1)(2)x y x y --=-- 11、23()()___()a b b a a b --=- 12、246()()___()a b b a a b --=- 专项训练四、把下列各式分解因式。

3、3246x x -4、282m n mn + 6、22129xyz x y - 7、2336a y ay y -+8、259a b ab b -+ 9、2x xy xz -+- 10、223241228x y xy y --+12、32222561421x yz x y z xy z +- 13、3222315520x y x y x y +- 专项训练五:把下列各式分解因式。

提取公因式法因式分解(原卷版)

提取公因式法因式分解(原卷版)

提取公因式法因式分解【知识梳理】一.因式分解的意义1、分解因式的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.2、因式分解与整式乘法是相反方向的变形,即互逆运算,二者是一个式子的不同表现形式.因式分解是两个或几个因式积的表现形式,整式乘法是多项式的表现形式.例如:3、因式分解是恒等变形,因此可以用整式乘法来检验.二.公因式1、定义:多项式ma+mb+mc中,各项都含有一个公共的因式m,因式m叫做这个多项式各项的公因式.2、确定多项式中各项的公因式,可概括为三“定”:①定系数,即确定各项系数的最大公约数;②定字母,即确定各项的相同字母因式(或相同多项式因式);③定指数,即各项相同字母因式(或相同多项式因式)的指数的最低次幂.三.因式分解-提公因式法1、提公因式法:如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.2、具体方法:(1)当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的.(2)如果多项式的第一项是负的,一般要提出“﹣”号,使括号内的第一项的系数成为正数.提出“﹣”号时,多项式的各项都要变号.3、口诀:找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形看奇偶.4、提公因式法基本步骤:(1)找出公因式;(2)提公因式并确定另一个因式:①第一步找公因式可按照确定公因式的方法先确定系数再确定字母;②第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式;③提完公因式后,另一因式的项数与原多项式的项数相同.【考点剖析】一.因式分解的意义(共4小题)1.(2022秋•黄浦区期中)下列等式中,从左到右的变形是多项式的因式分解的是()A.(a+b)2=a2+2ab+b2B.x2﹣2x+5=x(x﹣2)+5C.a2﹣2ab+b2=(a﹣b)2D.x2+1=x(x+)2.(2022秋•静安区校级期中)在下列等式中,从左到右的变形是因式分解的是()A.2a2﹣3a+1=a(2a﹣3)+1B.C.(a+1)(a﹣1)=a2﹣1D.﹣4﹣x2y2+4xy=﹣(2﹣xy)23.(2022秋•闵行区校级期末)下列各式从左到右的变形是因式分解的是()A.a(a+b)=a2+ab B.a2+2a+1=a(a+2)+1C.(a+b)(a﹣b)=a2﹣b2D.2a2﹣6ab=2a(a﹣3b)4.(2022秋•浦东新区校级期末)下列等式从左到右是因式分解,且结果正确的是()A.a2+8a+16=(a+4)2B.(a+4)2=a2+8a+16C.a2+8a+16=a(a+8)+16D.a2+8(a+2)=a2+8a+16二.公因式(共7小题)5.(2022秋•青浦区校级期中)单项式3a3b与单项式9a2b3的公因式是()A.3a2b B.3a3b3C.a2b D.a3b36.(2020秋•浦东新区期末)多项式3x﹣9,x2﹣9与x2﹣6x+9的公因式为()A.x+3B.(x+3)2 C.x﹣3D.x2+97.(2022秋•嘉定区期中)多项式6x3y2﹣3x2y2+12x2y3的公因式是.8.(2019秋•黄浦区校级期中)多项式4a(x﹣y)﹣6a2(x﹣y)中各项的公因式是.9.(2018秋•嘉定区期末)写出多项式x2﹣y2与多项式x2+xy的一个公因式.10.(2019秋•浦东新区期末)8x3y2和12x4y的公因式是.11.(2019秋•松江区期中)多项式:4x(x﹣y)﹣3(x﹣y)的公因式是.三.因式分解-提公因式法(共14小题)12.(2022秋•徐汇区期末)分解因式:(x﹣5)(3x﹣2)﹣3(x﹣5)=.13.(2022秋•嘉定区期中)分解因式:3x3﹣9x2﹣3x=.14.(2022秋•宝山区校级期末)分解因式:4x2y﹣12xy=.15.(2021秋•金山区期末)因式分解:6a2﹣8a3=.16.(2021秋•奉贤区期末)分解因式:2m2n﹣mn2=.17.(2022秋•嘉定区校级期中)因式分解:﹣15a﹣10ab+5abc=.18.(2022秋•嘉定区期中)当a=3,b=时,代数式﹣a2+4ab的值为.19.(2022秋•嘉定区期中)因式分解:6(x+y)2﹣2(x+y)(x﹣y)20.(2022秋•杨浦区期中)分解因式:a2(a+2b)﹣ab(﹣4b﹣2a).21.(2022秋•浦东新区校级期中)因式分解:(y﹣x)2+2(x﹣y)=.22.(2022秋•青浦区校级期中)因式分解:15a2b﹣3ab=.23.(2022秋•虹口区校级期中)分解因式:3x2y﹣12xy2=.24.(2022秋•宝山区校级期中)分解因式:a(a﹣b)+b(b﹣a)=.25.(2022秋•浦东新区校级期中)2m(a﹣c)﹣5(a﹣c).【过关检测】一、单选题1.(2023·上海·七年级假期作业)下列各式从左到右的变形是因式分解的是( ) A .()2222x y x y xy +=−+B .()422211(1x x x x x x ++=++−+)C .()230130x x x x −−=−−D .()22121a a a −=−+2.(2022秋·上海宝山·七年级校考期中)分解因式()()222b x b x −+−正确的结果是( )A .()()22x b b −+B .()()21b x b −+C .()()22x b b −−D .()()21b x b −−3.(2022秋·上海松江·七年级校考期中)已知多项式2ax bx c ++分解因式得()()32x x −+,则a ,b ,c 的值分别为( )A .1,1−,6B .1,1,6−C .1,1−,6−D .1,1,64.(2023秋·上海浦东新·七年级校考期末)下列等式从左到右是因式分解,且结果正确的是( )5.(2020秋·七年级校考课时练习)把多项式-4a 3+4a 2-16a 分解因式( )二、填空题 7.(2023·上海·七年级假期作业)若5x y −=,6xy =则22x y xy −=________,2222x y +=________.8.(2022秋·上海·七年级上海市西延安中学校考期中)分解因式:22615x z yz −+=__________.9.(2022秋·上海浦东新·七年级校考期中)分解因式:223714ab a b −=______.10.(2022秋·上海·七年级上海市建平中学西校校考期中)因式分解:2()2()y x x y −+−=___________.11.(2022秋·上海松江·七年级校考期中)因式分解:2368xy y −=___________.12.(2023秋·上海浦东新·七年级校考期中)分解因式:25x y xy +=__________.13.(2023秋·上海宝山·七年级校考期末)分解因式:2412x y xy −=______.14.(2022秋·上海松江·七年级校考期中)因式分解:()()()2222a b b a a b −−−+=___________.15.(2023·上海·七年级假期作业)因式分解:15105a ab abc −−+=___________.16.(2023·上海·七年级假期作业)已知:()()2111x x x x x +++++=[](1)1(1)x x x x +⋅+++=()()()()31111x x x x ⎡⎤+⋅+⋅+=+⎣⎦,因式分解()()()220221111x x x x x x x ++++++⋅⋅⋅++,结果为_______________. 17.(2022秋·上海普陀·七年级统考期中)如果210x x ++=,那么23991x x x x ++++⋅⋅⋅+的值是______.18.(2023·上海·七年级假期作业)分解因式:(5)(32)3(5)x x x −−−−=___________三、解答题19.(2022秋·上海·七年级上海市建平中学西校校考期中)因式分解:2()5()m a c a c −−−20.(2022秋·上海·七年级专题练习)因式分解:()13(1)22n n n a a a a +−−−21.(2022秋·上海·七年级专题练习)因式分解:()()42a x y b y x −−−.22.(2022秋·上海黄浦·七年级上海市民办立达中学校考期中)因式分解:()22a b a b −−+(1x x +++。

因式分解-提取公因式练习题

因式分解-提取公因式练习题

因式分解练习题(提取公因式)知识点一 因式分解的定义理解把一个多项式化成 的形式,这种变形叫做把这个多项式分解因式。

因式分解的实质是( )与( )是“积化和差”的过程正好( )。

【例题 】 1.下列变形是分解因式的是( )A .6x 2y 2=3xy ·2xyB .a 2-4ab+4b 2=(a -2b)2C .(x+2)(x+1)=x 2+3x+2D .x 2-9-6x=(x+3)(x -3)-6x2.下列各式从左到右的变形中,是因式分解的为( )A 、2222)1(xy y x x xy -=-B 、)3)(3(92-+=-x x xC 、222)1)(1(1y x x y x ++-=+-D 、c b a x c bx ax ++=++)(3、下列分解因式结果正确的是( )A. a 2b +7ab -b =b (a 2+7a )B. 3x 2y -3xy +6y =3y (x 2-x +2)C. 8xyz -6x 2y 2=2xyz (4-3xy )D. -2a 2+4ab -6ac =-2a (a -2b -3c )知识点二:确定多项式的公因式的方法1、我们把多项式各项都含有的相同因式,叫做这个多项式各项的公因式。

2、找公因式的方法【例题】1、ay ax +2、36mx my -3、2410a ab +4、2155a a +5、22x y xy -6、22129xyz x y -7、()()m x y n x y -+- 8、()()2x m n y m n +++9、3()()abc m n ab m n --- 10、2312()9()x a b m b a ---知识点三、在下列各式左边的括号前填上“+”或“-”,使等式成立。

1、__()x y x y +=+2、__()b a a b -=-3、__()z y y z -+=-4、()22___()y x x y -=- 5、33()__()y x x y -=- 6、44()__()x y y x --=- 7、22()___()()n n a b b a n -=-为自然数 8、2121()___()()n n a b b a n ++-=-为自然数【专项训练】一、把下列各式分解因式。

因式分解-提公因式和公式法专项练习(原卷版)

因式分解-提公因式和公式法专项练习(原卷版)

因式分解-提公因式和公式法专项练习(一)知识点1:因式分解1.定义:把一个多项式化成几个整式的乘积的形式,这种变形叫做把这个多项式因式分解.2.掌握其定义应注意以下几点:(1)分解对象是多项式,分解结果必须是积的形式,且积的因式必须是整式,这三个要素缺一不可;(2)因式分解必须是恒等变形;(3)因式分解必须分解到每个因式都不能分解为止.3.弄清因式分解与整式乘法的内在的关系.因式分解与整式乘法是互逆变形,因式分解是把和差化为积的形式,而整式乘法是把积化为和差的形式.【典例1】下列各式由左边到右边的变形中,是因式分解的是()A.a(x﹣y)=ax﹣ay B.a2﹣b2=(a+b)(a﹣b)C.x2﹣4x+3=x(x﹣4)+3D.a2+1=(a+1)(a﹣1)【变式1-1】下列各式从左到右不属于因式分解的是()A.x2﹣x=x(x﹣1)B.x2+2x+1=x(x+2)+1C.x2﹣6x+9=(x﹣3)2D.x2﹣1=(x+1)(x﹣1)【变式1-2】下列各式从左到右的变形是因式分解的是()A.a(a+b)=a2+ab B.a2+2a+1=a(a+2)+1C.(a+b)(a﹣b)=a2﹣b2D.2a2﹣6ab=2a(a﹣3b)知识点2:公因式的公因式是.【典例2-2】4x(m﹣n)+8y(n﹣m)2的公因式是.【变式2-1】多项式.4ab2+8a2b的公因式是.【变式2-2】多项式3x+3y与x2﹣y2的公因式是.【变式2-3】多项式4x(m﹣n)+2y(m﹣n)2的公因式是.知识点3:提公因式提公因式法的步骤:第一步是找出公因式;第二步是提取公因式并确定另一因式.需注意的是,提取完公因式后,另一个因式的项数与原多项式的项数一致,这一点可用来检验是否漏项.注意:①提取公因式后各因式应该是最简形式,即分解到“底”;②如果多项式的第一项的系数是负的,一般要提出“-”号,使括号内的第一项的系数是正的.【典例3】分解因式:(1)2y+3xy;(2)2(a+2)+3b(a+2).【变式3-1】因式分解(1)x2﹣4x;(2)8y3﹣2x2y.【变式2-2】因式分解:(1)8abc﹣2bc2;(2)2x(x+y)﹣6(x+y).【变式3-3】分解因式:x(m+n)﹣y(n+m)+(m+n).知识点4:公式法=.【变式4-1】因式分解:a2﹣169=.【变式4-2】因式分解:4a2﹣b2=.【变式4-3】把多项式a2﹣9b2分解因式结果是.【典例5】分解因式:a2+8a+16=.【变式5-1】因式分解x2﹣6ax+9a2=.【变式5-2】分解因式:a2﹣6a+9=.知识点5:提公因式与公式法综合1.提公因式:一般地,如果多项式的各项有公因式,可以把这个公因式提取出来,将多项式写成公因式与另一个因式的乘积的形式,这种分解因式的方法叫做提公因式法.2.公式法:①平方差公式:a2-b2=(a+b)(a-b)②完全平方公式:a2+2ab+b2=(a+b)2,a2-2ab+b2=(a-b)【典例6】分解因式(1)x2y﹣y;(2)ax2﹣6ax+9a.【变式6-1】因式分解:(1)x3y﹣xy3;(2)8a2﹣16ab+8b2.【变式6-2】因式分解:(1)2x3y﹣2xy3(2)﹣a3+2a2﹣a.【变式6-3】分解因式:(1)5x2﹣5y2;(2)2mx2+4mxy+2my2.【变式6-4】因式分解:9a2(x﹣y)+4b2(y﹣x)【达标测评】一.选择题(共8小题)1.(2023秋•泉港区期末)多项式12a3b﹣8ab2c的公因式是()A.4a2B.4abc C.2a2D.4ab 2.(2023秋•莱西市期末)多项式3m2+6mn的公因式是()A.3B.m C.3m D.3n 3.(2023秋•纳溪区期末)因式分解(x﹣1)2﹣9的结果是()A.(x﹣10)(x+8)B.(x+8)(x+1)C.(x﹣2)(x+4)D.(x+2)(x﹣4)4.(2023秋•泰山区期末)分解因式:64﹣x2正确的是()A.(8﹣x)2B.(8﹣x)(8+x)C.(x﹣8)(x+8)D.(32+x)(32﹣x)5.(2023秋•沙坪坝区校级期末)因式分解:mx2﹣4m=()A.m(x2﹣4)B.m(x+2)(x﹣2)C.mx(x﹣4)D.m(x+4)(x﹣4)6.(2023秋•哈密市期末)下面各式从左到右的变形,属于因式分解的是()A.x(x﹣1)=x2﹣x B.x2﹣1=(x﹣1)2C.x2﹣x﹣1=x(x﹣1)﹣1D.x2﹣x=x(x﹣1)7.(2024•裕华区校级开学)若a+b=3,a﹣b=,则a2﹣b2的值为()A.1B.C.D.98.(2023秋•南沙区期末)已知多项式x2+ax+16可以用完全平方公式进行因式分解,则a的值为()A.4B.8C.﹣8D.±8二.填空题(共5小题)9.(2023秋•临潼区期末)式子x(y﹣1)与﹣18(y﹣1)的公因式是.10.(2024•榆阳区校级一模)因式分解:2x2y+10xy=.11.(2024•西山区校级模拟)分解因式:m3+6m2+9m=.12.(2023秋•哈密市期末)已知x+y=10,xy=1,则代数式x2y+xy2的值为.13.(2024•临潼区一模)因式分解:3a2﹣12=.三.解答题(共3小题)14.(2023秋•海口期末)把下列多项式分解因式:(1)4a3﹣16ab2;(2)3(x﹣1)2+12x.15.(2023秋•洪山区期末)因式分解.(1)x3﹣2x2y+xy2(2)m2(a﹣b)+n2(b﹣a)16.(2023秋•寻乌县期末)因式分解:(1)﹣x3﹣2x2﹣x;(2)x2(a﹣1)+y2(1﹣a).。

提公因式法因式分解练习题(1)

提公因式法因式分解练习题(1)

提公因式法因式分解练习题(1)(一)课堂练习一、填空题1.把一个多项式__________________________,这样的式子变形,叫做把这个多项式因式分解,也叫做把这个多项式______________。

2.把下列各多项式的公因式填写在横线上。

(1)x 2-5xy _________ (2)-3m 2+12mn _________(3)12b 3-8b 2+4b _________ (4)-4a 3b 2-12ab 3 __________(5)-x 3y 3+x 2y 2+2xy _________3.在括号内填入适当的多项式,使等式成立。

(1)-4ab-4b=-4b( ) (2)8x 2y-12xy 3=4xy( )(3)9m 3+27m 2=( )(m+3) (4)-15p 4-25p 3q=( )(3p+5q)(5)2a 3b-4a 2b 2+2ab 3=2ab( ) (6)-x 2+xy-xz=-x( ) (7)21a 2-a=21a( ) 二、选择题1.下列各式从左到右的变形是因式分解的是 ( )(A)m(a+b)=ma+mb (B)x 2+3x-4=x(x+3)-4(C)x 2-25=(x+5)(x-5) (D)(x+1)(x+2)=x 2+3x+22.下列各等式从左到右的变形是因式分解的是 ( )(A)8a 2b 3c=2a 2·2b 3·2c (B)x 2y+xy 2+xy=xy(x+y)(C)(x-y)2=x 2-2xy+y 2 (D)3x 3+27x=3x(x 2+9)3.下列各式因式分解错误的是 ( )(A)8xyz-6x 2y 2=2xy(4z-3xy) (B)3x 2-6xy+x=3x(x-2y)(C)a 2b 2-41ab 3=41ab 2(4a-b) (D)-a 2+ab-ac=-a(a-b+c) 4.多项式-6a 3b 2-3a 2b 2+12a 2b 3因式分解时,应提取的公因式是 ( )(A)3ab (B)3a 2b 2 (C)- 3a 2b (D)- 3a 2b 25.把下列各多项式分解因式时,应提取公因式2x 2y 2的是 ( )(A)2x 2y 2-4x 3y (B)4x 2y 2-6x 3y 3+3x 4y 4(C)6x 3y 2+4x 2y 3-2x 3y 3 (D)x 2y 4-x 4y 2+x 3y 36.把多项式-axy-ax 2y 2+2axz 提公因式后,另一个因式是 ( )(A)y+xy 2-2z (B)y-xy 2+2z (C)xy+x 2y 2-2xz (D)-y+xy 2-2z7.如果一个多项式4x 3y-M 可以分解因式得4xy(x 2-y 2+xy) ,那么M 等于 ( )(A)4xy 3+4x 2y 2 (B)4xy 3-4x 2y 2 (C)-4xy 3+4x 2y 2 (D)-4xy 3-4x 2y 28. 下列各式从左到右的变形:9. ①(a+b)(a-b)=a 2-b 2 ②x 2+2x-3=x(x+2)-3③x+2=x1(x 2+2x) ④a 2-2ab+b 2=(a-b)2是因式分解的有 ( ) (A)1个 (B)2个 (C)3个 (D)4个(二)课后作业1.把下列各式分解因式(1)9m 2n-3m 2n2 (2)4x 2-4xy+8xz (3)-7ab-14abx+56aby(4)6x 4-4x 3+2x 2 (5)6m 2n-15mn 2+30m 2n 2 (6)-4m 4n+16m 3n-28m 2n(7)x n+1-2x n-1 (8)-2x 2n +6x n (9)a n -a n+2+a 3n2.用简便方法计算:(1)9×10100-10101 (2)4.3×199.7+7.5×199.7-1.8×199.73.已知a+b=2,ab=-3求代数式2a 3b+2ab 3的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档