变化率问题

合集下载

变化率问题

变化率问题

当空气容量V从1L增加到2L时, 气球的平均膨胀率为
r 2 r 1 2 1 0.16 dm / L .
可见 0.62>0.16
这就说明: 随着气球体积逐渐变大,气球的平均膨胀率 请用用一句话描述得到的结论 逐渐变小。
思考:一般地,当空气容量从V1增加到V2时, 气球的平均膨胀率是多少?
继续观察平均变化率的代数表达式: 由式子你还会想到什么?
f x 2 f x1 x 2 x1

几何意义
观察函数f(x)的图 象 f(x y
x
2
) f ( x1 )
y f(x2) f(x2)-f(x1)=△y A f(x1) O
x 2 x1
Y=f(x)
平均变化率 表示:
T (℃) C (34, 33.4) B (32, 18.6)
30
20 (注: 3月18日
为第一天)
10 A (1, 3.5)
2
思考
0
2
10
20
30
34
t(天)
你能从图中观察出各时间段的温度变化情况吗? 温度快慢的变化情况怎么刻画?
问题二 气球膨胀率
这是一段吹气球的视频,细细体会气球 的膨胀过程,你有什么发现?随着气球内空 气容量的增加,气球的半径增加得越来越慢. 怎样从数学角度描述这种现象呢?
状态有什么问题吗 ?
四.课堂小结
三个实际变 化率问题
函数的平均变化率
代数表示 意义(实际、
几何)
思想方法
平均速度
从特殊到一般
瞬时速度
如何求瞬时速度, 课下你怎么去做?
五、作 业
应用:
求函数 y 率.

5.1.1变化率问题课件-高二上学期数学人教A版选择性必修第二册

5.1.1变化率问题课件-高二上学期数学人教A版选择性必修第二册

4.8
.
计算运动员在 0 t 48 这段时间里的平均速度,发现了什么? 49
用平均速度描述运动员的运动状态有什么问题吗?
运动员在 0 t 48 这段时间里的平均速度为 0. 显然,在这段时间内, 49
运动员并不处于静止状态. 因此,用平均速度不能准确反映运动员在这 一时间段里的运动状态.
1.瞬时速度的概念:
1.999999
x 0
x
k Δx 2
0.01
2.01
0.001
2.001
0.0001
2.0001
0.00001
2.00001
0.000001
2.000001
……
……
当 x 无限趋近于 0 时,即无论 x 从小于 1 的一边,还是从大于 1 的一边
无限趋近于 1 时,割线 P0 P 的斜率 k 都无限趋近于 2.
给出 t 更多的值,利用计算工具计算对应的平均速度 v 的值. 当 t 无限趋近于 0 时,
即无论 t 从小于 1 的一边,还是从大于 1 的一边无限趋近于 1 时,平均速度 v 都无限
趋近于 5 .

v
h(1 Δt) h(1) (1 Δt) 1
4.9Δt
5
发现,当
t
无限趋近于
0
时,
4.9Δt
也无限趋近于
0,
所以 v 无限趋近于 5 ,这与前面得到的结论一致.
数学中,我们把
5
叫做“当
t
无限趋近于
0
时,
v
h(1
Δt) Δt
h(1)
的极限”,记为
h(1 Δt) h(1)
lim
5 .

课件1:5.1.1 变化率问题

课件1:5.1.1 变化率问题

∴ΔΔyx=-ΔΔxx++242,
∴k= lim Δx→0
ΔΔyx=Δlixm→0
-ΔxΔ+x-242=-44=-1.
又 x=2 时 y=242=1,
∴切线方程为 y-1=-1×(x-2),即 x+y-3=0.
【课堂小结】
1.函数 y=f (x)在 x=x0 处的切线斜率反映了函数在该点处的
瞬时变化率,它揭示了事物在某时刻的变化情况.即:
【学以致用】
1.一物体的运动方程是 s=3+2t,则在[2,2.1]这段时间
内的平均速度是( )
A.0.4
B.2
C.0.3
D.0.2
B [ v =s22.1.1--s22=4.02-.1 4=2.]
2.物体自由落体的运动方程为 s(t)=12gt2,g=9.8 m/s2,若 v
=lim Δt→0
率及瞬时速度的概念.(易混点) 及数学运算的核心素养.
1.平均变化率
【新知初探】
对于函数 y=f (x),从 x1 到 x2 的平均变化率:
(1)自变量的改变量:Δx=__x_2-__x_1_. (2)函数值的改变量:Δy=__f_(_x_2_)-__f_(_x_1)__.
(3)平均变化率ΔΔyx=
【例 2】 某物体的运动路程 s(单位:m)与时间 t(单位:s)的关
系可用函数 s(t)=t2+t+1 表示,求物体在 t=1 s 时的瞬时速度.
[解] ∵ΔΔst=s1+ΔΔtt-s1
=1+Δt2+1+ΔΔtt+1-12+1+1=3+Δt,
∴lim Δt→0
ΔΔst =Δlitm→0
(3+Δt)=3.
5.1.1 变化率问题
学习目标
核心素养

《变化率问题》课件

《变化率问题》课件

从以上的例子中,我们可以了解到,平均变化率 是指在某个区间内数值的平均变化量. 如果上述问题中的函数关系用 f ( x) 表示,那么问 f x2 f x1 题中的变化率可用式子: 表示。 x2 x1
函数f ( x)从x1到x2的平均变化率
f x2 f x1 平均变化率: x2 x1
习惯上:用 x表示x2 -x1,即:x x2 x1
注意:x是一个整体符号,而不是与x相乘。
可把x看作是相对于x1的一个增量, 可用x1 x代替x2 ;
“增量”:x
x2 x1
令“增量” x x2 x1
f f x2 f x1
可以看出: 随着气球体积逐渐变大,它的 平均膨胀率逐渐变小。
思 考 ?
当空气பைடு நூலகம்量从V1增加到V2时,气
球的平均膨胀率是多少?
r (V2 ) r (V1 ) V2 V1
探究活动
气球的平均膨胀率是一个特殊的情况,我们把
这一思路延伸到函数上,归纳一下得出函数的平均
变化率:
r (V2 ) r (V1 ) f ( x2 ) f ( x1 ) V2 V1 x2 x1
3.1.1 变化率问题
很多人都吹过气球,回忆一下吹气球的过程。
发现:
随着气球内空气容量的增加,气球的半径增加 的越来越慢。 从数学的角度,如何描述这种现象呢?
气球的体积V(单位:L)与半径r(单位:dm)之 间的函数关系是:
4 3 3V 3 V (r ) r r (V ) 3 4
f x2 f x1 f x1 x f x1 f x x2 x1 x
f 于是:平均变化率可以表示为: x

变化率问题

变化率问题

(1) 梯子下端离墙 3 米时,梯子上端向下滑 落的速率;
( 2) 梯子与墙的夹角为 解
π
3
时,该夹角的增加率.
设梯子下端离墙的距离 为 x ,
梯子上端到地面的高度 为 y ,
θ
5m
梯子与墙的夹角为 θ .
y
dx π 已知 = 0.5, x = 3, θ = . 3 dt
x
0.5 m / s
(1)
x 2 + y 2 = 52 dy x dx dx dy =− 两边对 t 求导: 2 x + 2 y = 0 即有 dt y dt dt dt dx 由 x = 3,得 y = 4, 及 = 0.5 代入上式, dt dy 3 3 dy 3 = − ⋅ 0.5 = − m / s 得 = m / s, 从而 dt 4 8 dt 8 3 m / s. 即梯子上端向下滑落的 速率为 8 x (2) 由题意 sin θ = , 5 dθ 1 dx dθ 1 dx = ∴ = 两边对 t 求导: cosθ dt 5 dt dt 5 cosθ dt π dx dθ 1 将 θ = , = 0.5 m / s 代入上式得 = × 2 × 0.5 = 0.2 弧度 / s 3 dt dt 5
§4.5 相关变化率 若两个变量之间具有某种关系, 并且两个变量又是 另一变量 t 的函数.
F ( x, y) = 0
并且
x = x( t ) y = y( t )
dy dx , , 去推导另一个变量的变化率 若已知变化率 dt dt
我们称之为相关变化率问题.
例 1 雨滴 (假定为球状 ) 在下落过程中, 由于水分的不断蒸发而
dr 由 (1)、 ( 2) 得 4π r = − kS dt

5.1.1变化率问题

5.1.1变化率问题
1)处的切线.
合作探究
曲线割线的斜率
记∆ = − ,则点P的坐标是( + ∆, + ∆ ).
则割线 的斜率

+∆ −
=
=

+ ∆ −
= ∆ +
合作探究
切线的斜率

+ ∆ −
=
=
= ∆ +
=


+ ∆ + − +
=

= + ∆
课堂练习
3 某河流在一段时间 x min内流过的水量为y ,y是x的函数, = =

问:当x从1变到8时,y关于x的平均变化率是多少?它代表什么实际意义?
解:
当 x 从 1 变到 8 时,y 关于 x 的平均变化率是
因此,用平均速度不能准确反映运动员在这一时间段里的运动状态.
为了精确刻画运动员的运动状态,需要引入瞬时速度的概念.
我们把物体在某一时刻的速度称为瞬时速度.
新知讲解
探究
瞬时速度与平均速度有什么关系?
求运动员在 t=1 s 时的瞬时速度?
不断缩短时间间隔,得到如下表格.
设 在 时刻附近某一时间段内
5.1.1 变化率问题
人教A版(2019)
选择性必修第二册
新知导入
在必修第一册中,我们研究了函数的单调性,并利用函数单调
性等知识定性地研究了一次函数、指数函数、对数函数增长速度的
差异,知道“对数增长”是越来越慢,“指数爆炸”比“直线上升”
快得多.
进一步地,能否精确定量地刻画变化速度的快慢呢?下面我们

变化率 问题

变化率 问题
y y=f(x) B (x2, f(x2))
(x1, f(x1)) A
x O x1 x2
问题2
这是某市2007年3月18日至4月20日每天最高气温 的变化图,
T (℃ )
C (34, 33.4) 30
20
10
B (32, 18.6)
A (1, 3.5) 10 20 30 34 t(d)
2 0 2
t=1到t=32与t=32到t=34这两段时间,哪段气温变化大?
例题讲解
小远从出生到第12个月的体重变化如图所示, 试分别计算小远从出生到第3个月与第6个月到 第12个月体重的平均变化率。 比较这两个时间段小远体重变化的快慢情况。
W(kg)
11 8(月)
例2 在高台跳水运动中,运动
员相对于水面的高度h(单位:
m)与起跳后的时间t(单位:s)
“形” 曲线“陡峭”程度
2.平均变化率的几何意义. 曲线上A、B两点连线的斜率。
“数” 平均变化率
已知函数 f ( x) x 2 ,分别计算 f ( x) 在下列区 间上的平均变化率:
(1)[1,3];
(2)[1,2]; (3)[1,1.1]; (4)[1,1.001]。
4
3 2.1
2.001
34 t(天)
(1)t=32到t=34这两天的温差达到了多少?
(2)t=1到t=32与t=32到t=34这两段时间,哪段气温变化大?
定义:
f ( x2 ) - f ( x1 ) 平均变化率: 式子 x2 - x1
称为函数 f (x)从x1到 x2的平均变化率.
令△x = x2 – x1 , △ y = f (x2) – f (x1) ,则
存在函数关系 h(t)=-4.9t2+6.5t+10. 分别计算运动员在0到0.5秒时 间段,1秒到2秒时间段,以及 65 时间段内的平均 0到 秒 49 速度. (1)运动员在这段时间里是静止的吗?

变化率问题资料课件

变化率问题资料课件
详细描述
三角函数包括正弦函数、余弦函数等。它们的变化率具有周期性,即在每个周期内,变化率呈现单调性。例如, 正弦函数在每个周期内先增后减,余弦函数则先减后增。
04 变化率问题与导数的关系
导数的定义与性质
总结词
导数是描述函数在某一点附近的变化率 的重要工具,具有丰富的性质和定义方 式。
VS
详细描述
详细描述
在物理学中,变化率问题被广泛应用于各种 物理现象的分析,如速度、加速度、角速度 等物理量的变化率分析。通过对这些物理量 的变化率进行建模和分析,物理学家可以揭 示物理现象的内在规律和机制,为科学技术 的发展提供理论支持。
生物种群增长模型
总结词
生物种群增长模型是变化率问题在生物学领 域的应用,通过分析种群数量的变化率,可 以预测种群未来的发展趋势和生态平衡。
THANKS FOR WATCHING
感谢您的观看
瞬时变化率
总结词
描述某一特定点处函数值随自变量变 化的速度
详细描述
瞬时变化率是在某一特定点处,函数 值随自变量变化的速率。它通过求导 数来获得,用于描述函数在某一点的 切线斜率。
变化率的计算公式
总结词
提供计算变化率的数学公式
详细描述
平均变化率的计算公式为 [(末值 - 初值) / 时间跨度]。瞬时变化率则通过求导数 来获得,常用的导数公式包括链式法则、乘积法则、商的导数公式等。
要点二
详细描述
在经济学中,变化率问题常常被用来分析经济增长、通货 膨胀、就业率等经济指标的变化情况。通过对这些经济指 标的变化率进行建模和分析,经济学家可以预测未来的经 济走势和趋势,为企业和政府提供决策依据。
物理现象分析
总结词
物理现象分析是变化率问题的另一个重要应 用领域,通过分析物理量的变化率,可以揭 示物理现象的内在规律和机制。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x2 x1
x

明 :
1.式子中的
x , y 值可正可负,但是 x
值不可以为0, y 值可为0.
2.计算步骤一般是先求函数值的增量再求比 值.
3.变式:
y f (x2) f (x1) f (x1 x) f (x1)
x x2 x1
x
练一练
1.甲用5年时间挣到10万元,乙用6个月时间挣到2万元, 如何比较和评价甲乙两人的经营成果?
(1)质点运动规律为s t 2 3,则在时间
• 练习: (3,3 t)中相应的而平均速度为 .
(2)物体按s(t) 3t 2 t 4的规律作直线运动, 求在4s附近的平均变化率.
(3)过曲线y f ( x) x3上两点P(1,1)和 Q(1 x,1 y),做曲线的割线,求出当 x 0.1时割线的斜率.
类似地,当空气容量从1增加到2时,气球的平均膨胀率 约为0.16(dm/L)
问题二 从上面的数值,可以看出,随着气球
体积逐渐变大,它的平均膨胀率逐渐变小, 解决了问题.
思考? 当空气容量从V1增加到 V2时,气球的平均膨胀
率是多少? r(V2 ) r(V1) V2 V1
气球的平均膨胀率,反映了气球半径增加 的快慢程度.
变化率问题
武威六中 王兴年
通过阅读引言我们知道: 1.随着对函数的深入研究产生了微积分,它是数学发展史
上的一个具有划时代意义的伟大创造,被誉为数学史 上的里程碑.
2.微积分的创立者是牛顿和莱布尼茨.他们都
是著名的科学家,我们应该认识一下.
牛顿(Isacc Newton,1642 - 1727) 是英国数学家、天文学家和物理学家 是世界上出类拔萃的科学家。
2.已知函数f(x)=2x,计算f(x)在区间 3,2上的平均
变化率
思考?
观察函数f(x)的图象
平均变化率
y x

f(x2 ) x2

f (x1) x1
表示什么?
y
Y=f(x)
f(x2)
直线AB的斜 率
f(x1)
O
B f(x2)-f(x1)=△y
A
x
x1 x2 x2-x1=△x
例题分析
问题一
v h(t2 ) h(t1) t2 t1
在现实生活中还有许多平均变化率的问 题如气球膨胀率,那么我们接着“夯实 地基”.
问题二 气球膨胀率
1. 我们大都吹过气球,同学回想在吹气球的过程 中,随着气球内空气容量的增加我们看到的现 象是?
2.看到的现象是: 随着气球内空气容量的增加,气球的
莱布尼茨(1646--1716)德国 数学家、哲学家, 和牛顿同为微积分的创始人.
3.本章我们将要学习的导数是微积分的核心概念之一. 打个比喻如果微积分是万丈高楼,那么平均变化
率就是们就开始“打造地基”
新课讲解
导数研究的问题
变化率问题
研究某个变量相对于另一个变量 变化的快慢程度.
问题一 高台跳水
这两幅图是锁定了运动员比赛的瞬间。
人们发现,在高台跳水运动中,运动员相对于水面的高 度h(单位:m)与起跳后的时间t(单位:s)存在函数v 关系
h(t)=-4.9t2+6.5t+10 提问:在物理学习中,我们常用什么描述物体的运动状态?
问 答:速度。


1.计算高台跳水运动员在下
函数的平均变化率的定义
一般地,函数 y f (x) 中,式子 f (x2 ) f (x1) x2 x1
称为函数 y f (x) 从x1到 x2 的平均变化率。其中
令 , x x2 x1 , y f (x2 ) f (x1) 则
f (x2 ) f (x1) y
小结
1.我们这节课讲了什么问 题
2.用了几个实例 3.得到一个什么数学定义
平均变化率问题
高台跳水
气球膨胀
4.求函数平均变化率的步 骤:
(1)求函数值的变化量 (2)求比值
y f (x2) f (x1)
y
x
函数平均 变化率定 义
y f (x2) f (x1)
x
x2 x1
(2)你认为用平均速度描述运动员的运动状态有什么问 题?
再 谢谢大家 见
例1: 已知函数f ( x) x2 x的图像上的一点
A(1, 2)及附近一点B(1 x, 2 y),则
y
.
x
例2 求y x2在x x0附近的平均变化率.
例4:经过曲线 f ( x) x2 1上A、B两点作
割线,求割线的斜率.
(1) xA 1,xB 2 ; (2) xA 1,xB 1.5 ; (3) xA 1,xB 1.1 .
作业
1.课本第10页第一题。
2.用今天讲的内容各小组自编1-2个 生活中的平均变化率问题(例如 平均每年增长的房价,平均每分 钟股指下跌的点数等)。
3.小组写一篇变化率在生活中的应用 短文。
4.探究
在问题一高台跳水中,计算运动员在0 t 65
这段时间里的平均速度,并思考下面的问题:
49
(1)运动员在这段时间里是静止的吗?
半径增加的越来越慢.
3.从数学的角度,如何描述这一现象呢?
问题二 气球膨胀率
我们知道,气球的体积v(单位:L)与半径 r(单位:dm)
之间的函数关系是
v(r) 4 r 3
3
如果将半径表示为体积的函数,那么 3 r(v) 3v 4
现象也就是:随着气球体积的增大,当气球体积 增加量相同时,相应半径的增加量越来越小.
也就是(半径的增加量 ) 和 ( 体积的增加量 ) 的比值越来越小.
这个比值就是气球的平均膨胀率
用数值来说话
分别计算空气容量从0到1,从1到2的半径增加量和气 球的平均膨胀率
当空气容量从0增加到1时,气球半径增加了
r(1) r(0) 0.62(dm)
气球的平均膨胀率为 r(1) r(0) 0.62(dm L) 1 0
(h(t)=-4.9t2+6.5t+10)
面两个时间段里的平均速度
0 t 0.5
1t 2
v

h(0.5) h(0) 0.5 0

4.05
m s
v h(2) 2
h(1) 1

8.2
m
s
平均速度反映物体在某时间段里速度的平均变化情况.
思考:运动员从t1到t2时间段里的平均速度的计算式?
相关文档
最新文档