半导体器件失效分析与检测
半导体器件的检测与失效分析

半导体器件的检测与失效分析针对半导体器件失效分析主要涉及到了多种实验方法其中包括物理、化学以及金相的试验程序,进而明确器件失效的形式,分析失效的具体过程,从中探寻出导致这一事件原因所在,并设定相应的实施政策。
对此,文章对于半导体器件的失效与检测进行了具体的论述,并提出下面几点有效的检查方法,最终提升半导体元件的可靠性与耐用性。
关键词:半导体器件,检测,失效分析,无损检测,破坏性分析Detection and failure analysis of semiconductor devicesGao Shao-bin1,2, jin Li-hua(1. Shijiazhuang METDA Electronic Technology Limited Corporation,Shijiazhuang 050050, China;2. The 13th Research Institute,CETC, Shijiazhuang 050051, China)The failure analysis of semiconductor devices mainly involves a variety of experimental methods, including physical, chemical and metallographic test procedures, so as to clarify the form of device failure, analyze the specific process of failure, find out the cause of this event, and set the corresponding implementation policy. Inthis regard, the article specifically discusses the failure and detection of semiconductor devices, and puts forward the following effective inspection methods, so as to improve the reliability and durability of semiconductor devices.Key words: Semiconductor devices, testing, failure analysis, nondestructive testing, destructive analysis0引言失效分析技巧主要是探究电子元件产品失效的原理,提升产品可靠性的关键手段。
半导体器件失效原因分析

半导体器件失效原因分析发信站: 紫金飞鸿 (Mon Oct 2 12:02:48 2000)多年来,用户要求有更可靠的电子设备,而与此同时,电子设备发展得越来越复杂。
这两个因素的结合,促使人们更加关注电子设备在长期运行中确保无故障的能力。
通过失效分析可以深入理解失效机理和原因,引导元器件和产品设计的改进,有助于提高电子设备(系统)的可靠性。
半导体器件的失效通常是因为产生的应力超过了它们的最大额定值。
电气应力、热应力、化学应力、辐射应力、机械应力及其他因素都会造成器件失效。
半导体器件的失效机理主要划分成以下6种:一、包封失效。
这类失效发生在用于封装器件的包封出现缺陷,通常是开裂。
机械应力或热应力以及包封材料与金属引线之间热膨胀系数的不同都会引起包封开裂,当环境湿度很高或器件暴露在溶剂、清洗剂等中时,这些裂缝会使湿气浸入,产生的化学反应会使器件性能恶化,使它们失效。
二、导线连接失效。
由于通过大电流造成过量的热应力、或由于连接不当使连接线中产生机械应力、连接线与裸芯之间界面的开裂、硅中的电致迁移、以及过量的连接压力,都会引起导线连接失效。
三、裸芯粘接故障。
裸芯与衬底之间粘接不当时,就会恶化两者之间的导热性,结果会使裸芯过热,产生热应力和开裂,使器件失效。
四、本征硅的缺陷。
由晶体瑕疵或本征硅材料中的杂质和污染物造成的缺陷使器件失效,在器件制造期间扩散工艺产生的工艺瑕疵也会造成器件失效。
五、氧化层缺陷。
静电放电和通过器件引线的高压瞬时传送,可能会使氧化层(即绝缘体)断开,造成器件功能失常。
氧化层中的开裂、划伤、或杂质也会导致器件失效。
六、铝金属缺陷。
这类缺陷往往由下列几种情况造成:由于大电场导致在电流流动方向上发生铝的电迁移;由于大电流造成过量电气应力,导致铝导体断裂;铝被腐蚀;焊接引起铝金属耗损;接触孔被不适当地淀积上金属;有小丘和裂缝。
半导体器件应该工作在由生产厂确定的电压、电流和功耗限定范围内,当器件工作在这个“安全工作范围(SOA)”之外时,电气应力过度(EOS)就会引起内部电压中断,导致器件内部损伤。
半导体器件可靠性与失效分析1

半导体器件可靠性与失效分析1半导体器件可靠性与失效分析1半导体器件在各种电子设备中起着至关重要的作用,如芯片、传感器、集成电路等。
然而,由于工作环境的复杂性和器件本身的特性,半导体器件的可靠性是一个重要的问题。
本文将介绍半导体器件的可靠性与失效分析,并讨论一些常见的失效模式和分析方法。
半导体器件的可靠性是指在给定的工作条件下,器件长时间运行期间不发生失效的能力。
为了提高可靠性,需要对器件进行系统的设计、工艺制造和测试。
同时,可靠性的评估和失效分析也非常重要,可以帮助找出失效的原因并采取相应的措施来提高产品质量。
1.电学失效:包括死机、开路、短路等。
这些失效通常与器件内部的电气结构有关,例如金属线路的断裂、金属间的绝缘损坏等。
2.热失效:器件在高温环境下长时间工作可能导致热失效。
例如,温度过高可能导致金属线材的熔化、介质的老化或者金属与半导体材料之间的界面反应。
3.力学失效:包括机械应力引起的失效,例如振动、冲击、热胀冷缩等。
这些应力可能导致半导体芯片的破裂、金属线路的断裂等。
4.环境失效:包括湿度、化学气体、辐射等环境因素引起的失效。
湿度可能导致金属腐蚀、晶体管漏电等问题;化学气体可能导致金属腐蚀或者氧化等;辐射可能引起电荷捕捉或者场效应晶体管的击穿。
为了进行可靠性分析,可以采用以下方法:1.加速寿命试验:通过在加速条件下对器件进行测试,以模拟其长期工作环境,可以缩短测试时间并提前发现失效。
2.失效分析:对失效的器件进行详细的分析,包括外观观察、断面分析、器件测试等。
这可以帮助找出失效的原因,从而采取相应的措施。
3.统计分析:通过对多个器件进行失效统计和分析,可以了解失效的趋势和规律。
例如,可以计算失效率、寿命分布等参数,以评估器件的可靠性。
4.故障树分析:通过将失效事件和可能的失效原因进行组合,可以构建故障树来分析失效的可能性和影响。
这有助于识别潜在的风险和对策。
总之,半导体器件的可靠性与失效分析是确保电子设备长期稳定工作的关键。
半导体器件失效分析流程

半导体器件失效分析流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!半导体器件失效分析是一项复杂而重要的工作,旨在确定半导体器件失效的原因和机制,以便采取相应的措施来提高器件的可靠性和稳定性。
半导体器件失效分析的研究

半导体器件失效分析的研究摘要随着现代电子设备的普及和应用,半导体器件的失效问题越来越受到重视。
本文探讨半导体器件失效的原因以及失效分析的方法,帮助相关从业人员解决类似问题。
引言随着半导体技术的不断发展,半导体器件已经成为当今电子行业不可或缺的部分。
半导体器件的失效问题不仅会直接影响电子设备的性能和质量,还会导致一定的经济损失。
因此,对半导体器件失效问题的研究和分析显得异常重要。
半导体器件失效的原因半导体器件失效通常是由以下原因造成的:1.应力或温度引起的损坏,例如在硅可靠性测试过程中,漏电流仪量测中高应力和高温度就是主要的失败机制。
2.断路或短路造成的内部损坏。
3.腐蚀、电子迁移、枝晶、金属迁移或氧化等导致材料层面的失效。
4.环境问题,例如化学污染、湿度或氧化。
半导体器件失效分析的方法半导体器件失效分析方法通常来说可以分为以下几步:1.收集失效器件的历史资料,如原始故障记录等,并尽可能了解失效器件的使用情况及用途。
2.进行外观检查,查看失效器件是否存在表面损坏、丝印损伤等问题。
3.进行器件标识检查,确保失效器件型号与设备实际使用的型号是否一致。
4.进行失效器件电性测试,确定失效器件的电参数是否正常。
5.进行仪器分析,如扫描电镜观察、光学显微镜观察等,以确定失效器件的内部是否存在缺陷或损坏。
6.进行化学分析,以确定失效器件是否受到了污染或者氧化。
半导体器件失效问题是电子行业一个不可忽视的问题。
本文介绍了半导体器件失效的原因以及分析方法,希望这些方法能帮助相关从业人员对半导体器件失效问题有更全面的了解,更好的保证电子设备的质量和性能。
半导体器件可靠性与失效分析微电子

半导体器件可靠性与失效分析微电子半导体器件可靠性与失效分析是微电子领域的重要课题。
半导体器件的可靠性是指在一定的使用环境和使用条件下,器件在规定时间内能够正常工作的概率。
而失效(Failure)是指器件不能在规定的时间内正常工作。
半导体器件的可靠性与失效分析旨在通过对器件的性能和可靠性进行评估和分析,找出器件失效的原因,并提出相应的改进措施,从而提高器件的可靠性。
1.可靠性评估:通过一系列实验和测试,评估器件在特定环境和使用条件下的可靠性。
常见的可靠性评估方法包括寿命测试、温度循环测试、湿度测试、可靠性建模等。
通过这些评估手段,可以得到器件的失效概率和失效的规律,进而为改进器件的设计和制造提供依据。
2.失效分析:失效分析是通过对失效的器件进行物理和电学特性分析,找出失效的原因和机制。
常见的失效分析方法包括显微镜观察、扫描电子显微镜(SEM)、能量色散X射线光谱分析(EDX)、微动电压测量、故障注入方法等。
通过失效分析可以确定故障位置和失效原因,为改进器件的设计和制造提供指导。
3.失效模式与机制研究:失效模式与机制的研究是指通过理论和实验手段,研究器件失效的模式和机制。
通过对失效模式和机制的研究,可以了解器件失效的根本原因,并提出相应的改进措施。
例如,晶体管的漏电流增加、介质击穿等都是半导体器件失效的常见模式和机制。
4.退化机制分析:半导体器件的寿命会随着使用时间的增加而发生退化,导致器件性能下降甚至失效。
退化机制分析是指通过实验和测试,研究器件在使用过程中的退化机制。
常见的退化机制包括电子迁移、电子捕捉、热失效等。
通过退化机制分析可以确定退化的原因,为延长器件寿命提供参考。
半导体器件的可靠性与失效分析对于微电子行业具有重要的意义。
高可靠性的器件可以减少电子产品的故障率,提高产品的性能和稳定性。
同时,通过对失效原因和机制的研究,可以指导器件的设计和制造,提高器件的可靠性和寿命。
因此,半导体器件的可靠性与失效分析是微电子领域一个重要的研究方向,也是推动微电子技术发展的关键之一。
半导体器件可靠性与失效分析微电子

半导体器件可靠性与失效分析微电子
1.功能失效:指器件不能按照设计要求正常工作,如逻辑门无法实现
正确的逻辑功能。
2.电气失效:指器件发生电气故障,如短路、开路、漏电等。
3.热失效:由于器件内部寄生电阻、封装散热不良等原因,导致器件
温度升高,超过其承受范围,从而导致失效。
4.机械失效:指器件由于外力作用或压力过大等原因,发生物理损坏,如断裂、划伤等。
5.等离子体效应:在高电压或高频环境下,会产生等离子体,从而对
半导体器件产生有害影响。
为提高半导体器件的可靠性,需要进行失效分析,以了解器件失效的
原因
1.失效模式分析:对不同类型的失效进行分类和描述,以便查找相应
的失效原因。
2.加速寿命测试:通过在高温、高电压、高湿度等恶劣条件下进行长
时间测试,模拟器件在实际使用中的环境,加速失效过程,以便提前发现
问题。
3.失效分析方法:包括光学显微镜、电子显微镜、故障定位分析、X
射线衍射等多种方法,用于观察器件失效的具体细节,并找出失效的原因。
4.剖析和分析失效原因:通过对失效器件的分析和试验,找出失效的
原因和机理,如晶体缺陷、金属线断裂等。
5.提高设计和工艺:根据失效分析结果,改进器件的设计和工艺,以
提高器件的可靠性。
总之,半导体器件可靠性与失效分析在微电子领域中具有重要的意义,它不仅能提高半导体器件的可靠性,还能为微电子系统的设计和制造提供
理论指导和实践经验。
随着技术的进一步发展,可靠性和失效分析将继续
成为微电子行业的研究热点。
半导体器件失效分析与检测

半导体器件失效分析与检测摘要:本文对半导体器件的失效做了详尽分析,并介绍了几种常用的失效检测方法。
1 半导体器件失效剖析经过剖析可知形成半导体器件失效的要素有很多,我们主要从几个方面进论述。
1.1 金属化与器件失效环境应力对半导体器件或集成电路牢靠性的影响很大。
金属化及其键合处就是一个不容无视的失效源。
迄今,大多数半导体器件平面工艺都采用二氧化硅作为掩膜钝化层。
为在芯片上完成互连,常常在开窗口的二氧化硅层上淀积铝膜即金属化。
从物理、化学角度剖析,金属化失效机理大致包括膜层张力、内聚力、机械疲倦、退火效应、杂质效应及电迁移等。
1.2 晶体缺陷与器件失效晶体缺陷招致器件失效的机理非常复杂,有些问题至今尚不分明。
晶体缺陷分晶体资料固有缺陷(如微缺陷)和二次缺陷两类。
后者是在器件制造过程中,由于氧化、扩散等热处置后呈现或增殖的大量缺陷。
两种缺陷或者彼此互相作用,都将招致器件性能的退化。
二次击穿就是晶体缺陷招来的严重结果。
1.2.1 位错这种缺陷有的是在晶体生长过程中构成的(原生位错),有的是在器件工艺中引入的(诱生位错)。
位错易沿位错线加速扩散和析出,间接地促成器件劣化。
事实证明,表面杂质原子(包括施主和受主)沿位错边缘的扩散比在圆满晶体内快很多,其结果常常使P-N结的结平面不平整以至穿通。
鉴于位错具有“吸除效应”,对点缺陷如杂质原子、点阵空位、间隙原子等起到内部吸收的作用,故适量的位错反而对器件消费有利。
1.2.2 沉淀物除位错形成不平均掺杂外,外界杂质沾污也会带来严重结果,特别是重金属沾污,在半导体工艺中是经常发作的。
假如这些金属杂质存在于固溶体内,其危害相对小一些;但是,一旦在P-N结处构成堆积物,则会产生严重失效,使反向漏电增大,以至到达毁坏的水平。
堆积需求成核中心,而位错恰恰提供了这种中心。
硅中的二次孪生晶界为堆积提供了有利的成核场所,所以具有这种晶界的二极管,其特性明显变软。
1.2.3 二次缺陷。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
半导体器件失效分析与检测
半导体元件的失效将直接影响相关产品的正常使用,文章主要就对半导体器件的失效原因进行了细致地分析并提出了几种检测的方法,供相关人士借鉴。
标签:半导体;器件;失效分析;检测
1 半导体器件失效分析
通过分析可知造成半导体器件失效的因素有很多,我们主要从几个方面进阐述。
1.1 金属化与器件失效
环境应力对半导体器件或集成电路可靠性的影响很大。
金属化及其键合处就是一个不容忽视的失效源。
迄今,大多数半导体器件平面工艺都采用二氧化硅作为掩膜钝化层。
为在芯片上实现互连,往往在开窗口的二氧化硅层上淀积铝膜即金属化。
从物理、化学角度分析,金属化失效机理大体包括膜层张力、内聚力、机械疲劳、退火效应、杂质效应及电迁移等。
1.2 晶体缺陷与器件失效
晶体缺陷导致器件失效的机理十分复杂,有些问题至今尚不清楚。
晶体缺陷分晶体材料固有缺陷(如微缺陷)和二次缺陷两类。
后者是在器件制造过程中,由于氧化、扩散等热处理后出现或增殖的大量缺陷。
两种缺陷或者彼此相互作用,都将导致器件性能的退化。
二次击穿就是晶体缺陷招来的严重后果。
1.2.1 位错
这种缺陷有的是在晶体生长过程中形成的(原生位错),有的是在器件工艺中引入的(诱生位错)。
位错易沿位错线加速扩散和析出,间接地促成器件劣化。
事实证明,外表杂质原子(包括施主和受主)沿位错边缘的扩散比在完美晶体内快很多,其结果往往使P-N结的结平面不平整甚至穿通。
鉴于位错具有“吸除效应”,对点缺陷如杂质原子、点阵空位、间隙原子等起到内部吸收的作用,故适量的位错反而对器件生产有利。
1.2.2 沉淀物
除位错造成不均匀掺杂外,外界杂质沾污也会带来严重后果,特别是重金属沾污,在半导体工艺中是经常发生的。
如果这些金属杂质存在于固溶体内,其危害相对小一些;但是,一旦在P-N结处形成沉积物,则会产生严重失效,使反
向漏电增大,甚至达到破坏的程度。
沉积需要成核中心,而位错恰恰提供了这种中心。
硅中的二次孪生晶界为沉积提供了有利的成核场所,所以具有这种晶界的二极管,其特性明显变软。
1.2.3 二次缺陷。
它是在器件工艺过程中引入的,直接威胁着产品的成品率。
常见的二次缺陷有失配位错、滑移位错及氧化层错。
失配位错往往会导致浅结NPN管基区前沿下沉,最终影响器件截止频率和噪声系数。
滑移位错除引起结特性变软外,还会导致穿通。
2 半导体器件失效检测法
当前造成半导体器件出现失效的因素有很多,而具体的检测方法则可以分为两大类,一种是破坏性检测,具体指的是打开器件的封帽之后进行检测;另一种是非破坏性检测,顾名思义,就是在不对器件造成物理性破坏的前提下进行检测。
不过,这种非破坏性检测也会或多或少的对元器件造成一定的伤害,在性能上也会发生一些改变。
所以进行失效检测必须做好相关事宜,按照一定的计划和步骤进行。
作为操作人员在实际工作时也应该谨小慎微,否则旧的失效迹象没有解决还会混进一些新的失效因素。
2.1 破坏性检验法
2.1.1 光学检测
通常来看,由于半导体元器件本身发生短路所造成的失效,其表面现象是很难被肉眼发现的。
我们可以通过一百倍的显微镜去观察其元器件上的划痕。
但是有些缺陷就算使用高倍显微镜也是很难看到的,例如绝缘层针孔出现短路。
所以针对这些难以检查的缺陷,我们需要把芯片取下来然后把金属化铝层腐蚀,在使用显微镜进行判断。
2.1.2 电子显微镜检验
从可见波长方面来说,电子显微镜显然已经接近于光学显微镜分辨率的极限。
目前能够聚焦X射线的显微镜还不能够实现放大两百以上。
为了能够查找出半导体元器件上出现的电学不稳定因素,我们通常可以使用透射式电子显微镜来实现。
这种检测技术主要是通过制作一种很薄的样片,但是注意的是这种减薄处理很容易造成被检测器件遭到破坏,所以在进行失效检测时候应该只限于观察晶体缺陷。
除此之外,我们还可以使用电镜进行骚猫,电镜形成的电子束通过扫描被检测元件后,不论是检测元件表面散落的电子还是已经被表面吸收的电子都会转化成图像,帮助我们更加直观的观察。
相比其他的检测方法,使用电镜进行扫描是当前一种比较有效的检测半导体器件失效的工具。
但是电镜所形成的电子束能够对被检测元件形成永久性的性能改变,所以这种方式属于破坏性检测。
2.1.3 化學检测
采用这种检测方法不仅能够检测半导体元器件的污染情况还能够具体地分析元器件材料,同时还能够通过染色方法观看其可见度的方式来检查针孔是否出现问题。
例如,我们把染色的晶片经过漂洗,已经渗透到裂纹中的染料就会流出来,我们通常把这种裂纹区着色叫做染色法,主要是通过不同的裂纹区域会有不同的棕色,然后通过施加一定的电压,就非常容易看到一些形式的裂纹区。
这主要是因为这些缺陷导致器件表面形成了很明显的差异,所以通过着色法就能够使其表现出不同深度的棕色。
这种检测方法必须由专门的工作人员操作,所以限制了这种方法的应用和发展。
2.2 非破坏性检测
半导体器件是当前大多数电子元件中十分重要的组成部分,所以必须保证这些元件的可靠性满足相应的标准,这也是生产厂家必须达到的,也是当前市场经济对生产商的要求。
但是以前那种十分复杂的检测方法远远不能满足当期的需要。
这就需要我们找到一种经济快捷的检测方法。
目前最为常用的就是快速自动检测系统,这种系统的应用基本能够满足生产线上的测试。
但是从失效检测分析上来说,一套科学经济的检测犯法不仅仅包括电学特性检测,还包括很多其他的检测模式。
通过实际的比较分析,非破坏性检测是当前十分理想的方法,下面我们就分析一下最为常用的几种方法。
2.2.1 俄歇电子能谱分析
这种分析方法主要是通过使用小于一千伏的低能电子束对靶材料进行不同能量的二次电子,通过能量分析这些二次电子能够获得一些能量的分布曲线,再通过这些曲线能够得出一系列的能谱,在能谱中能够直观的反映出某些元素的存在。
同时能够根据峰值的强度测出不同元素的含量,这种检测数据主要来自被检测器件的表面原子层,进而分析出半导体表面的组成。
这种分析方法是一种具有速度快、稳定性好的非破坏性检测方法。
在进行元器件失效分析过程中,这种一起能够通过半导体元器件表面的状态分析出半导体器件失效的原因。
此外,使用这种方法不仅能够对半导体元件做出精度的深度成分分析,还能够测试出器件损坏的原理。
2.2.2 激光扫描分析
这种检测技术是一种当前使用范围非常广泛的方法,主要被应用于检测有源半导体元器件内部的工作情况。
采用这种方法不仅不会对器件造成损害,还能够检测出元器件晶体管内部的直流增减变化,同时能够探测术器件的内部温度,进而确定出集成电路内部的工作状态,此外,还能够实现对倒焊器件的检测,简单的说就是通过芯片背面就能够直接检测出电路的工作情况,通过具体的图形分析出检测结果。
随着社会上对集成电路的需求量不断增加,生产出无缺陷的集成电路成为了相关企业的重要目标。
但是当前采用哪种常规的检测方式都不能够满足相应的质量要求。
参考文献
[1]庞绍华.半导体元器件耐压测试仪电路的制作[J].家电检修技术,2002.
[2]宋权.铜-炭纤维复合材料作为半导体元器件基板的应用[J].合肥工业大学学报(自然科学版),1990.。