半导体器件失效分析与检测

半导体器件失效分析与检测
半导体器件失效分析与检测

半导体器件失效分析与检测

半导体元件的失效将直接影响相关产品的正常使用,文章主要就对半导体器件的失效原因进行了细致地分析并提出了几种检测的方法,供相关人士借鉴。

标签:半导体;器件;失效分析;检测

1 半导体器件失效分析

通过分析可知造成半导体器件失效的因素有很多,我们主要从几个方面进阐述。

1.1 金属化与器件失效

环境应力对半导体器件或集成电路可靠性的影响很大。金属化及其键合处就是一个不容忽视的失效源。迄今,大多数半导体器件平面工艺都采用二氧化硅作为掩膜钝化层。为在芯片上实现互连,往往在开窗口的二氧化硅层上淀积铝膜即金属化。

从物理、化学角度分析,金属化失效机理大体包括膜层张力、内聚力、机械疲劳、退火效应、杂质效应及电迁移等。

1.2 晶体缺陷与器件失效

晶体缺陷导致器件失效的机理十分复杂,有些问题至今尚不清楚。晶体缺陷分晶体材料固有缺陷(如微缺陷)和二次缺陷两类。后者是在器件制造过程中,由于氧化、扩散等热处理后出现或增殖的大量缺陷。两种缺陷或者彼此相互作用,都将导致器件性能的退化。二次击穿就是晶体缺陷招来的严重后果。

1.2.1 位错

这种缺陷有的是在晶体生长过程中形成的(原生位错),有的是在器件工艺中引入的(诱生位错)。位错易沿位错线加速扩散和析出,间接地促成器件劣化。事实证明,外表杂质原子(包括施主和受主)沿位错边缘的扩散比在完美晶体内快很多,其结果往往使P-N结的结平面不平整甚至穿通。鉴于位错具有“吸除效应”,对点缺陷如杂质原子、点阵空位、间隙原子等起到内部吸收的作用,故适量的位错反而对器件生产有利。

1.2.2 沉淀物

除位错造成不均匀掺杂外,外界杂质沾污也会带来严重后果,特别是重金属沾污,在半导体工艺中是经常发生的。如果这些金属杂质存在于固溶体内,其危害相对小一些;但是,一旦在P-N结处形成沉积物,则会产生严重失效,使反

B1500A 半导体器件分析仪主机

B1500A 半导体器件分析仪主机/EasyEXPERT 软件 主要特性与技术指标 测量功能 ?在0.1 fA - 1 A / 0.5 μV - 200 V 范围内执行精确的电流-电压(IV)测量,支持点测量、扫描测量、采样和脉冲测量 ?在1 kHz 至5 MHz 频率范围内执行交流电容测量,支持准静态电容-电压(QS-CV)测量 ?先进的脉冲IV 测量和超快IV 测量,最低采样间隔为5 ns(200 MSa/s) ?高达40 V 的高压脉势,适用于非易失存储器测试 ?测量模块可升级至10 插槽配置 工作环境(包含EasyEXPERT) ?EasyEXPERT 软件(链接至EasyEXPERT)在嵌入式Windows 7 中运行 ?数百种测量程序库在需要时即可使用(应用测试) ?15 英寸触摸屏支持您在器件表征时采取直观的操作、分析与探测 ?自动数据记录功能支持测试数据和测试条件的恢复,可使您轻松地进行探测 ?利用曲线追踪(旋钮操作)和自动记录特性来实现实时交互表征 ?利用便捷的在线/离线测试环境完成测试开发与分析(台式EasyEXPERT),从而最大限度地发挥仪器效用 描述 Agilent B1500A 半导体器件分析仪是一款用于器件表征的综合解决方案。它支持IV、CV、脉冲IV 及快速IV 测量,可对器件、材料、半导体、有源/无源元件以及任意电气器件进行各种电气表征和评测。模块化结构可使您根据测试需求随时把仪器升级到10 插槽配置。嵌入式Windows 7 和功能强大的EasyEXPERT 软件借助先进的图形用户界面(GUI),可让您执行高效、数据可恢复的器件表征。Agilent B1500A 是唯一一款能够适应多种测量需要的参数分析仪,具备极高的测量可靠性和易于使用的测试环境,可实现高效、数据可恢复的器件表征。 Agilent EasyEXPERT 是一款基于图形用户界面的必备软件,在B1500A 嵌入式Windows?7 中运行。它支持所有类型的参数测试,从基本的IV 和CV 扫描到超快速IV 和脉冲IV 测量等等。数百种即用型程序库(应用测试)可使您非常轻松地立即开始进行复杂测量。仪器的全部操作通过15 英寸触摸屏、简单的键盘和鼠标操作来实现。EasyEXPERT 软件还提供高效测试环境,支持您在器件表征时采取直观的操作、分析与探测。测试条件和测量数据可以自动保存到工作区内,使您毫不费力地完成器件表征。 EasyEXPERT 主要特性: ?支持所有类型的参数测试,从基本的IV 和CV 扫描到超快速IV 和脉冲IV 测量等等

半导体器件基础测试题

第一章半导体器件基础测试题(高三) 姓名班次分数 一、选择题 1、N型半导体是在本征半导体中加入下列物质而形成的。 A、电子; B、空穴; C、三价元素; D、五价元素。 2、在掺杂后的半导体中,其导电能力的大小的说法正确的是。 A、掺杂的工艺; B、杂质的浓度: C、温度; D、晶体的缺陷。 3、晶体三极管用于放大的条件,下列说法正确的是。 A、发射结正偏、集电结反偏; B、发射结正偏、集电结正偏; C、发射结反偏、集电结正偏; D、发射结反偏、集电结反偏; 4、晶体三极管的截止条件,下列说法正确的是。 A、发射结正偏、集电结反偏; B、发射结正偏、集电结正偏; C、发射结反偏、集电结正偏; D、发射结反偏、集电结反偏; 5、晶体三极管的饱和条件,下列说法正确的是。 A、发射结正偏、集电结反偏; B、发射结正偏、集电结正偏; C、发射结反偏、集电结正偏; D、发射结反偏、集电结反偏; 6、理想二极管组成的电路如下图所示,其AB两端的电压是。 A、—12V; B、—6V; C、+6V; D、+12V。 7、要使普通二极管导通,下列说法正确的是。 A、运用它的反向特性; B、锗管使用在反向击穿区; C、硅管使用反向区域,而锗管使用正向区域; D、都使用正向区域。 8、对于用万用表测量二极管时,下列做法正确的是。 A、用万用表的R×100或R×1000的欧姆,黑棒接正极,红棒接负极,指针偏转; B、用万用表的R×10K的欧姆,黑棒接正极,红棒接负极,指针偏转; C、用万用表的R×100或R×1000的欧姆,红棒接正极,黑棒接负极,指针偏转; D、用万用表的R×10,黑棒接正极,红棒接负极,指针偏转; 9、电路如下图所示,则A、B两点的电压正确的是。 A、U A=3.5V,U B=3.5V,D截止;

中科大半导体器件原理考试重点

《半导体器件原理》课程复习提纲 2017.12 基础:半导体物理、半导体器件的基本概念、物理效应。 重点:PN结、金半结、双极型晶体管、JFET、MESFET、MOSFET。根据物理效应、物理方程、实验修正等,理解半导体器件的工作原理和特性曲线,掌握器件的工作方程和各种修正效应,了解器件的参数意义,能够进行器件设计、优化、应用、仿真与建模等。 第一章:半导体物理基础 主要内容包括半导体材料、半导体能带、本征载流子浓度、非本征载流子、本征与掺杂半导体、施主与受主、漂移扩散模型、载流子输运现象、平衡与非平衡载流子。 半导体物理有关的基本概念,质量作用定律,热平衡与非平衡、漂移、扩散,载流子的注入、产生和复合过程,描述载流子输 运现象的连续性方程和泊松方程。(不作考试要求) 第二章:p-n结 主要内容包括热平衡下的p-n结,空间电荷区、耗尽区(耗尽层)、内建电场等概念,p-n结的瞬态特性,结击穿,异质结与高低结。 耗尽近似条件,空间电荷区、耗尽区(耗尽层)、内建电势等概念,讨论pn结主要以突变结(包括单边突变结)和线性缓变结为例,电荷分布和电场分布,耗尽区宽度,势垒电容和扩散电容的概念、定义,直流特性:理想二极管IV方程的推导;

对于考虑产生复合效应、大注入效应、温度效应对直流伏安特性的简单修正。PN的瞬态特性,利用电荷控制模型近似计算瞬变时间。结击穿机制主要包括热电击穿、隧道击穿和雪崩击穿。要求掌握隧道效应和碰撞电离雪崩倍增的概念,雪崩击穿条件,雪崩击穿电压、临界击穿电场及穿通电压的概念,异质结的结构及概念,异质结的输运电流模型。高低结的特性。 第三章:双极型晶体管 主要内容包括基本原理,直流特性,频率响应,开关特性,异质结晶体管。 晶体管放大原理,端电流的组成,电流增益的概念以及提高电流增益的原则和方法。理性晶体管的伏安特性,工作状态的判定,输入输出特性曲线分析,对理想特性的简单修正,缓变基区的少子分布计算,基区扩展电阻和发射极电流集边效应,基区宽度调制,基区展宽效应,雪崩倍增效应,基区穿通效应,产生复合电流和大注入效应,晶体管的物理模型E-M模型和电路模型G-P 模型。跨导和输入电导参数,低频小信号等效电路和高频等效电路,频率参数,包括共基极截止频率fα和共射极截止频率fβ的定义,特征频率f T的定义,频率功率的限制,其中少子渡越基区时间,提高频率特性的主要措施。开关特性的参数定义,开关时间的定义和开关过程的描述,利用电荷控制方程简单计算开关时间。 开关晶体管中最重要的参数是少子寿命。异质结双极型晶体管的结构及优点。

常用半导体器件复习题

第1章常用半导体器件 一、判断题(正确打“√”,错误打“×”,每题1分) 1.在N型半导体中,如果掺入足够量的三价元素,可将其改型成为P型半导体。()2.在N型半导体中,由于多数载流子是自由电子,所以N型半导体带负电。()3.本征半导体就是纯净的晶体结构的半导体。() 4.PN结在无光照、无外加电压时,结电流为零。() 5.使晶体管工作在放大状态的外部条件是发射结正偏,且集电结也是正偏。()6.晶体三极管的β值,在任何电路中都是越大越好。( ) 7.模拟电路是对模拟信号进行处理的电路。( ) 8.稳压二极管正常工作时,应为正向导体状态。( ) 9.发光二极管不论外加正向电压或反向电压均可发光。( ) 10.光电二极管外加合适的正向电压时,可以正常发光。( ) 一、判断题答案:(每题1分) 1.√; 2.×; 3.√; 4.√; 5.×; 6.×; 7.√; 8.×; 9.×; 10.×。

二、填空题(每题1分) 1.N型半导体中的多数载流子是电子,P型半导体中的多数载流子是。2.由于浓度不同而产生的电荷运动称为。 3.晶体二极管的核心部件是一个,它具有单向导电性。 4.二极管的单向导电性表现为:外加正向电压时,外加反向电压时截止。5.三极管具有放大作用的外部条件是发射结正向偏置,集电结偏置。6.场效应管与晶体三极管各电极的对应关系是:场效应管的栅极G对应晶体三极管的基极b,源极S对应晶体三极管,漏极D对应晶体三极管的集电极c。7.PN结加正向电压时,空间电荷区将。 8.稳压二极管正常工作时,在稳压管两端加上一定的电压,并且在其电路中串联一支限流电阻,在一定电流围表现出稳压特性,且能保证其正常可靠地工作。 9.晶体三极管三个电极的电流I E 、I B 、I C 的关系为:。 10.发光二极管的发光颜色决定于所用的,目前有红、绿、蓝、黄、橙等颜色。 二、填空题答案:(每题1分) 1.空穴 2.扩散运动 3.PN结 4.导通 5.反向 6.发射机e 7.变薄 8.反向 9.I E =I B +I C 10.材料 三、单项选择题(将正确的答案题号及容一起填入横线上,每题1分)

盛吉盛(宁波)半导体科技有限公司_中标190924

招标投标企业报告 盛吉盛(宁波)半导体科技有限公司

本报告于 2019年9月24日 生成 您所看到的报告内容为截至该时间点该公司的数据快照 目录 1. 基本信息:工商信息 2. 招投标情况:中标/投标数量、中标/投标情况、中标/投标行业分布、参与投标 的甲方排名、合作甲方排名 3. 股东及出资信息 4. 风险信息:经营异常、股权出资、动产抵押、税务信息、行政处罚 5. 企业信息:工程人员、企业资质 * 敬启者:本报告内容是中国比地招标网接收您的委托,查询公开信息所得结果。中国比地招标网不对该查询结果的全面、准确、真实性负责。本报告应仅为您的决策提供参考。

一、基本信息 1. 工商信息 企业名称:盛吉盛(宁波)半导体科技有限公司统一社会信用代码:91330200MA2AHN2244工商注册号:/组织机构代码:MA2AHN224 法定代表人:项习飞成立日期:2018-03-22 企业类型:有限责任公司(中外合资)经营状态:存续 注册资本:2000万美元 注册地址:浙江省宁波市鄞州区云龙镇石桥村 营业期限:2018-03-22 至 2068-03-21 营业范围:二手半导体设备及配件的翻新、改造、安装、维护、销售;半导体设备的研发、生产、销售;半导体生产及研发设备的技术服务;自营或代理货物和技术的进出口,但国家限制经营或禁止进出口的货物和技术除外;半导体相关的功能材料、器件、配件及相关产品的技术开发、生产、销售和咨询。(依法须经批准的项目,经相关部门批准后方可开展经营活动) 联系电话:*********** 二、招投标分析 2.1 中标/投标数量 企业中标/投标数: 个 (数据统计时间:2017年至报告生成时间) 6

半导体器件失效原因分析

半导体器件失效原因分析 发信站: 紫金飞鸿 (Mon Oct 2 12:02:48 2000) 多年来,用户要求有更可靠的电子设备,而与此同时,电子设备发展得越来越复杂。这两个因素的结合,促使人们更加关注电子设备在长期运行中确保无故障的能力。通过失效分析可以深入理解失效机理和原因,引导元器件和产品设计的改进,有助于提高电子设备(系统)的可靠性。 半导体器件的失效通常是因为产生的应力超过了它们的最大额定值。电气应力、热应力、化学应力、辐射应力、机械应力及其他因素都会造成器件失效。半导体器件的失效机理主要划分成以下6种: 一、包封失效。这类失效发生在用于封装器件的包封出现缺陷,通常是开裂。机械应力或热应力以及包封材料与金属引线之间热膨胀系数的不同都会引起包封开裂,当环境湿度很高或器件暴露在溶剂、清洗剂等中时,这些裂缝会使湿气浸入,产生的化学反应会使器件性能恶化,使它们失效。 二、导线连接失效。由于通过大电流造成过量的热应力、或由于连接不当使连接线中产生机械应力、连接线与裸芯之间界面的开裂、硅中的电致迁移、以及过量的连接压力,都会引起导线连接失效。 三、裸芯粘接故障。裸芯与衬底之间粘接不当时,就会恶化两者之间的导热性,结果会使裸芯过热,产生热应力和开裂,使器件失效。 四、本征硅的缺陷。由晶体瑕疵或本征硅材料中的杂质和污染物造成的缺陷使器件失效,在器件制造期间扩散工艺产生的工艺瑕疵也会造成器件失效。 五、氧化层缺陷。静电放电和通过器件引线的高压瞬时传送,可能会使氧化层(即绝缘体)断开,造成器件功能失常。氧化层中的开裂、划伤、或杂质也会导致器件失效。 六、铝金属缺陷。这类缺陷往往由下列几种情况造成:由于大电场导致在电流流动方向上发生铝的电迁移;由于大电流造成过量电气应力,导致铝导体断裂;铝被腐蚀;焊接引起铝金属耗损;接触孔被不适当地淀积上金属;有小丘和裂缝。 半导体器件应该工作在由生产厂确定的电压、电流和功耗限定范围内,当器件工作在这个“安全工作范围(SOA)”之外时,电气应力过 度(EOS)就会引起内部电压中断,导致器件内部损伤。如果EOS产生大电流,会使器件过热,形成热应力过度而使器件失效,即增加的热应力会导致“二次状态”失效。

半导体器件基本结构

课题4.1 半导体器件基本结构 4.2晶体二极管 教学目标【知识目标】掌握PN结单向导体的原理 【能力目标】1.懂得什么是半导体 2.理解PN结的单向导电性 3.掌握半导体的分类 4.懂得半导体的主要参数【德育目标】培养学生的抽象理解能力 教 学重点半导体的主要参数 教 学 难 点 PN结单向导体的原理 教 学时间2课时(第11周) 教 具 准 备 半导体、电阻、电流表 教学组织与实施 教师活动学生活动 【新课导入】 提问1: 【新课讲授】 1.导体绝缘体和半导体 各种物体对电流的通过有着不同的阻碍能力,这种不同的物体允许电流通过的能力叫做物体的导电性能。 通常把电阻系数小的(电阻系数的范围约在0.01~1欧毫米/米)、导电性能好的物体叫做导体。例如:银、铜、铝是良导体。 含有杂质的水、人体、潮湿的树木、钢筋混凝土电杆、墙壁、大地等,也是导体,但不是良导体。 电阻系数很大的(电阻系数的范围约为10~10欧姆·毫米/米)、导电性能很差的物体叫做绝缘体。例如:陶瓷、云母、玻璃、橡胶、塑料、电木、纸、棉纱、树脂等物体,以及干燥的木材等都是绝缘体(也叫电介质)。 举例说明哪些是导体哪些是绝缘体哪些是半导体

导电性能介于导体和绝缘体之间的物体叫做半导体。例如:硅、锗、硒、氧化铜等都是半导体。半导体在电子技术领域应用越来越广泛。 2.PN结 PN结(PN junction)。采用不同的掺杂工艺,通过扩散作用,将P型半导体与N型半导体制作在同一块半导体(通常是硅或锗)基片上,在它们的交界面就形成空间电荷区称PN结。PN结具有单向导电性。 P型半导体(P指positive,带正电的):由单晶硅通过特殊工艺掺入少量的三价元素组成,会在半导体内部形成带正电的空穴; N型半导体(N指negative,带负电的):由单晶硅通过特殊工艺掺入少量的五价元素组成,会在半导体内部形成带负电的自由电子。 3.PN结的单向导电性 PN结具有单向导电性,若外加电压使电流从P区流到N区,PN 结呈低阻性,所以电流大;反之是高阻性,电流小。 如果外加电压使PN结P区的电位高于N区的电位称为加正向电压,简称正偏; PN结P区的电位低于N区的电位称为加反向电压,简称反偏。 (1) PN结加正向电压时的导电情况 外加的正向电压有一部分降落在PN结区,方向与PN结内电场方向相反,削弱了内电场。于是,内电场对多子扩散运动的阻碍减弱,扩散电流加大。扩散电流远大于漂移电流,可忽略漂移电流的影响,PN结呈现低阻性。 (2)PN结加反向电压时的导电情况 外加的反向电压有一部分降落在PN结区,方向与PN结内电场方向相同,加强了内电场。内电场对多子扩散运动的阻碍增强,扩散电流大大减小。此时PN结区的少子在内电场作用下形成的漂移电流大于扩散电流,可忽略扩散电流,PN结呈现高阻性。 分清楚P型半导体和N型半导体

1章 常用半导体器件题解

第一章 常用半导体器件 自 测 题 一、判断下列说法是否正确,用“√”和“×”表示判断结果填入空内。 (1)在N 型半导体中如果掺入足够量的三价元素,可将其改型为P 型半导体。( √ ) (2)因为N 型半导体的多子是自由电子,所以它带负电。( × ) (3)PN 结在无光照、无外加电压时,结电流为零。( √ ) (4)处于放大状态的晶体管,集电极电流是多子漂移运动形成的。 ( ×) (5)结型场效应管外加的栅-源电压应使栅-源间的耗尽层承受反向电压,才能保证其R G S 大的特点。( ) (6)若耗尽型N 沟道MOS 管的U G S 大于零,则其输入电阻会明显变小。( ) 解:(1)√ (2)× (3)√ (4)× (5)√ (6)× 二、选择正确答案填入空内。 (1)PN 结加正向电压时,空间电荷区将 A 。 A. 变窄 B. 基本不变 C. 变宽(加上正向电压时,内电场被削弱,空间电荷区变窄) (2)设二极管的端电压为U ,则二极管的电流方程是 C 。 A. I S e U B. T U U I e S C. )1e (S -T U U I (3)稳压管的稳压区是其工作在 C 。 A. 正向导通 B.反向截止 C.反向击穿 (4)当晶体管工作在放大区时,发射结电压和集电结电压应为 B 。 A. 前者反偏、后者也反偏 B. 前者正偏、后者反偏 C. 前者正偏、后者也正偏 (5)U G S =0V 时,能够工作在恒流区的场效应管有 。 A. 结型管 B. 增强型MOS 管 C. 耗尽型MOS 管 解:(1)A (2)C (3)C (4)B (5)A C

三、写出图T1.3所示各电路的输出电压值,设二极管导通电压U D=0.7V。 图T1.3 解:U O1≈1.3V,U O2=0,U O3≈-1.3V,U O4≈2V,U O5≈1.3V, U O6≈-2V。 四、已知稳压管的稳压值U Z=6V,稳定电流的最小值I Z m i n=5mA。求图T1.4所示电路中U O1和U O2各为多少伏。 图T1.4 解:U O1=6V,U O2=5V。

phase11半导体热阻分析仪

Phase 11 Phase10半导体热阻分析仪 米力光 MICOFORCE 一、Analysis Tech Phase11 Phase10概述 半导体热分析仪Semiconductor Thermal Analyzer热阻测试仪, 由美国Analysis Tech Inc公司的PHASE10 PHASE11 热阻测试仪电子封装器件,符合美军标和JEDEC标准. Analysis Tech Inc.成立于1983年,坐落于波士顿北部,是电子封装器件可靠性测试的国际设计,制造公司。他的创始人是John W.Sofia,美国麻省理工的博士,并且是提出焊点可靠性,热阻分析和热导率理论的专家. 发表了很多关于焊点可靠性,热阻分析和热导率论文. Analysis Tech Inc.在美国有独的 实验室提供技术支持.。 热阻分析仪Phase 11主要用于二极管、三极管、线性调压器、可控硅、LED、MOSFET、MESFET、IGBT、IC等分立功率器件的热阻测试和分析。 二、Analysis Tech Phase 11 Phase10工作原理及测试过程 Phase 11采用油浴法测定热敏参数校正曲线。在通以感应电流结还没有明显产生热量时,如果给定足够的时间,结温和壳温将达到热平衡,壳温非常接近结温。将热电偶直接连接到器件表面采集数据时,油浴将充分保证器件的温度稳定并且使 热电偶采集的温度等于感应结温。 在这个环节中,感应电流大小的选择是很重要的。感应电流过大,会导致结温明显变化;感应电流过小,会导致正向压降值测量误差较大。Phase 11 感应电流的可选范围是0.1mA~50mA,完全符合JEDEC标准。 在加热器件的过程中,Phase 11 采用了脉冲加热方式,如下图所示:

半导体元器件的制造工艺及其失效

半导体元器件的制造工艺及其失效 一、元器件概述 1、元器件的定义: 欧洲空间局ESA标准中的定义:完成某一电子、电气和机电功能,并由一个或几个部分构成而且一般不能被分解或不会破坏的某个装置。GJB4027-2000《军用电子元器件破坏性物理分析方法》中的定义:在电子线路或电子设备中执行电气、电子、电磁、机电或光电功能的基本单元,该基本单元可由一个或多个零件组成,通常不破坏是不能将其分解的。 2、元器件的分类:两大类 a)元件:在工厂生产加工时不改变分子成分的成品,本身不产生电子,对电压、电流无控制和变换作用。 b)器件:在工厂生产加工时改变了分子结构的成品,本身能产生电子,对电压电流的控制、变换(放大、开关、整流、检波、振荡和调制等),也称电子器件。分类(来源:2007年版的《军用电子元器件合格产品目录》) ? 3、电气元件 (1)电阻

最可靠的元器件之一,失效模式:开路、机械损伤、接点损坏、短路、绝缘击穿、焊接点老化造成的电阻值漂移量超过容差。 ? (2)电位器 失效模式:接触不良、滑动噪声大、开路等。 (3)二极管 (4)集成电路 失效模式:漏电或短路,击穿特性劣变,正向压降劣变,开路可高阻失效机理:电迁移,热载流子效应,与时间相关的介质击穿(TDDB),表面氧化层缺陷,绝缘层缺陷,外延层缺陷

(5)声表面波器件 (6)MEMS压力传感器 MEMS器件的主要失效机理: a.粘附两个光滑表面相接触时,在力作用下粘附在一起的现象; b.蠕变机械应力作用下原子缓慢运动的现象;变形、空洞; c.微粒污染阻碍器件的机械运动;

d.磨损尺寸超差,碎片卡入; e.疲劳断裂疲劳裂纹扩展失效。 (7)真空电子器件(vacuum electronic device) 指借助电子在真空或者气体中与电磁场发生相互作用,将一种形式电磁能量转换为另一种形式电磁能量的器件。具有真空密封管壳和若干电极,管内抽成真空,残余气体压力为10-4~10-8帕。有些在抽出管内气体后,再充入所需成分和压强的气体。广泛用于广播、通信、电视、雷达、导航、自动控制、电子对抗、计算机终端显示、医学诊断治疗等领域。 真空电子器件按其功能分为: 实现直流电能和电磁振荡能量之间转换的静电控制电子管; 将直流能量转换成频率为300兆赫~3000吉赫电磁振荡能量的微波电子管; 利用聚焦电子束实现光、电信号的记录、存储、转换和显示的电子束管; 利用光电子发射现象实现光电转换的光电管; 产生X射线的X射线管; 管内充有气体并产生气体放电的充气管; 以真空和气体中粒子受激辐射为工作机理,将电磁波加以放大的真空量子电子器件等。 自20世纪60年代以后,很多真空电子器件已逐步为固态电子器件所取代,但在高频率、大功率领域,真空电子器件仍然具有相当生命力,而电子束管和光电管仍将广泛应用并有所发展。[1] 真空电子器件里面就包含真空断路器,真空断路器具有很多优点,所以在变电站上应用很多。真空断路器已被快易优收录,由于采用了特殊的真空元件,随着近年来制造水平的提高,灭弧室部分的故障明显降低。真空灭弧室无需检修处理,当其损坏时,只能采取更换。真空断路器运行中发生的故障以操作机构部分所占比重较大,其次为一次导电部分,触头导电杆等。 二、元器件制造工艺与缺陷 1、芯片制造缺陷的分类: 全局缺陷:光刻对准误差、工艺参数随机起伏、线宽变化等;在成熟、可控性良好的工艺线上,可减少到极少,甚至几乎可以消除。 局域缺陷:氧化物针孔等点缺陷,不可完全消除,损失的成品率更高。 点缺陷:冗余物、丢失物、氧化物针孔、结泄漏 来源:灰尘微粒、硅片与设备的接触、化学试剂中的杂质颗粒。 2、混合集成电路的失效混合集成电路工艺:

01常用半导体器件练习题

第1章常用半导体器件 一.选择题 1、半导体导电的载流子是____C____,金属导电的载流子是_____A__。 A.电子B.空穴C.电子和空穴D.原子核 2、在纯净半导体中掺入微量3价元素形成的是___A_____型半导体。 A. P B. N C. PN D. 电子导电 3、纯净半导体中掺入微量5价元素形成的是____B____型半导体。 A. P B. N C. PN D. 空穴导电 4、N型半导体多数载流子是B,少数载流子是 A ;P型半导体中多数载流子是 A ,少数载流子是 B 。 A.空穴B.电子C.原子核D.中子 5、杂质半导体中多数载流子浓度取决于 D ,少数载流子浓度取于 B 。 A.反向电压的大小B.环境温度C.制作时间D.掺入杂质的浓度 6、PN结正向导通时,需外加一定的电压U,此时,电压U的正端应接PN结的 A , 负端应接PN结 B 。 A.P区B.N区 7、二极管的反向饱和电流主要与 B 有关。(当温度一定时,少子浓度一定,反向电流几乎不 随外加电压而变化,故称为反向饱和电流。) A.反向电压的大小B.环境温度C.制作时间D.掺入杂质的浓度 8、二极管的伏安特性曲线反映的是二极管 A 的关系曲线。 A.V D-I D B.V D-r D C.I D-r D D.f-I D 9、用万用表测量二极管的极性,将红、黑表笔分别接二极管的两个电极,若测得的电阻很 小(几千欧以下),则黑表笔所接电极为二极管的 C 。 A.正极B.负极C.无法确定 10、下列器件中, B 不属于特殊二极管。 A.稳压管B.整流管C.发光管D.光电管 11、稳压二极管稳压,利用的是稳压二极管的 C 。 A.正向特性B.反向特性C.反向击穿特性 12、稳压管的稳定电压V Z是指其 D 。

半导体器件失效分析的研究

半导体器件失效分析的研究Research on Semiconductor Device Failure Analysis

中文摘要 半导体失效分析在提高集成电路的可靠性方面有着至关重要的作用。随着集成度的提高,工艺尺寸的缩小,失效分析所面临的困难也逐步增大。因此,失效分析必须配备相应的先进、准确的设备和技术,配以具有专业半导体知识的分析人员,精确定位失效位置。在本文当中,着重介绍多种方法运用Photoemission 显微镜配合IR-OBIRCH精确定位失效位置,并辅以多项案例。 Photoemission是半导体元器件在不同状态下(二极管反向击穿、短路产生的电流、MOS管的饱和发光,等等),所产生的不同波长的光被捕获,从而在图像上产生相应的发光点。Photoemission在失效分析中有着不可或缺的作用,通过对好坏品所产生的发光点的对比,可以为后面的电路分析打下坚实的基础,而且在某些情况下,异常的发光点就是最后我们想要找到的defect的位置。 IR-OBIRCH(Infrared Optical beam Induced Resistance Change)主要是由两部分组成:激光加热器和电阻改变侦测器。电阻的改变是通过激光加热电流流经的路径时电流或者电压的变化来表现的,因此,在使用IR-OBIRCH时,前提是必须保证所加电压两端产生的电流路径要流过defect的位置,这样,在激光加热到defect位置时,由于电阻的改变才能产生电流的变化,从而在图像上显现出相应位置的热点。 虽然Photoemission和IR-OBIRCH可以很好的帮助我们找到defect的位置,但良好的电路分析以及微探针(microprobe)的使用在寻找失效路径方面是十分重要的,只有通过Photoemission的结果分析,加上电路分析以及微探针(micr oprobe)测量内部信号的波形以及I-V曲线,寻找出失效路径后,IR-OBIRCH才能更好的派上用场。因此,在失效分析中,各个步骤缺一不可。 关键词:失效分析;Photoemission;IR-OBIRCH;微探针(microprobe);

保证气体分析仪检测准确度,抑制零点漂移是关键

保证气体分析仪检测准确度,抑制零点漂移是关键 这是电子方面的术语,指当放大电路输入信号为零(即没有交流电输入)时,由于受温度变化,电源电压不稳等因素的影响,使静态工作点发生变化,并被逐级放大和传输,导致电路输出端电压偏离原固定值而上下漂动的现象。这种现象就叫零点漂移(或称温漂)。 产生零点漂移的原因 产生零点漂移的原因很多,如电源电压不稳、元器件参数变化、环境温度变化等。其中最主要的因素是温度的变化,因为晶体管是温度的敏感器件,当温度变化时,其参数UBE、β、ICBO都将发生变化,最终导致放大电路静态工作点产生偏移。此外,在诸因素中,最难控制的也是温度的变化。 零点漂移对气体分析仪检测的影响 在直接耦合放大电路中,任何参数的变化,如电源电压波动、元件老化、半导体元件参数随温度变化而产生的变化,都将产生输出电压的漂移。由于前后级直接相连,前一级的漂移电压会和有用信号一起被送到下一级,而且逐级放大,使放大电路输出信号出现偏差,甚至不能正常工作。 气体分析仪的零点在正常环境中应该显示为000,由于气体分析仪的检测结果是通过传感器将环境中存在的被测气体转化成电信号后以浓度数值方式显示出来的,当出现零点漂移时,放大电路输出信号出现偏差,使分析仪显示浓度大于0,从而使气体分析仪的检测结果产生绝对误差。因此,一旦出现漂移,需要对气体分析仪进行校准。

什么叫零点校准? 在无外界因素干扰的情况下,将仪器仪表测量界面调整为零,或者说是调到标准状态时的零值。 如何进行零点校准? 1.硬件校准 这里的硬件主要指气体分析仪中的电路,在实际电路中常采用补偿和调制两种手段,稳定静态工作点以实现零点校准。 补偿及优化参数配置,是指用另外一个元器件来抵消放大电路的漂移,如果参数配合得当,就能把漂移抑制在较低的限度之内。前级的放大器引入的直流对整体的系统影响最大,通过手动调节分压网络的方式对前级放大器引入的直流进行补偿。后级运放则通过软件调节节另一分压网络的方式对后级可控增益放大级引入的直流进行补偿。 调制即优化电路设计,是指将直流变化量转换为其它形式的变化量(如正弦波幅度的变化),并通过漂移很小的阻容耦合电路放大,再设法将放大了的信号还原为直流成份的变化。 2.标气校准 标准气体属于标准物质,标准物质是高度均匀的,良好稳定和量值准确的测定标准,它们具有复现,保存和传递量值的基本作用,在物理,化学,生物与工程测量领域中用于校准测量仪器和测量过程,评价测量方法的准确度和检测实验室的检测能力,确定材料或产品的特性量值,进行量值仲裁等。气体分析仪在出厂前一般需要先用一个零点标气和几个标准浓度的气体对仪器进行标定,得到标准曲线储存于仪器之中。测定时,仪器将待测气体浓度产生的电信号同标准浓度的电信号进行比较,计算得到准确的气体浓度值。分析仪器在使用过程中,由于受到电压波动、元器件参数及环境温度变化的影响而出现零点漂移,则需要定期采用零点标气对分析仪进行零点校准,以保证气体分析仪测量的准确性。

电子元器件失效分析技术与案例

电子元器件失效分析技术与案例 费庆学 二站开始使用电子器件当时电子元器件的寿命20h. American from 1959 开始:1。可靠性评价,预估产品寿命 2。可靠性增长。不一定知道产品寿命,通过方法延长寿命。通过恶裂环境的试验。通过改进提高寿命。―――后来叫a.可靠性物理—实效分析的实例b.可靠数学 第一部分:电子元器件失效分析技术(方法) 1.失效分析的基本的概念和一般程序。 A 定义: 对电子元器件的失效的原因的诊断过程 b.目的:0000000 c.失效模式――》失效结果――》失效的表现形式――》通过电测的形式取得 d.失效机理:失效的物理化学根源 ――》失效的原因 1)开路的可能失效机理 日本的失效机理分类:变形变质外来异物 很多的芯片都有保护电路,保护电路很多都是由二极管组成正反向都不通为内部断开。 漏电和短路的可能的失效机理 接触面积越小,电流密度就大,就会发热,而烧毁 例:人造卫星的发射,因工人误操作装螺丝时掉了一个渣于继电器 局部缺陷导致电流易集中导入产生热击穿(si 和 al 互熔成为合金合金熔点更低) 塑封器件烘烤效果好当开封后特性变好,说明器件受潮或有杂质 失效机理 环境应力:温度温度过低易使焊锡脆化而导致焊点脱落。 , 2.失效机理的内容 I失效模式与环境应力的关系 任何产品都有一定的应力。

a当应力>强度就会失效 如过电/静电:外加电压超过产品本身的额定值会失效 b应力与时间应力虽没有超过额定值,但持续累计的发生 故:如何增强强度&减少应力能延长产品的寿命 c.一切正常,正常的应力,在时间的累计下,终止寿命 特性随时间存在变化 e机械应力如主板受热变形对零件的应力认为用力 塑封的抗振动好应力好陶瓷的差。 f重复应力如:冷热冲击是很好的零件筛选方法 重复应力易导致产品老化,存在不可靠性 故使用其器件:不要过载;温湿度要适当 II如何做失效分析 例:一个EPROM在使用后不能读写 1) 先不要相信委托人的话,一定要复判。 2) 快始失效分析: 取NG&OK品,DataSheet, 查找电源断地开始测试首先做待机电流测试(IV测试) 电源对地的待机电流下降 开封发现电源端线中间断(因为中间散热慢,两端散热快,有端子帮助散热)因为断开,相当于并联电阻少了一个电 阻,电流减小。 原因:闩锁效应应力大于产品本身强度 责任:确定失效责任方:模拟试验->测抗闩锁的能力 看触发的电流值(第一个拐点的电流值),越大越好,至少要大于datasheet或近似良品的值在标准范围内的。看维持电压(第二个拐点的电 压),若大于标准值,则很难回到原值。若多片良品抽测都OK, 说明使用者使用不当导致。 改善措施:改善供电,加保护电路。 III失效分析技术的延伸 失效分析的关键是打开样品 进货分析:不同的封装厂,在 芯片面积越小(扫描声学检测器,红的部分为空气,可用于辨别尺寸的大小),受应力越小。版本过新的产品也有可能存在可靠性问 题。可能存在设计的问题。 良品分析的作用:可以采取一层一层的分解拍照,找捷径

半导体器件失效分析与检测

半导体器件失效分析与检测 半导体元件的失效将直接影响相关产品的正常使用,文章主要就对半导体器件的失效原因进行了细致地分析并提出了几种检测的方法,供相关人士借鉴。 标签:半导体;器件;失效分析;检测 1 半导体器件失效分析 通过分析可知造成半导体器件失效的因素有很多,我们主要从几个方面进阐述。 1.1 金属化与器件失效 环境应力对半导体器件或集成电路可靠性的影响很大。金属化及其键合处就是一个不容忽视的失效源。迄今,大多数半导体器件平面工艺都采用二氧化硅作为掩膜钝化层。为在芯片上实现互连,往往在开窗口的二氧化硅层上淀积铝膜即金属化。 从物理、化学角度分析,金属化失效机理大体包括膜层张力、内聚力、机械疲劳、退火效应、杂质效应及电迁移等。 1.2 晶体缺陷与器件失效 晶体缺陷导致器件失效的机理十分复杂,有些问题至今尚不清楚。晶体缺陷分晶体材料固有缺陷(如微缺陷)和二次缺陷两类。后者是在器件制造过程中,由于氧化、扩散等热处理后出现或增殖的大量缺陷。两种缺陷或者彼此相互作用,都将导致器件性能的退化。二次击穿就是晶体缺陷招来的严重后果。 1.2.1 位错 这种缺陷有的是在晶体生长过程中形成的(原生位错),有的是在器件工艺中引入的(诱生位错)。位错易沿位错线加速扩散和析出,间接地促成器件劣化。事实证明,外表杂质原子(包括施主和受主)沿位错边缘的扩散比在完美晶体内快很多,其结果往往使P-N结的结平面不平整甚至穿通。鉴于位错具有“吸除效应”,对点缺陷如杂质原子、点阵空位、间隙原子等起到内部吸收的作用,故适量的位错反而对器件生产有利。 1.2.2 沉淀物 除位错造成不均匀掺杂外,外界杂质沾污也会带来严重后果,特别是重金属沾污,在半导体工艺中是经常发生的。如果这些金属杂质存在于固溶体内,其危害相对小一些;但是,一旦在P-N结处形成沉积物,则会产生严重失效,使反

半导体器件原理简明教程习题标准答案傅兴华

半导体器件原理简明教程习题答案 傅兴华 1.1 简述单晶、多晶、非晶体材料结构的基本特点. 解 整块固体材料中原子或分子的排列呈现严格一致周期性的称为单晶材料。 原子或分子的排列只在小范围呈现周期性而在大范围不具备周期性的是多晶材料。 原子或分子没有任何周期性的是非晶体材料. 1.6 什么是有效质量,根据E(k)平面上的的能带图定性判断硅鍺和砷化镓导带电子的迁移率 的相对大小. 解 有效质量指的是对加速度的阻力.k E h m k ??=2 1*1 由能带图可知,Ge 与Si 为间接带隙半导体,Si 的Eg 比Ge 的Rg 大,所以Ge μ>Si μ.GaAs 为直接带隙半导体,它的跃迁不与晶格交换能量,所以相对来说GaAs μ>Ge μ>Si μ. 1.10 假定两种半导体除禁带宽度以外的其他性质相同,材料1的禁带宽度为1.1eV,材料2 的禁带宽度为 3.0eV,计算两种半导体材料的本征载流子浓度比值,哪一种半导体材料更适合制作高温环境下工作的器件? 解 本征载流子浓度:)exp( )( 1082.42 15 T dp dn i k Eg m m m n ?= 两种半导体除禁带以外的其他性质相同 ∴)9.1exp()exp()exp(0.31.121T k k k n n T T ==-- T k 9.1>0 ∴21n n >∴在高温环境下2n 更合适 1.11在300K 下硅中电子浓度330102-?=cm n ,计算硅中空穴浓度0p ,画出半导体能带图,判 断该半导体是n 型还是p 型半导体. 解 3 173 21002 02 0010125.1102)105.1(p -?=??==→=cm n n n p n i i ∴>00n p 是p 型半导体 1.16硅中受主杂质浓度为31710-cm ,计算在300K 下的载流子浓度0n 和0p ,计算费M 能级相 对于本征费M 能级的位置,画出能带图. 解 3 17 010-==cm N p A 2 00i n p n = T=300K →310105.1-?=cm n i 330 2 01025.2-?==∴cm p n n i 00n p > ∴该半导体是p 型半导体 )105.110ln(0259.0)ln(10 17 0??==-i FP i n p KT E E

Agilen阻抗分析仪使用手册

Agilent 4294A阻抗分析仪 使用手册 华中科技大学激光技术国家重点实验室 2002年1月 目录 目录...................................................................................... 一、介绍.............................................................................. 二、基本原理: ................................................................. 三、A GILENT 4294A的主要技术指标: ............................. 四、前/后面板、硬/软键介绍 ........................................... 五、测量方法...................................................................... 一、介绍 Agilent 4294A精密阻抗分析仪可以对各种电子器件(元件和电路)以及电子材料和非电子材料的精确阻抗测量提供广泛的支持。它是对电子元件进行设计、签定、质量控制和生产测试的强有力工具。它所提供的性能和功能对于电路设计开发人员将获益匪浅。此外,Agilent 4294A的优良测量性能和功能为电路的设计和开发以及材料(电子材料和非电子材料)的研究和

开发提供强有力的工具。它具有: ·在宽阻抗范围的宽频率范围内进行精确测量 ·强大的阻抗分析功能 ·便于使用并能用多种方式与PC机配套 电子器件: 无源元件:二端元件如电容器、电感器、铁氧体珠、电阻器、变压器、晶体/陶瓷谐振器、多芯片组件或阵列/网络元件的阻抗测量。 半导体元件:变容二极管的C-V(电流-电压)特性分析;二极管、晶体管或集成电路(IC)封装终端/引线的寄生分析;放大器的输入/输出阻抗测量。 其它元件:印制电路板、继电器、开关、电缆、电池等的阻抗评估。材料: 介质材料:塑料、陶瓷、印制电路板和其它介质材料和损耗切角评估。 磁性材料:铁氧体、非晶体和其它磁性材料的导磁率和损耗角评估。 半导体材料:半导体材料的介电常熟、导电率和C-V特性。 二、基本原理: Agilent 4294A阻抗分析仪所采用的是自动平衡电桥技术。如图所示:可以将平衡电桥看作一个放大器电路,基于欧姆定律V=I*R进行测量。被测器件(DUT)通过一个交流源激励,它的电压就是在高端H监测到的电压。低端L为虚拟地,电压为0V。通过电阻器R2的电流I2跟通过被测器件(DUT)的电流I相等。因此,输出电压和通过被测器件(DUT)的电流成正比,电压和电流自动平衡,这也就是它的名字的由来。 在实际应用中,为了覆盖更加大的频率范围,通常用一个null-detector 和modulator来代替电路中的放大器。当然,这只是一个基本的测量原理电路,为了得到精确的结果,还有许多的附加电路。 三、Agilent 4294A的主要技术指标:

半导体器件烧毁的物理机理

半导体器件烧毁的物理机理* 余稳蔡新华黄文华刘国治 摘要叙述了半导体器件烧毁的物理机理、目前的研究进展及作者正在开展的工作. 关键词半导体器件,烧毁,高功率微波 MECHANISM OF BURNOUT OF SEMICONDUCTOR DEVICES Yu Wen Cai Xinhua (Institute of EM Theory, Changde Teachers' College,Hunan415000) Huang Wenhua Liu Guozhi (Northwest Institute of Nuclear Technology, Xi'an710024) Abstract The general mechanism of burnout of semiconductor devices is described,as well as recent progress and our present research. Key words semiconductor devices, burnout, high power microwave(HPM) 1前言 高功率微波(HPM)对电子系统进行破坏,可使系统暂时失灵或永久失效,这直接涉及系统内部电子元器件的暂时失灵或永久失效.因此要研究HPM对电子系统的破坏机理,首先要研究半导体器件烧毁的物理机理.另外,从系统的抗辐射能力和加固方面看,也需要对电子系统进行在电过应力(EOS)环境下的易损性评估.以下几个问题使得评估很困难:(1)对任意一个电子器件,很难得到精确的理论或实验失效阈值;(2)实际的EOS应力参数必须与用于理论或实验上确定失效阈值时使用的理想参数相比较,过度保守的估计将导致系统的超加固,增加不必要的成本,拖延进度,降低系统性能,而过高的估计则可使系统易损;(3)器件的复杂性问题[不同的制造过程、不同种类的器件(甚至同种器件间)有变化];(4)产生EOS的电磁环境问题[如电磁脉冲(EMP)、核电磁脉冲(NEMP)、光电磁脉冲(LEMP)、电磁干扰(EMI)、静电放电(ESD)、系统电磁脉冲(SGEMP)、微波(MW)等等];(5)同一批器件,数据变化也很大,不同一批器件和不同厂家的产品,数据变化就更大.因此,从理论上探讨器件烧毁的物理机理,找出大致规律,很有意义. 2器件烧毁的物理机理 半导体器件承受EOS测试时,将表现出很多失效物理机理[1],几乎器件的每一部分都有可能失效:(1)敷金属和引线能被熔化,电迁移能使金属膜导体变薄,甚至导致开路;(2)在器件的绝缘材料或氧化区或器件表面,可产生导致局部高温的电击穿;(3)在有源结区,可产生导致强流和高温的二次击穿. 根据研究,对双极型器件,90%的失效是由结区击穿引起的,敷金属失效仅占10%,但对MOS 器件,则63%的失效来源于敷金属失效,27%则属于氧化物击穿. 通常在局部温度升高到熔点时发生敷金属和引线失效,该热量来自于金属中的强流密度或金属附近的热硅(由其他地方的强流密度引起).敷金属失效将因线路分开(有点像保险丝烧毁)而导致开路.引起失效的强流可能来自于击穿或器件其他地方的失效,所以敷金属和引线失效可能只是一种结果而不是器件失效的原因.电迁移应用于强流密度情形下金属中的质量输运.最近,人们认为,对金属膜导体截面不够的半导体器件,电迁移可能是一种消耗失效模式,该失效将导致电路开路.当半导体或绝缘体两条蚀刻导电通道之间的电场超过中间介质击穿极限时,将因产生电弧形成熔融金属通道而使电路短路,器件线度越小,该失效机制越重要. PN结的表面条件将影响其电特性.依赖于表面条件的表面复合过程,对自由载流子来说像一个阱.强场表面击穿是表面损伤的原因之一.对半导体器件,该强场发生于靠近结区与表面的交界处.器件绝缘区失效主要是高压击穿(由材料中的强瞬间电场或硅材料附近热点的热损伤或机械损伤所致).半导体器件有源结区的失效通常来自于局部熔化及随后的硅再结晶,或来自于从结表面来的实际热注入,该热量由通过结的强流密度引起,反过来又导致热或电流二次击穿. 二次击穿模式有热模式和电流模式两种[2—4]. 随入射EOS功率不同而采取不同的模式,

相关文档
最新文档