练习:利用三角形的中位线解题

合集下载

三角形中位线定理_练习题

三角形中位线定理_练习题

&0通■力调第1.已知三角形的周长为24 cm,则该三角形三条中位线的和为.2.三角形的面积为40 E2,则三条中位线组成的三角形的面积是.3.直角三角形斜边的中线长是6 cm,则它的两条直角边中点的连线长是.,顺次连接正方形各边中点所得的四边形是.5.如图 16.5-4,在AABC 中,D、E 分别是 AB、AC 的中点,则线段DE是/XABC的线,线段DE是/XAHE的线,线段BE是△ABC的线,若 BC= 10 cm,则DE=.图 16. 5— 46.如图16.5-5,D、E、F分别是△ABC各边的中点,(D图中的平行四边形有个;(2)图中与aDEF全等的三角形有个;(3)当AB=AC时,四边形AEDF是 1形;当NA = 90°时,四边形AEDF是形;当时,四边形AEDF是正方形.E 16. 5-6 3 16. 5 — 78.如图瓜 5 —7 ■在JLABC 中.AB = AC.AD_BC.M为AD的中点,CM交AB于P・D、•二CP交AB于N,若AB=6 cm.则AP的长为( )A. 1 cm R 2. 5 cmC. 2 cmD. 3 cm9.如图16.5 — 8,AABC中•中线BD、CE交于点O.F、G分别为OB、OC的中点.求证:四边形DEFG为平行四边形.图 16-5-8图 16.5—5如图16.5 — 6,人。

是△ABC的高,E为AB的中点,且EF.LBC于F,CD=《BD,那么FC是BF的(:A. 1■倍O10.如图15.5-9.二,亚力中.£、下分别是』。

、氏? 的中点.CE、AF分引文BD于V、、. 求证:B、= M\' = D\£7.三角形的中位线定理1.三角形中位线的定义:2.三角形中位线定理的证明:如图,在△ ABC^ , D E是AB和AC的中点,求证:DE// BC DE』BC. 2 方法一:方法二:3.归纳:(1)几何语言:(2)条中位线,对全等,个平行四边形(3)面积4.拓展:如图,在^ ABC+ , D是AB的中点,D日BQ 求证:DE=1 BCA【巩固练习】1.如图所示,□ ABCD的对角线AC BD相交于点Q AE=EB求证:O曰BCB2.如图所示,在^ ABC中,点D在BC上且CD=CA CF平分/ ACB AE=EB求证:EF=1 BD23.已知:如图,四边形ABC前,E、F、G H分别是AB BG CD DA的中点.求证:四边形EFGK平行四边形.4.如图所示,已知在DABC前,E, F分别是AD, BC的中点,求证:MN/ BC5.已知:△ ABC勺中线BD CE交于点Q F、G分别是OB OC勺中点.求证:四边形DEFG^平行四边形.6.已知:如图,E为DABCM DC边的延长线上的一点,且CE= DC连结AE分别交BC BD于点F、G,连结AC交BD于Q 连结OF求证:AB= 2OF.7.如图,在四边形ABC前,AD=BC点E, F, G分别是AB, CD AC的中点.求证:△EFG是等腰三角形。

三角形中位线专项训练(30道)(解析版)

三角形中位线专项训练(30道)(解析版)

三角形中位线专项训练(30道)(解析版)三角形中位线专项训练(30道)(解析版)1. 题目解析三角形中位线是指连接一个三角形的两个非邻边中点的线段。

在这个专项训练中,我们将解答30道关于三角形中位线的问题,并提供详细的解析,帮助你更好地理解和掌握相关概念和解题方法。

2. 题目设置2.1 第一类题目:中位线长度计算2.1.1 题目1:已知一个三角形的三边长度分别为a, b, c,求其中位线长度。

解析:根据中位线定义,连接三角形的两个非邻边中点可以得到一个平行四边形。

利用平行四边形的性质,可以计算出中位线长度为(c²+a²-0.5b²)/(2c)。

2.1.2 题目2:已知一个等边三角形的边长为a,求其中位线长度。

解析:等边三角形中位线长等于边长的一半,即中位线长度为a/2。

2.1.3 题目3:已知一个等腰三角形的底边长度为a,腰长为b,求其中位线长度。

解析:根据中位线定义,连接三角形的两个非邻边中点可以得到一个平行四边形。

利用平行四边形的性质,可以计算出中位线长度为(a²+b²)/(2a)。

2.2 第二类题目:中位线位置关系2.2.1 题目4:在一个等边三角形中,证明中位线与底边垂直且分割底边的比例为2:1。

解析:根据等边三角形的性质,中位线和底边垂直。

利用中位线定义和几何性质,可以证明中位线分割底边的比例为2:1。

2.2.2 题目5:已知在一个等腰三角形中,中位线长为x,底边长为y,求腰长。

解析:根据中位线定义,连接三角形的两个非邻边中点可以得到一个平行四边形。

利用平行四边形的性质,可以得到腰长为2x-y。

2.2.3 题目6:已知在一个一般三角形中,中位线等分了三角形的面积,证明这个三角形是等腰三角形。

解析:假设中位线等分了三角形的面积,利用三角形面积公式可以得到一个关于中位线和底边的方程。

通过求解这个方程,可以证明这个三角形是等腰三角形。

3. 题目变体上述题目只是针对三角形中位线的一部分问题进行了训练和解析。

三角形的中位线经典练习题及其答案

三角形的中位线经典练习题及其答案

第二讲三角形的中位线1 .连结三角形 的线段叫做三角形的中位线.2 .三角形的中位线 于第三边,并且等于3 . 一个三角形的中位线有 条.4 .如图△ ABC 中,D E 分别是 AR AC 的中点,则线段 CDb^4ABC 的,线段DE 是4ABC5、如图,D E 、F 分别是^ ABC 各边的中点 (1)如果 EF= 4cm,那么BC 的 cm如果 AB= 10cm,那么 DF 的 cm(2)中线AD 与中位线EF 的关系是6.如图1所示,EF 是4ABC 的中位线,若 BC=8cm 贝U EF=cm.⑴ (2) (3) ⑷7 .三角形的三边长分别是 3cm, 5cm, 6cm,则连结三边中点所围成的三角形的周长是 cm. 8 .在Rt^ABC 中,/ C=90° , AC=?5 ?BC=?12, ?则连结两条直角边中点的线段长为 . 9 .若三角形的三条中位线长分别为 2cm, 3cm, 4cm,则原三角形的周长为()A .B . 18cmC . 9cmD . 36cm10 .如图2所示,A, B 两点分别位于一个池塘的两端,小聪想用绳子测量A, B 间的距离,但绳子不够长,一位同学帮他想了一个主意:先在地上取一个可以直接到达 A, B 的点C,找到AC,BC 的中点D,E,并且测出DE的长为10m,则A, B 间的距离为()A . 15mB . 25mC . 30mD . 20m11 .已知△ ABC 的周长为1,连结△ ABC 的三边中点构成第二个三角形,?再连结第二个三角形的三边中点构成第三个三角形,依此类推,第2010个三角形的周长是A 、200820092008 2 20092 12.如图3所示,已知四边形 ABCD R, P 分别是DQ BC 上的点,E, F 分别是AP, RP 的中点,当点P 在BC 上从点B 向点C 移动而点R 不动时, 那么下列结论成立的是()A .线段EF 的长逐渐增大B .线段EF 的长逐渐减少C .线段EF 的长不变D .线段EF 的长不能确定13.如图 4,在4ABC 中,E, D, F 分别是 AB, BG CA 的中点,AB=6,AC=4,贝U 四边形AEDF?勺周长是()20 C . 30 D . 4014.如图所示, □ ABCD 的对角线 AC, BD 相交于点 O, AE=EB 求证:OE// BC.15.已知矩形ABCD中,AB=4cm, AD=10cm,点P在边BC上移动,点E、F、G、H 分别是AB、AP、DP、DC的中点.求证:EF+GH=5cm;16.如图所示,在^ ABC中,点D在BC上且CD=CA CF平分/ ACB AE=EB求证:1 EF=-BD.217.如图所示,已知在DABCN, E, F分别是AD, BC的中点,求证:MN/ BC.四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.EFGH是平行四边形.18.已知:如图,求证:四边形19.如图,点E, F, G, H分别是CD, BC, AB, DA的中点。

三角形中位线定理专练

三角形中位线定理专练

三角形中位线定理专练1.如图,在△ ABC中,D是AB上一点,且AD=AC,AE⊥ CD,垂足是E,F 是CB的中点.求证:BD=2EF.2.如图所示,在四边形ABCD中,AD=BC,E,F,G分别是AB,CD,AC的中点.求证:△ EFG是等腰三角形.3.在△ ABC中,中线BE、CF交于点O,M、N分别是BO、CO中点,则四边形MNEF是什么特殊四边形?并说明理由.4.如图,BE,CF是△ ABC的角平分线,AN⊥ BE于N,AM⊥ CF于M,求证:MN∥ BC.5.如图,BM、CN分别平分△ABC的外角∠ ABD、∠ ACE,过A分别作BM、CN的垂线,垂足分别为M、N,交CB、BC的延长线于D、E,连结MN.求证:MN=(AB+BC+AC)6.如图,在△ABC中,点D,E,F分别是AB,BC,CA的中点,AH是边BC上的高.(1)求证:四边形ADEF是平行四边形;(2)求证:∠ DHF=∠ DEF.7.如图,在四边形ABCD中,对角线AC、BD交于点O,E、F分别是AB、CD 的中点,且AC=BD.求证:OM=ON.8.如图,M是△ ABC的边BC的中点,AN平分∠ BAC,BN⊥ AN于点N,延长BN交AC于点D,已知AB=10,BC=15,MN=3(1)求证:BN=DN;(2)求△ ABC的周长.三角形中位线定理专练参考答案与试题解析一.解答题(共8小题)1.(2014?山东模拟)如图,在△ABC中,D是AB上一点,且AD=AC,AE⊥CD,垂足是E,F是CB的中点.求证:BD=2EF.【考点】三角形中位线定理.菁优网版权所有【专题】常规题型.【分析】根据三角形的中位线定理,在三角形中准确应用,并且求证E为CD 的中点,再求证EF为△BCD的中位线.【解答】证明:在△ACD中,因为AD=AC 且AE⊥CD,所以根据等腰三角形中底边的垂线与底边的交点即中点,可以证明:E为CD的中点,又因为F是CB的中点,所以,EF∥BD,且EF为△BCD的中位线,因此EF=BD,即BD=2EF.【点评】此题主要是中位线定理在三角形中的应用,考查在三角形中位线为对应边长的的定理.2.(2015春?天津校级期中)如图所示,在四边形ABCD中,AD=BC,E,F,G分别是AB,CD,AC的中点.求证:△EFG是等腰三角形.【考点】三角形中位线定理;等腰三角形的判定.菁优网版权所有【专题】证明题.【分析】由于E,F,G分别是AB,CD,AC的中点,利用中位线定理,GF=AD,GE=BC,又因为AD=BC,所以GF=GE.【解答】证明:∵E,F,G分别是AB,CD,AC的中点.∴GF=AD,GE=BC.又∵AD=BC,∴GF=GE,即△EFG是等腰三角形.【点评】本题通过给出的中点,利用中位线定理,证得边相等,从而证明等腰三角形,是一道基础题.3.(2015秋?青岛校级月考)在△ABC中,中线BE、CF交于点O,M、N分别是BO、CO中点,则四边形MNEF是什么特殊四边形?并说明理由.【考点】三角形中位线定理;平行四边形的判定.菁优网版权所有【分析】根据三角形的中位线平行于第三边并且等于第三边的一半可得EF∥BC且EF=BC,MN∥BC且MN=BC,从而得到EF∥MN且EF=MN,再根据一组对边平行且相等的四边形是平行四边形判断.【解答】解:四边形MNEF是平行四边形.理由如下:∵BE、CF是中线,∴E、F分别是AC、AB的中点,∴EF是△ABC的中位线,∴EF∥BC且EF=BC,∵M、N分别是BO、CO中点,∴MN是△OBC的中位线,∴MN∥BC且MN=BC,∴EF∥MN且EF=MN,∴四边形MNEF是平行四边形.【点评】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,平行四边形的判定,熟记定理并准确识图是解题的关键.4.(2015春?泗洪县校级期中)如图,BE,CF是△ABC的角平分线,AN⊥BE 于N,AM⊥CF于M,求证:MN∥BC.【考点】三角形中位线定理;等腰三角形的判定与性质.菁优网版权所有【专题】证明题.【分析】延长AN、AM分别交BC于点D、G,根据BE为∠ABC的角平分线,BE⊥AG可知∠BAN=∠BGN故△ABG为等腰三角形,所以BN也为等腰三角形的中线,即AM=GN.同理AM=DM,根据三角形中位线定理即可得出结论.【解答】证明:延长AN、AM分别交BC于点D、G.∵BE为∠ABC的角平分线,BE⊥AG,∴∠BAG=∠BGA,∴△ABG为等腰三角形,∴BN也为等腰三角形的中线,即AN=GN.同理AM=DM,∴MN为△ADG的中位线,∴MN∥BC.【点评】本题考查的是三角形中位线定理,熟知三角形的中位线平行于第三边,并且等于第三边的一半是解答此题的关键.5.(2015春?富顺县校级月考)如图,BM、CN分别平分△ABC的外角∠ABD、∠ACE,过A分别作BM、CN的垂线,垂足分别为M、N,交CB、BC的延长线于D、E,连结MN.求证:MN=(AB+BC+AC)【考点】三角形中位线定理;等腰三角形的判定与性质.菁优网版权所有【专题】证明题.【分析】首先通过△ABM≌△DBM,得到AB=DB,AM=DM,同理:AN=EN,AC=CE,再根据三角形的中位线定理即可得到结果.【解答】证明:∵AM⊥BM,∴∠AMB=∠DMB=90°,∵BM平分∠ABD,∴∠ABM=∠DBM,在△ABM与△DBM中,,∴△ABM≌△DBM(asa),∴AB=DB,AM=DM,同理:AN=EN,AC=CE,∴MN=DE=(DB+BC+CE)=(AB+BC+AC).【点评】本题考查了三角形的中位线定理,全等三角形的判定与性质,证明三角形全等是解题的关键.6.(2014?宿迁)如图,在△ABC中,点D,E,F分别是AB,BC,CA的中点,AH是边BC上的高.(1)求证:四边形ADEF是平行四边形;(2)求证:∠DHF=∠DEF.【考点】三角形中位线定理;直角三角形斜边上的中线;平行四边形的判定.菁优网版权所有【专题】证明题;几何综合题.【分析】(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得EF∥AB,DE∥AC,再根据平行四边形的定义证明即可;(2)根据平行四边形的对角相等可得∠DEF=∠BAC,根据直角三角形斜边上的中线等于斜边的一半可得DH=AD,FH=AF,再根据等边对等角可得∠DAH=∠DHA,∠FAH=∠FHA,然后求出∠DHF=∠BAC,等量代换即可得到∠DHF=∠DEF.【解答】证明:(1)∵点D,E,F分别是AB,BC,CA的中点,∴DE、EF都是△ABC的中位线,∴EF∥AB,DE∥AC,∴四边形ADEF是平行四边形;(2)∵四边形ADEF是平行四边形,∴∠DEF=∠BA C,∵D,F分别是AB,CA的中点,AH是边BC上的高,∴DH=AD,FH=AF,∴∠DAH=∠DHA,∠FAH=∠FHA,∵∠DAH+∠FAH=∠BAC,∠DHA+∠FHA=∠DHF,∴∠DHF=∠BAC,∴∠DHF=∠DEF.【点评】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,等腰三角形的性质,直角三角形斜边上的中线等于斜边的一半的性质,平行四边形的判定与性质,熟记各性质并准确识图是解题的关键.7.(2014?丹阳市校级模拟)如图,在四边形ABCD中,对角线AC、BD交于点O,E、F分别是AB、CD的中点,且AC=BD.求证:OM=ON.【考点】三角形中位线定理;平行线的性质;等腰三角形的判定与性质.菁优网版权所有【专题】证明题.【分析】取AD的中点G,连接EG,FG,构造三角形的中位线,根据三角形的中位线定理进行证明即可.【解答】证明:取AD的中点G,连接EG,FG,∵G、F分别为AD、CD的中点,∴GF是△ACD的中位线,∴GF=AC,同理可得,GE=BD,∵AC=BD,∴GF=GE=AC=BD.∴∠GFN=∠GEM,又∵EG∥OM,FG∥ON,∴∠OMN=∠GEM=∠GFN=∠ONM,∴OM=ON.【点评】本题考查了三角形的中位线性质定理,解题的关键是构造三角形的中位线.运用三角形的中位线的数量关系和位置关系进行分析证明.8.(2013?永州)如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN 于点N,延长BN交AC于点D,已知AB=10,BC=15,MN=3(1)求证:BN=DN;(2)求△ABC的周长.【考点】三角形中位线定理;等腰三角形的判定与性质.菁优网版权所有【分析】(1)证明△ABN≌△ADN,即可得出结论;(2)先判断MN是△BDC的中位线,从而得出CD,由(1)可得AD=AB=10,从而计算周长即可.【解答】(1)证明:在△ABN和△ADN中,∵,∴△ABN≌△ADN(ASA),∴BN=DN.(2)解:∵△ABN≌△ADN,∴AD=AB=10,又∵点M是BC中点,∴MN是△BDC的中位线,∴CD=2MN=6,故△ABC的周长=AB+BC+CD+AD=10+15+6+10=41.【点评】本题考查了三角形的中位线定理及等腰三角形的判定,注意培养自己的敏感性,一般出现高、角平分线重合的情况,都需要找到等腰三角形.。

部编数学八年级下册专题18构造三角形中位线的常用技巧(解析版)含答案

部编数学八年级下册专题18构造三角形中位线的常用技巧(解析版)含答案

专题18 构造三角形中位线的常用技巧(解析版)专题典例剖析及针对训练类型一 连接两中点构造中位线典例1如图,在△ABC 中,AB =AC =5,BC =6,D 、E 分别是AB 、AC 的中点,F 、G 为BC 上的两点,FG =3,线段DG ,EF 的交点为O ,当线段FG 在线段BC 上移动时,三角形FGO 的面积与四边ADOE 的面积之和恒为定值,则这个定值是( )A .15B .12C .9D .6思路指引:连接DE ,过A 作AH ⊥BC 于H .由于DE 是AB 、AC 的中点,利用三角形中位线定理可得DE ∥BC ,并且可知△ADE 的高等于12AH ,再结合等腰三角形三线合一性质,以及勾股定理可求AH ,那么△ADE 的面积就可求.而所求S △FOG +S 四边形ADOE =S △ADE +S △DOE +S △FOG ,又因为△DOE 和△FOG 的底相等,高之和等于AH 的一半,故它们的面积和可求,从而可以得到S △FOG +S 四边形ADOE 的面积.解:如图:连接DE ,过A 向BC 作垂线,H 为垂足,∵△ABC 中,D 、E 分别是AB 、AC 的中点,∴DE ,AH 分别是△ABC 的中位线和高,BH =CH =12BC =12×6=3,∵AB =AC =5,BC =6,由勾股定理得AH ==4,∴S △ADE =12BC •AH 2=12×3×42=3,设△DOE 的高为a ,△FOG 的高为b ,则a +b =AH 2=2,∴S △DOE +S △FOG =12DE •a +12FG •b =12×3(a +b )=12×3×2=3,∴三角形FGO 的面积与四边ADOE 的面积之和恒为定值,则这个定值是S △ADE +S △DOE +S △FOG =3+3=6.故选:D .方法点睛:本题属中等难度题目,涉及到三角形中位线定理,解答此类题目时一般只要知道中点要作中位线,已知等腰三角形要作高线,利用勾股定理解答.针对训练1.如图,△ABC 的中线BD ,CE 相交于点0,F ,G 分别是BO ,CO 的中点,求证:EF ∥DG 且EF =DG .解:连接ED ,FG .证四边形DEFG 是平行四边形,∴EF ∥DG 且EF =DG .类型二 连接第三边构造中位线典例2(2022秋•泰山区校级期末)如图,在菱形ABCD 中,E ,F 分别是边CD ,BC 上的动点,连接AE ,EF ,G ,H 分别为AE ,EF 的中点,连接GH .若∠B =45°,BC =GH 的最小值为( )ABC DGF E DC B AABDE F G思路指引:连接AF,利用三角形中位线定理,可知GH=12AF,求出AF的最小值即可解决问题.解:连接AF,如图所示:∵四边形ABCD是菱形,∴AB=BC=∵G,H分别为AE,EF的中点,∴GH是△AEF的中位线,∴GH=12 AF,当AF⊥BC时,AF最小,GH得到最小值,则∠AFB=90°,∵∠B=45°,∴△ABF是等腰直角三角形,∴AF==∴GH=即GH故选:D.方法点睛:本题考查了菱形的性质、三角形的中位线定理、等腰直角三角形的判定与性质、垂线段最短等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.针对训练1.(2021秋•孟津县期末)如图所示,已知四边形ABCD,R、P分别是DC、BC上的点,点E、F分别是AP、RP的中点,当点P在边BC上从点B向点C移动,且点R从点D向点C移动时,那么下列结论成立的是( )A .线段EF 的长逐渐增大B .线段EF 的长逐渐减少C .线段EF 的长不变D .△ABP 和△CRP 的面积和不变思路指引:连接AR ,根据三角形的中位线定理可得EF =12AR ,根据AR 的变化情况即可判断.解:连接AR ,∵E ,F 分别是AP ,RP 的中点,∴EF =12AR ,∵当点P 在BC 上从点C 向点B 移动,点R 从点D 向点C 移动时,AR 的长度逐渐增大,∴线段EF 的长逐渐增大.S △ABP +S △CRP =12BC •(AB +CR ).∵CR 随着点R 的运动而减小,∴△ABP 和△CRP 的面积和逐渐减小.观察选项,只有选项A 符合题意.故选:A .方法点睛:此题考查的是三角形中位线的性质,即三角形的中位线平行于第三边且等于第三边的一半. 典例3 如图,点B 为AC 上一点,分别以AB ,BC 为边在AC 同侧作等边△ABD 和等边△BCE ,点P ,M ,N 分别为AC ,AD ,CE 的中点.(1)求证:PM =PN ;(2)求∠MPN 的度数.思路指引:(1)连接DC和AE,AE交CD于点M,证明△ABE≌△DBC,得到AE=DC,利用中位线的性质证明PM=PN;(2)根据中位线的性质把∠MPA+∠NPC转化成∠MCA+∠MAC,根据∠DMA=∠MCA+∠MAC可知求出∠DMA度数即可.解:(1)连接DC和AE,AE交CD于点M,在△ABE和△DBC中,AB=BD∠ABE=∠DBCBE=BC∴△ABE≌△DBC(SAS).∴AE=DC.∵P为AC中点,N为EC中点,AE.∴PN=12DC.同理可得PM=12所以PM=PN.(2)∵P为AC中点,N为EC中点,∴PN∥AE.∴∠NPC=∠EAC.同理可得∠MPA=∠DCA∴∠MPA+∠NPC=∠EAC+∠DCA.又∠DQA=∠EAC+∠DCA,∴∠MPA+∠NPC=∠DQA.∵△ABE ≌△DBC ,∴∠QDB =∠BAQ .∴∠DQA =∠DBA =60°.∴∠MPA +∠NPC =60°.∴∠MPN =180°﹣60°=120°.方法点睛:本题主要考查全等三角形的判定和性质、中位线的性质、等边三角形的性质,解题的关键是找到“手拉手”全等模型.针对训练1.如图,分别以△ABC 的边AB ,AC 同时向外作等腰直角三角形,其中AB =AE ,AC =AD ,∠BAE =∠CAD =90°,点G 为BC 的中点,点F 为BE 的中点,点H 为CD 的中点.探索GF 与GH 的数量关系及位置关系,并说明理由.解:连接BD ,CE ,易证△ABD ≌△AEC ,∴BD = CE ,易证BD ⊥CE .由中位线性质可得GF =GH ,GF ⊥GH .类型三 取中点构造中位线(1)直接取一边中点典例4(2022春•武昌区期中)如图,在△ABC 中,∠A =60°,BD 为AC 边上的高,E 为BC 边的中点,点F 在AB 边上,∠EDF =60°,若AF =2,BF =103,则BC 边的长为( )HG FEDCB AAB CDEFG HA .163BCD 思路指引:过点D 作DM ⊥AB ,垂足为M ,取AB 的中点H ,连接EH ,DH ,根据已知可求出AB =163,先在Rt △ABD 中求出AD ,AH 的长,从而可得△ADH 是等边三角形,进而可得AD =DH ,∠ADH =∠AHD =60°,然后利用利用等腰三角形的三线合一性质求出AM 的长,从而求出DM ,DF 的长,最后证明手拉手模型﹣旋转型全等△ADF ≌△HDE ,从而利用全等三角形的性质可得DE =DF 进而利用直角三角形斜边上的中线,即可解答.解:过点D 作DM ⊥AB ,垂足为M ,取AB 的中点H ,连接EH ,DH ,∵AF =2,BF =103,∴AB =AF +BF =163,∵BD ⊥AC ,∴∠ADB =∠CDB =90°,∵∠A =60°,∴∠ABD =90°﹣∠A =30°,∴AD =12AB =83,∵点H 是AB 的中点,∴AH =BH =12AB =83,∴AD =AH ,∴△ADH 是等边三角形,∴AD =DH ,∠ADH =∠AHD =60°,∴AM=MH=12AH=43,∴DM=∵AF=2,∴MF=AF﹣AM=2―43=23,∴DF∵点H是AB的中点,点E是BC的中点,∴EH是△ABC的中位线,∴EH∥AC,∴∠DHE=∠ADH=60°,∴∠ADH=∠A=60°,∵∠EDF=∠ADH=60°,∴∠ADH﹣∠FDH=∠EDF﹣∠FDH,∴∠ADF=∠HDE,∴△ADF≌△HDE(ASA),∴DE=DF=∵∠CDB=90°,∴BC=2DE=故选:D.方法点睛:本题考查了等边三角形的判定与性质,直角三角形斜边上的中线,三角形的中位线定理,全等三角形的判定与性质,含30度角的直角三角形,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.针对训练1.(2022•长春一模)如图,菱形ABCD的对角线AC与BD相交于点O,AC=8,BD=12,点E是CD的中点,点F是OA的中点,连结EF,则线段EF的长为 .思路指引:取AD的中点M,连接FM,EM,构造三角形中位线,利用三角形中位线定理分别求得FM、EM的长度;然后利用勾股定理求得EF的长度.解:如图,取AD的中点M,连接FM,EM,∵点E是CD的中点,∴EM是△ACD的中位线.∴EM∥AC,EM=12AC=4.同理,FM∥BD,FM=12OD=14BD=3.在菱形ABCD中,AC⊥BD,则FM⊥ME.故在直角△EFM中,由勾股定理得到:EF5.故答案是:5.方法点睛:本题主要考查了菱形的性质和三角形中位线定理,解题过程中,巧妙地作出辅助线,利用三角形中位线定理求得直角三角形的两直角边的长度.(2)连接对角线,再取对角线中点典例5(2021秋•龙岗区校级期末)如图,四边形ABCD中,E,F分别是边AB,CD的中点,则AD,BC 和EF的关系是( )A.AD+BC>2EF B.AD+BC≥2EF C.AD+BC<2EF D.AD+BC≤2EF思路指引:连接AC,取AC的中点G,连接EF,EG,GF,根据三角形中位线定理求出EG=12BC,GF=12AD ,再利用三角形三边关系:两边之和大于第三边,即可得出AD ,BC 和EF 的关系.解:如图,取AC 的中点G ,连接EF ,EG ,GF ,∵E ,F 分别是边AB ,CD 的中点,∴EG ,GF 分别是△ABC 和△ACD 的中位线,∴EG =12BC ,GF =12AD ,在△EGF 中,由三角形三边关系得EG +GF >EF ,即12BC +12AD >EF ,∴AD +BC >2EF ,当AD ∥BC 时,点E 、F 、G 在同一条直线上,∴AD +BC =2EF ,所以四边形ABCD 中,E ,F 分别是边AB ,CD 的中点,则AD ,BC 和EF 的关系是AD +BC ≥2EF .故选:B .方法点睛:此题主要考查学生对三角形中位线定理和三角形三边关系的灵活运用,熟练掌握三角形的中位线定理是解题的关键.针对训练1.如图,在□ABCD 中,E 是CD 中点,F 是AE 的中点,FC 交BE 于点G(1)求证:GF =GC(2)求证:BG =3EG解:(1)取BE 的中点M ,∵FM =21AB ,∴FM //EC ,∴四边形 FMCE 为平行四边形,∴GF =GC(2)易证EG =MG ,∴EM =MB ,∴BG =3EG类型四 延长一边构造中位线典例6(2022秋•江北区校级期末)如图,在正方形ABCD 中,点E ,G 分别在AD ,BC 边上,且AE =3DE ,BG =CG ,连接BE 、CE ,EF 平分∠BEC ,过点C 作CF ⊥EF 于点F ,连接GF ,若正方形的边长为4,则GF 的长度是( )A B .2C D 思路指引:延长CF 交BE 于H ,利用已知条件证明△HEF ≌△CEF (ASA ),然后利用全等三角形的性质证明GF =12BH ,最后利用勾股定理即可求解.解:延长CF 交BE 于H ,∵EF 平分∠BEC ,∴∠HEF =∠CEF ,∵CF ⊥EF ,∴∠HFE =∠CFE ,在△HEF 和△CEF 中,∠HEF =∠CEF EF =EF ∠HFE =∠CFE,∴△HEF ≌△CEF (ASA ),∴HF =CF ,EH =EC ,而BG =CG ,∴GF =12BH ,∵AE =3DE ,正方形的边长为4,∴AE =3,AB =CD =4,DE =1,在Rt △ABE 中,BE =5,在Rt △CDE 中,CE =HE ==∴BH =BE ﹣HE =5―∴GF =12BH 故选:C .方法点睛:此题主要考查了全等三角形的性质与判定,也利用了正方形的性质,三角形的中位线的性质,有一定的综合性,对于学生的能力要求比较高.针对训练1.(2022•合肥一模)如图,△ABC 中,AD 平分∠BAC ,E 是BC 中点,AD ⊥BD ,AC =7,AB =4,则DE 的值为( )A .1B .2C .12D .32思路指引:延长BD 交AC 于H ,证明△ADB ≌△ADH ,根据全等三角形的性质得到AH =AB =4,BD =DH ,根据三角形中位线定理计算即可.解:延长BD 交AC 于H ,在△ADB 和△ADH 中,∠BAD =∠HAD AD =AD ∠ADB =∠ADH,∴△ADB ≌△ADH (ASA ).∴AH =AB =4,BD =DH ,∴HC =AC ﹣AH =3,∵BD =DH ,BE =EC ,∴DE =12HC =32,故选:D .方法点睛:本题考查的是三角形中位线定理、全等三角形的判定和性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.类型五 延长两边构造中位线典例7(2022秋•封丘县校级期末)如图,在△ABC 中,AE 平分∠BAC ,D 是BC 的中点AE ⊥BE ,AB =5,AC =3,则DE 的长为( )A .1B .32C .2D .52思路指引:连接BE 并延长交AC 的延长线于点F ,易证明△ABF 是等腰三角形,则得AF 的长,点E 是BF 的中点,求得CF 的长,从而DE 是中位线,即可求得DE 的长.解:连接BE 并延长交AC 的延长线于点F ,如图,∵AE ⊥BE ,∴∠AEB =∠AEF =90°,∵AE 平分∠BAC ,∴∠BAE =∠FAE ,∴∠ABE =∠AFE ,∴△ABF 是等腰三角形,∴AF =AB =5,点E 是BF 的中点,∴CF =AF ﹣AC =5﹣3=2,DE 是△BCF 的中位线,∴DE =12CF =1.故选:A .方法点睛:本题考查了等腰三角形的判定与性质,三角形中位线的性质定理,关键是作辅助线得到等腰三角形.针对训练1.如图,AD 为△ABC 的外角平分线,且AD ⊥BD 、M 为BC 的中点,若AB =12,AC =18,求MD 的长8.延长BD ,CA 交于点E ,易证AE =AB ,BD =ED ,∵BM =CM ,∴DM =21CE =21(AB +AC )=15.类型六作平行线或倍长中线先构造8字全等再构造中位线典例7(2021秋•宛城区期中)如图,在△ABC中,∠A=90°,AC>AB>4,点D、E分别在边AB、AC上,BD=4,CE=3,取DE、BC的中点M、N,线段MN的长为( )A.2.5B.3C.4D.5思路指引:如图,作CH∥AB,连接DN,延长DN交CH于H,连接EH,首先证明CH=BD,∠ECH=90°,解直角三角形求出EH,利用三角形中位线定理即可解决问题.解:作CH∥AB,连接DN并延长交CH于H,连接EH,∵BD∥CH,∴∠B=∠NCH,∠ECH+∠A=180°,∵∠A=90°,∴∠ECH=∠A=90°,在△DNB和△HNC中,∠B=∠NCHBN=CN,∠DNB=∠HNC∴△DNB≌△HNC(ASA),∴CH=BD=4,DN=NH,在Rt△CEH中,CH=4,CE=3,∴EH=5,∵DM=ME,DN=NH,EH=2.5,∴MN=12故选:A.方法点睛:本题考查全等三角形的判定和性质,三角形的中位线定理,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.针对训练:如图,AB=BC,DC=DE,∠ABC=∠CDE=90°,D、B、C在一条直线上,F为AE的中点.(1)求证:BF∥CE;(2)若AB=2,DE=5,求BF的长.思路指引:(1)延长AB交CE于G,求出△ACG是等腰直角三角形,再根据等腰直角三角形的性质求出AB=BG,然后根据三角形的中位线平行于第三边并且等于第三边的一半证明;(2)根据等腰直角三角形的性质求出CE、CG,再求出GE,然后求解即可.(1)证明:如图,延长AB交CE于G,∵AB=BC,DC=DE,∠ABC=∠CDE=90°,∴△ABC和△CDE都是等腰直角三角形,∴△ACG也是等腰直角三角形,∵∠ABC=90°,∴BC⊥AG,∴AB=BG,∵点F是AE的中点,∴BF是△AGE的中位线,∴BF∥CE;(2)解:∵AB =2,DE =5,∴CG =AC ==CE ==∴GE =CE ﹣CG ==∵BF 是△AGE 的中位线,∴BF =12GE方法点睛:本题考查了三角形的中位线平行于第三边并且等于第三边的一半,等腰直角三角形的判定与性质,熟记性质与定理并作辅助线构造出以BF 为中位线的三角形是解题的关键。

三角形中位线定理的运用例谈(Word版,含解析、点评和练习设计)

三角形中位线定理的运用例谈(Word版,含解析、点评和练习设计)

专题复习:三角形中位线定理的运用例谈 赵化中学 郑宗平三角形的中位线定理在平面几何中比较特殊,它既反映三角形的中位线与三角形边的位置关系,又有与三角形边的数量关系的规律性结论;在一些所谓的几何难题中常见它的身影,而三角形的中位线往往能起牵线搭桥甚至是关键性的作用;下面我精选一部分“含”三角形的中位线的几何解答题,让我们共同来探究、解析、训练.知识要点:三角形的中位线平行于三角形第三边,并且等于第三边的一半.1.三角形三条中位线围成的三角形与原三角形在某些数量上的关系⑴.周长关系如图点D E F 、、分别是ABC 的三边BC CA AB 、、的中点,请探究DEF 的周长与ABC 的周长的关系? 分析: 点D E F 、、分别是ABC 的三边BC CA AB 、、的中点,可知:,,,111EF BC DE AB DF AC 222===∴()1EF DE DF BC AC AB 2++=++所以三角形的三条中位线围成的三角形的周长是原三角形的周长的一半练习:以上面的图为例,若DEF 的周长为16cm ,则ABC 的周长为 .⑵.面积关系如图点D E F 、、分别是ABC 的三边BC CA AB 、、的中点,请探究 DEF 的面积与ABC 的面积关系? 略析:根据三角形中位线定理可以得出,,,,111EF BC DF AC DE AB EF BC DF AC DE AB 222===;,再利用线段中点的定义、平行线性质、平行四边形的性质等可以进一步推出DEF 、AFE 、FBD 、DEC 是全等的,故它们的面积是相等的,则ABC S=DEF 4S.所以三角形的三条中位线围成的三角形的面积是原三角形的面积的14.说明:今后我们学习了相似三角形的性质后,这个结论的推导就简单多了.练习:以上面的图为例,若ABC 的面积为216cm ,则DEF 的面积为 .2、中点四边形顺次连结四边形四边中点所构成的四边形,我们把它简称为中点四边形.中点四边形是有规律可循的.中点四边形的特殊性主要是看原四边形的对角线的特征,分为下面几种情况:⑴.原四边形的对角线既不相等也不垂直,其中点四边形是个一般的平行四边形.如图⑴,点E F G H 、、、分别是四边形ABCD 的四边的中点,试探究中点四边形EFGH 的形状. 略析:由点E F G H 、、、分别是ABCD 的四边的中点易知:,EH BD GF BD EH GF ∴ 同理:HG EF ;故中点四边形EFGH 的形状是平行四边形. (还有其它方法证明)⑵.原四边形的对角线相等但不垂直,其中点四边形是个菱形.如图⑵,点E F G H 、、、分别是四边形ABCD 的四边的中点,且AC BD =,试探究中点四边形EFGH 的形状.略析:由点E F G H 、、、分别是ABCD 的四边的中点易知:易证点四边形EFGH 的形状是平行四边形,由,11EH BD EF AC EH EF 22==∴=;故中点四边形EFGH 是个菱形.⑶.原四边形对的角线垂直但不相等,其中点四边形是个矩形.如图⑶,点E F G H 、、、分别是四边形ABCD 的四边的中点,且AC BD ⊥试探究中点四边形EFGH 的形状.略析:由点E F G H 、、、分别是ABCD 的四边的中点易知:易证点四边形EFGH 的形状是平行四边形,由,EH BD EF AC 可以进一步推得HEF 90∠=,故中点四边形EFGH 是个矩形.⑷.原四边形对的角线既垂直又相等,其中点四边形是个正方形.如图⑷,点E F G H 、、、分别是四边形ABCD 的四边的中点,且AC BD AC BD =⊥,,试探究中点四边形EFGH 的形状.略析:由⑵和⑶的方法推理易得点四边形EFGH 既是菱形又是矩形,故中点四边形EFGH 是个正方形. (还有其它方法证明)练习:1.顺次连结平行四边形四边中点所构成的中点四边形的形状是 ;C 图(1)C 图(2)图(3)A 图(4)2.顺次连结矩形四边中点所构成的中点四边形的形状是;3.顺次连结菱形四边中点所构成的中点四边形的形状是;4.顺次连结正方形四边中点所构成的中点四边形的形状是;5.顺次连结对角线互相垂直等腰梯形的四边中点所构成的中点四边形的形状是 .3、三角形的中位线与梯形⑴.连结梯形两腰中点的线段(梯形的中位线)与两底的关系.如图,梯形ABCD中,AD BC,E F、分别是两腰AB DC、的中点,请探究EF与AD BC、的关系.分析:本题关键是把梯形的中位线转化成三角形的中位线来解决.连结AF延长交BC的延长线于G点.根据题中条件易证ADF≌GCF,得:AF GF CG AD==,吧在ABG中,由,AE BE AF GF==可以推出,1EF BG EF BG2=.可以进一步得出:(),,1EF BC EF AD EF AD BC2=+.结论:梯形的中位线平行于两底,并且等于两底和的一半.⑵.连结梯形两对角线中点的线段与两底的关系.如图,梯形ABCD中,,AD BC BC AD>,E F、分别是两对角线AC BD、的中点,请探究EF与AD BC、的关系.分析:本题关键是把梯形的中位线转化成三角形的中位线来解决.连结DF延长交BC于M点.根据题中条件易证ADF≌CMF,得:DF MF CM AD==,.在D BM中,由,DE BE DF MF==可以推出,1EF BM EF BM2=.可以进一步得出:(),,1EF BC EF AD EF BC AD2=-.结论:连结梯形两对角线中点的线段平行于两底,并且等于两底差的一半.练习:1.若一梯形的高为h,其中位线长为m,则此梯形的面积为 .2.以上面的⑵题为例的条件的基础上,若增添梯形ABCD的中位线长为14cm EF8cm=,,求梯形ABCD的两底AD BC、的长分别是多少?4.巧添三角形的中位线来破题添三角形中位线是几何图形辅助线比较常见的辅助线.已知三角形边上的中点,直接连结构成中位线是最常见的添中位线的方式,也是同学们容易想到的,这里不举例;下面这些例子添三角形中位线的途径有些有一定的技巧性,希望能给同学们从中得到一些启发.⑴.补全三角形,得到三角形的中位线.例.如图E F G H、、、分别是AB BD CD CA、、、的中点,求证:四边形EFGH是平行四边形.分析:本题求证的是四边形EFGH在的线段并非是某完整三角形的边,如果我们连结AD或BC问题便解决了.如图,当连结BC后,在ABC和DBC,由于E F G H、、、分别是AB BD CD CA、、、定理可得:,;,.,11HE BC GF BC HE BC GF BC HE GF HE GF22==∴=.故四边形EFGH是平行四边形.⑵.再取中点,连成中位线例1. 如图,D为△ABC的边AB的中点,,1CE AC OE23==,求OB的长?分析:在三角形的一边上有一中点,根据条件很容易再取一中点来连结而成三角形的中位线来解决问题.如图,根据本题的条件若取出线段AE的中点F,容易得出E F、是线段AC的三等分点,E F、就分别是线段CF AE、的中点,连结DF后,在ABE中,又由于D为AB的中点,根据三角形的中位线定理可得:,BE2DF DF BE=;因为已得出E为线段CF的中点,根据平行线等分线段(属于选学内容)可以得出O为线段CD的中点,即OE为CDF的中位线,所以,DF2OE BE2DF4OE8=∴===;所以.OB BE OE826=-=-=例2.四边形ABCD中,对角线AC=BD,E、F分别为AB、DC的中点,点O为AC、BD的交点,M、N为EF分别与DB、AC的交点,求证:OM=ON分析:本题的E F、分别为AB DC、的中点,但并非为某三角形和梯形(四边形ABCD没有告诉是梯形)的中位线,本题的E F、分别为AB DC、的中点,若化在ABC和ABC来看,它们有一公共边,若在公共边BC取一中点G,连结GE GF、(见图示),此时GE GF、就分别是ABC和ABC的中位线,根据三角形的中位线定理可得:且,11GE AC GF BD22==;又AC BD GE GF GFE GEF=∴=∴∠=∠;∵,GE AC GF BDADB CEOFA DB CE M N FOG∴,;ONE GEF OMF GFE ONE OMF OM ON ∠=∠∠=∠∴∠=∠∴=.例3.M 、N 分别为AD 、BC 的中点,且AB=CD,求证:∠1=∠2分析:本题要证明的是两个角相等,而两个角相等的直接条件没有,再加上在图形上两个角的位置上有比较分散,所以我们应思考把分散位置上的12∠∠、转化在一起,很容易联想到由平行线来帮忙.由本题有线段中点的条件,所以可以尝试再取一中点连成三角形的中位线来提供平行线. 略证:如图,连结AC ,取出线段AC 的中点E . 又M N 、分别是线段AD BC 、的中点,,,NE CD ME AB NE CH ME BC 11NE CD ME AB22AB CD NE MEEMN ENM ∴===∴=∴∠=∠即,,NE CH ME BC1ENM 2EMN 12∴∠=∠∠=∠∴∠=∠ 点评:本题在添加辅助线上有些技巧性,但如果能想到把位置分散的12∠∠、“搬”到同一个三角形中且要使它们相等来解决问题,根据本题提供的条件这样的辅助线是应该想到的.另外例2和例3都有一个都一个共同的特点,要把问题转化到同一个三角形中,关键要找到或构造共同的边的中点,例2的公共边BC 的中点G 和例3构造的公共边AC (对角线)的中点E .⑶.挖出隐含的中点构成中位线. 例1.如图,,ME AB ME AB =,D 为线段EC 的中点,A M D 、、三点共线 求证:四边形ABCD 是梯形 分析:证明四边形ABCD 是梯形当然关键是证明有且只有一组对 边平行,根据本题提供的条件就是要证明AD BC .提供平行线 除了以前常用的方法,现在三角形的中位线定理又使我们多了一条途径.根据本题的条件已经有了D 为线段EC 的中点,若再找一个且是同一个三角形边的中点,连结就有了三角形中位线,有些中点是明显的,有的中点却是“隐藏”在图形中,需要用平时积累的知识使它现身.本题的,ME AB ME AB =可以得出:四边形ABM E 是平行四边形,平行四边形的对角线是互相平分的,若我们连结对角线BE 与对角线AM 的交点O 就是线段BE 的中点,在EBC 中,根据三角形的中位线定理可以得出,OD BC AD BC 即.例2. △ABC 中,AD 平分∠BAC,CD ⊥AD,E 为BC 的中点,求证:DE ∥AB分析:本题和例1的思路是一样的,关键是挖出隐含的中点,从而来使 问题得以解决.如图若我们延长CD 交AB 于带点F ,根据题中条件容易证得AFD ≌ADC ,所以DF DC =,即D 为CF 的中点;又E 为BC 的中点,根据三角形的中位线定理可以得出,DE FB DE AB 即.例3.BD 、CE 分别平分∠ABC 、∠ACB ,AF ⊥BD ,AG ⊥CE ,垂足分别为F 、G 求证:GF ∥BC分析:本题和例1、例2的思路是一样的,关键是挖出隐含的中点,从而来使 问题得以解决.如图若我们分别延长AG AF 、交BC 于点M N 、,根据题中条件容易证得 AGC ≌MGC ,所以AG MG =,即G 为AM 的中点;同理可以得到F 为 AN 的中点,根据三角形的中位线定理可以得出,DG MN DG BC 即.点评:隐含在图形中的中点往往是我们平时容易忽视的,但挖出这些“隐藏的中点”往往有可能是一道题破题的一个关键环节;我们同学有的虽然有这方面的知识积累,但却没有这方面的意识,这也难以找到破题的的途径.根据上面三道例题来看,隐藏的中点要注意平行四边形(包括特殊的平行四边形)的对角线互相平分、角的平分线与垂线相结合的图形交点、等腰三角形的三线合一、平行线等分线段、中垂线等等知识点.练习:1. 如图,AD 、BE 、CF 分别是△ABC 三边中线交于点O ,FM ∥BE ,EM ∥求证:四边形ADCM 是平行四边形.2.如图,ABC 中,D 为边BC 上的一点,中线BE 与线段AD 交于的F ,且1DF AD =,求:BD DC 的值?如图正方形ABCD 的对角线AC BD 、交于点O ,BAC ∠的平分线交BD 于点F .求证:1OF CE 2= G B A D N M H 21EA DC B M E ODE C AF A B C FG E DONM C5.三角形中位线的实际应用举例例.A B 、两点被池塘隔开,现在要测出A B 、两点间的距离,但又无法直接去测量,怎么办? 略解:在池塘外的空地上取一点C ,用绳子“连结”CA CB 、CA CB 、的中点分别为M N 、,量出M N 、之间的距离,此时AB =根据是三角形的中位线定理.(见右图图解)练习:怎样测量一座建筑底面是四边形地基的对角线的长?请画出示意图进行解答说明.课外选练:1、 如图,等腰梯形ABCD 的ADBC ,若E F G H 、、、分别是AD BD BC AC 、、、的中点,请判断四边形EFGH 的形状,并说明理由. 2、如图ABC 中,EF 为三角形的中位线,AD 是BC 边上的中点,点O 为EF 和AD 的交点.求证:EF 和AD 互相平分.3、如图,点D E F 、、分别是ABC 的三边AB AC BC 、、的中点,是BC 的高。

《三角形的中位线定理》练习

《三角形的中位线定理》练习

《三角形的中位线定理》练习一、选择——基础知识运用1.如图,在△ABC中,点D、E分别是边AB,BC的中点.若△DBE的周长是6,则△ABC 的周长是()A.8 B.10 C.12 D.142.如图,在△ABC中,AC=8,BC=12,AF交BC于F,E为AB的中点,CD平分∠ACB,且CD⊥AF,垂足为D,连接DE,则DE的长为()A.2 B.C.3 D.43.如图,△ABC的中线BE与CD交于点G,连接DE,下列结论不正确的是()A.点G是△ABC的重心B.DE∥BCC.△ABC的面积=2△ADE的面积D.BG=2GE4.如图,在矩形ABCD中,P、R分别是BC和DC上的点,E、F分别是AP和RP的中点,当点P在BC上从点B向点C移动,而点R不动时,下列结论正确的是()A.线段EF的长逐渐增长B.线段EF的长逐渐减小C.线段EF的长始终不变D.线段EF的长与点P的位置有关5.如图,A,B两地被池塘隔开,小明通过下列方法测出了A、B间的距离:先在AB外选一点C,然后测出AC,BC的中点M,N,并测量出MN的长为6m,由此他就知道了A、B间的距离.有关他这次探究活动的描述错误的是()A.AB=12m B.MN∥AB C.△CMN∽△CAB D.CM:MA=1:2二、解答——知识提高运用6.如图,在△ABC中,AB=AC,AD⊥BC于点D,点P是AD的中点,延长BP交AC于点N,求证:AN= AC。

7.如图,已知:四边形ABCD中,AD=BC,E、F分别是DC、AB的中点,直线EF分别与BC、AD的延长线相交于G、H.求证:∠AHF=∠BGF。

8.如图,在梯形ABCD中,AD∥BC,AB=DC=AD,∠C=60°,AE⊥BD于点E,F是CD的中点,DG是梯形ABCD的高.则四边形AEFD是什么特殊的四边形?请说明理由。

9.如图,在△ABC中,E,F分别为AB,BC边上的中点,G,H是AC的三等分点,EG,FH 的延长线交于点D.求证:①DG:EG=2:1;②四边形ABCD是平行四边形。

三角形的中位线基础题30道解答题

三角形的中位线基础题30道解答题

9.5 三角形的中位线基础题汇编(3)BCBC=3DE=6中点重合)EF=EF=CE=,求BCD=EM=(9.5 三角形的中位线基础题汇编(3)参考答案与试题解析一.解答题(共30小题)1.如图,在四边形ABCD中,E、F、G、H分别是AB、CD、AC、BD的中点.四边形EGFH是平行四边形吗?请证明你的结论.2.请写出“如图,在△ABC中,若DE是△ABC的中位线,则DE=BC”的逆命题.判断逆命题的真假,并说明你的理由?BC3.在四边形ABCD中,BD、AC相交于点O,AC=BD,E、F分别是AB、CD的中点,连接EF,分别交AC、BD 于点M、N.判断△MON的形状,并说明理由.EG=4.如图,在△ABC中,AD⊥BC于点D,E、F、G分别是BC、AC、AB的中点,若AB=BC=3DE=6,求四边形DEFG的周长.BC=3DE=6BC=3DE=6EF=×BC=×,AB=×=GF+DG+DE+EF=+3+2+3=.5.如图,在△ABC中(AB≠AC),M为BC的中点,AD平分∠BAC交BC于D,BE⊥AD于E,CF⊥AD于F,求证:ME=MF.MF=ME=GBME=6.△ABC中,D为BC中点,E为AD中点,直线BE交AC于F,求证:AC=3AF.7.如图,已知△XYZ中,MY=NZ,A、B分别是YN、MZ的中点,延长AB、BA分别交XZ、XY于点D、C,求证:XC=XD.BE=NZ BE=MY8.如图,AB为⊙O的一条弦,CD为直径(C不与A、B及中点重合),作CE⊥AB于E,DF⊥AB于F,问CE﹣DF的值是否变化?为什么?9.△ABC中,D为CB的延长线上一点,BE是∠ABD的角平分线,AE⊥BE,F是AC的中点,试说明:EF∥BC,且EF=(AB+BC).EF=10.如图,在四边形ABCD中,E、F分别是AD、BC的中点,连接FE并延长,分别交CD的延长线于点M、N,∠BME=∠CNE,求证:AB=CD.GE=GF=CDAB GF=CD11.已知,如图,AB=AC=BE,CD为△ABC中AB边上的中线,求证:CE=2CD.12.如图,在△ABC中,∠ACB=90°,点D在AB上,AC=AD,DE⊥CD交BC于点E,AF平分∠BAC交BC于F点.(1)求证:AF∥DE;(2)当AC=6,AB=10时,求BE的长.==,,BE=13.在四边形ABCD中,AB∥CD,E、F是AD、BC中点.求证:EF=(AB+CD),EF∥CD.EF=DM=14.如图,已知△ABC中,点D是BA上一点,BD=AC,E,F分别是BC,DA的中点,EF和CA的延长线相交于点G.求证:AG=AF.15.如图,AD是△ABC的中线,E,F,G分别是AB,AD,DC的中点,求证:EG与DF互相平分.ACED=16.已知:如图,点B是AD的中点,点E是AB的中点,AB=AC 求证:CE=CD.ACBE=CDCE=17.在△ABC中,AD⊥BC于D点,BE为中线,且∠CBE=30°.求证:AD=BE.EF=EF=EF=18.如图,在△ABC中,D、E、F分别是AB、BC、AC的中点,AB=6,AC=8,DF=5,求AE的长.BC=519.已知如图,△ABC中,AD为BC的中线,E为AD的中点,延长CE交AB于点F,求的值.(用多种方法解答);或过BF=DM==20.在△ABC中,D是AB的中点,DC⊥AC且tan∠BCD=,求tanA的值.BCD=,设,即BCD==ABBE=CE=AC.21.已知在△ABC中,M是BC的中点,AN平分∠BAC,AN⊥BN,求证:MN∥AC.22.已知:如图,在△ABC中,AB>AC,AD平分∠BAC,BE垂直AD延长线于E,M是BC中点.求证:EM=(AB﹣AC).CF=CF23.如图,在△ABC中,若∠B=2∠C,AD⊥BC,E为BC边中点,求证:AB=2DE.24.如图,在四边形ABCD中,AD=BC,P是对角线BD的中点,M是DC的中点,N是AB的中点.求证:∠PMN=∠PNM.PM=PN=ADBC PN=AD25.如图,△ABC中,BM平分∠ABC,AM⊥BM,垂足M点,点N为AC的中点,AB=10,BC=6,求MN长度.MN=26.已知:△ABC,用刻度尺量出△ABC的各边的长度,并取各边的中点,画出△ABC的三条中线,你发现了什么?27.如图,在△ABC中,D是AB上一点,AD=AC,AE⊥CD,垂足为E,F是BC中点,探究BD与EF的关系.并说明理由.EF=28.如图,平行四边形ABCD的对角线AC,BD相交于点O,AE=EB.求证:OE∥BC.29.△ABC中,AD是∠BAC的平分线,G是BC的中点,过G作直线FG平行于AD,分别交AB和CA的延长线于点E和点F,求证:BE=CF=(AB+AC).BF=CE=30.如图,在△ABC中,AD=DE=EF=FB,AG=GH=HI=IC,已知BC=8,则DG+EH+FI的长是多少?BCBC BCDG+EH+FI=BC+BC=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档