线性方程组求解

合集下载

线性方程组的解法

线性方程组的解法

线性方程组的解法线性方程组是数学中常见的问题,它可以用于描述多个未知数之间的关系。

解决线性方程组的问题是求解未知数的具体取值,从而得到方程组的解。

本文将介绍几种常见的解线性方程组的方法。

一、高斯消元法高斯消元法是解决线性方程组的经典方法之一。

它通过矩阵变换的方式,将线性方程组转化为一个三角矩阵,从而简化求解过程。

以下是高斯消元法的步骤:1. 将线性方程组写成增广矩阵的形式,其中最后一列为常数项。

2. 选取一个非零元素作为主元,在当前列中将主元素所在的行作为第一行,然后通过初等行变换将其他行的主元素变为0。

3. 重复第2步,直到所有的主元素都变成1,并且每个主元素所在的列的其他元素都变为0。

4. 反向代入,从最后一行开始,依次回代求解未知数的值。

二、矩阵的逆矩阵法矩阵的逆矩阵法是利用矩阵的逆矩阵来求解线性方程组。

以下是逆矩阵法的步骤:1. 对于线性方程组Ax=b,如果矩阵A可逆,将方程组两边同时左乘A的逆矩阵AI,得到x=A^(-1)b。

2. 通过求解矩阵A的逆矩阵来得到未知数向量x的值。

3. 如果矩阵A不可逆,那么线性方程组没有唯一解,可能有无穷多解或者无解。

三、克拉默法则克拉默法则是另一种解决线性方程组的方法,它利用行列式的性质来求解未知数的值。

以下是克拉默法则的步骤:1. 对于线性方程组Ax=b,令|A|=D,其中D表示矩阵A的行列式。

2. 分别计算将矩阵A的第i列替换为常数列b所得到的行列式|A_i|。

3. 未知数向量x的第i个分量可以通过x_i = |A_i|/D来得到。

克拉默法则的优点是简单直观,但是当方程组的规模很大时,计算行列式将变得非常复杂。

四、矩阵的广义逆法矩阵的广义逆法是一种应对方程组无解或者有无穷多解的情况的方法。

对于线性方程组Ax=b,如果矩阵A不可逆,我们可以通过求解广义逆矩阵A^+来得到一个特解x_0。

1. 分别计算A^+ = (A^T·A)^(-1)·A^T和x_0 = A^+·b。

线性方程组的求解方法

线性方程组的求解方法

线性方程组的求解方法线性方程组是数学中的基础概念,广泛应用于各个领域,如物理、经济学、工程学等。

解决线性方程组的问题,对于推动科学技术的发展和解决实际问题具有重要意义。

本文将介绍几种常见的线性方程组的求解方法,包括高斯消元法、矩阵法和迭代法。

一、高斯消元法高斯消元法是求解线性方程组的经典方法之一。

它的基本思想是通过一系列的行变换将方程组化为阶梯形或行最简形,从而得到方程组的解。

首先,将线性方程组写成增广矩阵的形式,其中增广矩阵是由系数矩阵和常数向量组成的。

然后,通过行变换将增广矩阵化为阶梯形或行最简形。

最后,通过回代法求解得到方程组的解。

高斯消元法的优点是简单易懂,容易实现。

但是,当方程组的规模较大时,计算量会很大,效率较低。

二、矩阵法矩阵法是求解线性方程组的另一种常见方法。

它的基本思想是通过矩阵运算将方程组化为矩阵的乘法形式,从而得到方程组的解。

首先,将线性方程组写成矩阵的形式,其中矩阵是由系数矩阵和常数向量组成的。

然后,通过矩阵运算将方程组化为矩阵的乘法形式。

最后,通过求逆矩阵或伴随矩阵求解得到方程组的解。

矩阵法的优点是计算效率高,适用于方程组规模较大的情况。

但是,对于奇异矩阵或非方阵的情况,矩阵法无法求解。

三、迭代法迭代法是求解线性方程组的一种近似解法。

它的基本思想是通过迭代计算逐步逼近方程组的解。

首先,将线性方程组写成矩阵的形式,其中矩阵是由系数矩阵和常数向量组成的。

然后,选择一个初始解,通过迭代计算逐步逼近方程组的解。

最后,通过设定一个误差限,当迭代结果满足误差限时停止计算。

迭代法的优点是计算过程简单,适用于方程组规模较大的情况。

但是,迭代法的收敛性与初始解的选择有关,有时可能无法收敛或收敛速度较慢。

综上所述,线性方程组的求解方法有高斯消元法、矩阵法和迭代法等。

每种方法都有其适用的场景和特点,选择合适的方法可以提高计算效率和解决实际问题的准确性。

在实际应用中,根据问题的具体情况选择合适的方法进行求解,能够更好地推动科学技术的发展和解决实际问题。

线性方程组的几种求解方法

线性方程组的几种求解方法

线性方程组的几种求解方法1.高斯消元法高斯消元法是求解线性方程组的一种常用方法。

该方法的基本思想是通过对方程组进行一系列简化操作,使得方程组的解易于求得。

首先将方程组表示为增广矩阵,然后通过一系列的行变换将增广矩阵化为行简化阶梯形,最后通过回代求解出方程组的解。

2.列主元高斯消元法列主元高斯消元法是在高斯消元法的基础上进行改进的方法。

在该方法中,每次选取主元时不再仅仅选择当前列的第一个非零元素,而是从当前列中选取绝对值最大的元素作为主元。

通过选取列主元,可以避免数值稳定性问题,提高计算精度。

3.LU分解法LU分解法是一种将线性方程组的系数矩阵分解为一个下三角矩阵L 和一个上三角矩阵U的方法。

首先进行列主元高斯消元法得到行阶梯形矩阵,然后对行阶梯形矩阵进行进一步的操作,得到L和U。

最后通过回代求解出方程组的解。

4.追赶法(三角分解法)追赶法也称为三角分解法,适用于系数矩阵是对角占优的三对角矩阵的线性方程组。

追赶法是一种直接求解法,将系数矩阵分解为一个下三角矩阵L和一个上三角矩阵U,然后通过简单的代数运算即可求得方程组的解。

5.雅可比迭代法雅可比迭代法是一种迭代法,适用于对称正定矩阵的线性方程组。

该方法的基本思想是通过不断迭代求解出方程组的解。

首先将方程组表示为x=Bx+f的形式,然后通过迭代计算不断逼近x的解。

6.高斯-赛德尔迭代法高斯-赛德尔迭代法是雅可比迭代法的改进方法。

该方法在每一次迭代时,使用已经更新的解来计算新的解。

相比于雅可比迭代法,高斯-赛德尔迭代法的收敛速度更快。

7.松弛因子迭代法松弛因子迭代法是一种对高斯-赛德尔迭代法的改进方法。

该方法在每一次迭代时,通过引入松弛因子来调节新解与旧解之间的关系。

可以通过选择合适的松弛因子来加快迭代速度。

以上是一些常用的线性方程组求解方法,不同的方法适用于不同类型的线性方程组。

在实际应用中,根据问题的特点和要求选择合适的求解方法可以提高计算的效率和精度。

线性方程组求解方法

线性方程组求解方法

线性方程组求解方法a1x1 + a2x2 + a3x3 + ... + anxn = b其中,a1、a2、a3、..、an为已知常数,b为已知常数或未知数,x1、x2、x3、..、xn为未知数。

求解线性方程组的方法有很多种,下面将介绍几种常见的方法。

1.直接代入法:直接代入法是最简单的求解线性方程组的方法之一、对于一个线性方程组,选择一个方程,解出一个未知数,然后将该解代入其他方程中,依次求解出其他未知数,最后验证是否满足所有方程。

2.消元法:消元法是求解线性方程组的一种常用方法,它通过对方程进行变换,将方程组简化为较简单的等价方程组。

可以分为高斯消元法和高斯-约当消元法两种。

-高斯消元法:高斯消元法是将线性方程组转化为上三角形方程组的一种方法,具体步骤如下:(1)将方程组排列成增广矩阵的形式;(2)选择一个方程,将其系数除以该方程的首个非零系数,以确保方程组的首个系数为1;(3)用该方程的倍数加到其他方程上,将其他方程的首个系数变为0;(4)重复上述步骤,直到得到上三角形方程组;(5)通过回代求解未知数的值。

-高斯-约当消元法:高斯-约当消元法是扩展了高斯消元法,可以将线性方程组转化为最简形式的一种方法,具体步骤如下:(1)将方程组排列成增广矩阵的形式;(2)取矩阵的第一个元素为主元,在主元所在的列中找到绝对值最大的元素,将其移动到主元的位置;(3)利用主元的倍数加到其他行,使得主元所在列的其他元素都变为0;(4)重复上述步骤,直到找到主元;(5)利用回代求解未知数的值。

3.矩阵法:矩阵法是利用矩阵来求解线性方程组的一种方法。

线性方程组可以表示为AX=B的形式,其中A为系数矩阵,X为未知数矩阵,B为常数矩阵。

通过对系数矩阵进行逆矩阵操作,可以得到未知数矩阵的解。

4.克莱姆法则:克莱姆法则是一种用于求解n元线性方程组的方法,如果方程组的系数矩阵A满足行列式,A,不等于零,则可以使用克莱姆法则求解。

线性方程组解法归纳总结

线性方程组解法归纳总结

线性方程组解法归纳总结在数学领域中,线性方程组是一类常见的方程组,它由一组线性方程组成。

解决线性方程组是代数学的基础知识之一,广泛应用于各个领域。

本文将对线性方程组的解法进行归纳总结。

一、高斯消元法高斯消元法是解决线性方程组的基本方法之一。

其基本思想是通过逐步消元,将线性方程组转化为一个上三角形方程组,从而求得方程组的解。

具体步骤如下:1. 将线性方程组写成增广矩阵的形式,即将系数矩阵和常数向量合并成一个矩阵。

2. 选取一个非零的主元(通常选取主对角线上的元素),通过初等行变换将其它行的对应位置元素消为零。

3. 重复上述步骤,逐步将系数矩阵转化为上三角形矩阵。

4. 通过回代法,从最后一行开始求解未知数,逐步得到线性方程组的解。

高斯消元法的优点是理论基础牢固,适用于各种规模的线性方程组。

然而,该方法有时会遇到主元为零或部分主元为零的情况,需要进行特殊处理。

二、克拉默法则克拉默法则是一种用行列式求解线性方程组的方法。

它利用方程组的系数矩阵和常数向量的行列式来求解未知数。

具体步骤如下:1. 求出系数矩阵的行列式,若行列式为零则方程组无解。

2. 对于每个未知数,将系数矩阵中对应的列替换为常数向量,再求出替换后矩阵的行列式。

3. 用未知数的行列式值除以系数矩阵的行列式值,即可得到该未知数的解。

克拉默法则的优点是计算简单,适用于求解小规模的线性方程组。

然而,由于需要计算多次行列式,对于大规模的线性方程组来说效率较低。

三、矩阵法矩阵法是一种将线性方程组转化为矩阵运算的方法。

通过矩阵的逆运算或者伴随矩阵求解线性方程组。

具体步骤如下:1. 将线性方程组写成矩阵的形式,其中系数矩阵为A,未知数矩阵为X,常数向量矩阵为B。

即AX=B。

2. 若系数矩阵A可逆,则使用逆矩阵求解,即X=A^(-1)B。

3. 若系数矩阵A不可逆,则使用伴随矩阵求解,即X=A^T(ATA)^(-1)B。

矩阵法的优点是适用于各种规模的线性方程组,且运算速度较快。

线性方程组三种求解方法

线性方程组三种求解方法

线性方程组三种求解方法
线性方程组是由一组线性方程所组成的集合,它是计算机科学中最基本的抽象模型之一。

线性方程组的求解有多种方法,最常用的方法有三种:高斯消元法,全选主元法和乘法因子法。

高斯消元法是一种消除法。

它能将线性方程组变换成求解矩阵的方法,将线性方程组中的未知数从一个方程参与到另一个方程,以实现变量间的互换,当这种变形在线性方程的个数和方程式的系数不相等的时候,系数矩阵就得到了转换,最后实现方程的求解。

由于本质上利用线性变换方法,有可能不能够求解它,而异常解会出现,所以不适合解决线性方程组。

全选主元法是一种消元法,也是线性方程组求解的重要方法。

全选主元法的基本思路是:从一个给定的方程组开始,选出一个最大的系数做主元,将这个未知数代入另一个方程,不断地进行计算,直到求出所有的未知数的值,最后得到相应的解。

全选主元法的优点是计算次数少,能够求出超定方程组的解。

乘法因子法是一种简化法,也是解高维度方程组的有效方法,它是一种缩减矩阵法,把一组方程简化成新形式,其思路是把一个系数矩阵和它的乘法因子矩阵相乘,乘法因子矩阵通过消去系数矩阵中一些行和一些列,来使原始方程组变得简洁,使得求解系数矩阵变得可能,最后可以实现方程组的求解。

总的来说,三种线性方程组的求解方法都有其优势,它们都是有效的解决方案,根据实际情况应用不同的方法可以求出合适的解,同时,在计算机应用中,更多的方法也在发展和探索当中。

线性方程组的解法

线性方程组的解法

线性方程组的解法线性方程组是数学中常见的问题,解决线性方程组可以帮助我们求解各种实际问题。

在本文中,我们将介绍几种常见的求解线性方程组的方法。

一、高斯消元法高斯消元法是最常见、最简单的一种求解线性方程组的方法。

该方法的基本思想是通过一系列的行变换将线性方程组化为简化的梯形方程组,并进一步求解出方程组的解。

具体的步骤如下:1. 将线性方程组写成增广矩阵的形式。

2. 选取矩阵中的一个元素作为主元,将主元所在的行进行换位,使主元尽可能地靠近对角线。

3. 使用消元法,通过将主元下方的所有元素消为零,将矩阵化为简化的梯形矩阵。

4. 从最后一行开始,逆推求解出每个未知数的值。

高斯消元法的优点是简单易懂,适用于一般的线性方程组。

然而,该方法在涉及大规模矩阵的情况下计算量较大,效率相对较低。

二、矩阵的逆和逆矩阵法矩阵的逆和逆矩阵法是通过求解矩阵的逆矩阵来求解线性方程组的方法。

这种方法需要先求出矩阵的逆矩阵,然后利用逆矩阵和增广矩阵相乘得到方程组的解。

具体的步骤如下:1. 将线性方程组写成增广矩阵的形式。

2. 求解增广矩阵的逆矩阵。

3. 将逆矩阵与增广矩阵相乘,得到方程组的解。

矩阵的逆和逆矩阵法的优点是适用于包含多个方程组的情况,且相对于高斯消元法在计算大型矩阵时具有更高的效率。

然而,该方法要求矩阵可逆,且逆矩阵存在才能得到准确的解。

三、克拉默法则克拉默法则是一种基于行列式的方法,用于求解含有n个未知数的n个线性方程组的解。

该方法通过求解方程组的行列式来得到各个未知数的解。

具体的步骤如下:1. 将线性方程组写成矩阵形式,并求出系数矩阵的行列式D。

2. 分别将系数矩阵的每一列替换成常数项的列向量,分别求出替换后的矩阵的行列式D1、D2...Dn。

3. 通过D1/D、D2/D...Dn/D得到方程组的解。

克拉默法则的优点是对于小规模的线性方程组简单易懂,但对于大规模的线性方程组计算量较大,效率较低。

总结:以上介绍了几种常见的线性方程组的求解方法,包括高斯消元法、矩阵的逆和逆矩阵法,以及克拉默法则。

线性方程组的解法

线性方程组的解法

线性方程组的解法一、引言线性方程组是数学中的重要概念,广泛应用于各个领域,包括物理学、经济学、工程学等。

解决线性方程组有多种方法,本文将介绍常见的三种解法:高斯消元法、矩阵法和克拉默法。

二、高斯消元法高斯消元法是一种基于矩阵变换的解法,可以将线性方程组转化为简化行阶梯形矩阵,从而快速求解解向量。

具体步骤如下:1. 将线性方程组写成增广矩阵形式;2. 选择一个非零首元,在该列中其余元素乘以某个系数并相减,使得除首元外该列其他元素变为零;3. 重复第二步,直至将矩阵转化为简化行阶梯形矩阵;4. 从简化行阶梯形矩阵中读出解。

三、矩阵法矩阵法是一种基于矩阵运算的解法,将线性方程组转化为矩阵形式,并求解矩阵的逆矩阵,从而得到解向量。

具体步骤如下:1. 将线性方程组写成矩阵形式;2. 求解矩阵的逆矩阵;3. 用逆矩阵乘以等号右边的向量,得到解向量。

四、克拉默法克拉默法是一种利用行列式性质求解线性方程组的方法,适用于方程组个数与未知数个数相等的情况。

具体步骤如下:1. 将线性方程组写成矩阵形式;2. 计算行列式的值;3. 分别用等号右边的向量替换矩阵中对应的列,再求解行列式的值;4. 将第三步得到的值除以第二步得到的值,得到解向量。

五、比较与应用场景1. 高斯消元法在实际计算中具有高效性和稳定性,适用于任意线性方程组求解;2. 矩阵法需要先求解矩阵的逆矩阵,计算过程相对复杂,适用于方程组个数与未知数个数相等的情况;3. 克拉默法计算过程较为复杂,不适用于大规模方程组的求解,但对于小规模方程组求解比较便捷。

六、总结线性方程组的解法有多种,本文介绍了高斯消元法、矩阵法和克拉默法三种常见方法。

应根据具体情况选择合适的方法来求解线性方程组,以达到高效、准确的目的。

对于大规模方程组的计算,高斯消元法更具优势;对于方程组个数与未知数个数相等的情况,矩阵法和克拉默法更适用。

随着数学计算方法的不断发展,越来越多的解法将出现,为解决复杂的线性方程组提供更多选择。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 线性方程组§1 消元法一、线性方程组的初等变换现在讨论一般线性方程组.所谓一般线性方程组是指形式为⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++sn sn s s n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212*********,, (1) 的方程组,其中n x x x ,,,21 代表n 个未知量,s 是方程的个数,),,2,1;,,2,1(n j s i a ij ==称为线性方程组的系数,),,2,1(s j b j =称为常数项.方程组中未知量的个数n 与方程的个数s 不一定相等.系数ij a 的第一个指标i 表示它在第i 个方程,第二个指标j 表示它是j x 的系数.所谓方程组(1)的一个解就是指由n 个数n k k k ,,,21 组成的有序数组),,,(21n k k k ,当n x x x ,,,21 分别用n k k k ,,,21 代入后,(1)中每个等式都变成恒等式. 方程组(1)的解的全体称为它的解集合.解方程组实际上就是找出它全部的解,或者说,求出它的解集合.如果两个方程组有相同的解集合,它们就称为同解的.显然,如果知道了一个线性方程组的全部系数和常数项,那么这个线性方程组就基本上确定了.确切地说,线性方程组(1)可以用下面的矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛s sns s n n b a a a b a a a b a a a21222221111211 (2) 来表示.实际上,有了(2)之后,除去代表未知量的文字外线性方程组(1)就确定了,而采用什么文字来代表未知量当然不是实质性的.在中学所学代数里学过用加减消元法和代入消元法解二元、三元线性方程组.实际上,这个方法比用行列式解线性方程组更有普遍性.下面就来介绍如何用一般消元法解一般线性方程组.例如,解方程组⎪⎩⎪⎨⎧=++=++=+-.522,4524,132321321321x x x x x x x x x 第二个方程组减去第一个方程的2倍,第三个方程减去第一个方程,就变成⎪⎩⎪⎨⎧=-=-=+-.42,24,1323232321x x x x x x x 第二个方程减去第三个方程的2倍,把第二第三两个方程的次序互换,即得⎪⎩⎪⎨⎧-==-=+-.6,42,132332321x x x x x x 这样,就容易求出方程组的解为(9,-1,-6).分析一下消元法,不难看出,它实际上是反复地对方程组进行变换,而所用的变换也只是由以下三种基本的变换所构成:1. 用一非零数乘某一方程;2. 把一个方程的倍数加到另一个方程;3. 互换两个方程的位置.定义1 变换1,2,3称为线性方程组的初等变换. 二、线性方程组的解的情形消元的过程就是反复施行初等变换的过程.下面证明,初等变换总是把方程组变成同解的方程组.下面我们来说明,如何利用初等变换来解一般的线性方程组.对于方程组(1),首先检查1x 的系数.如果1x 的系数12111,,,s a a a 全为零,那么方程组(1)对1x 没有任何限制,1x 就可以取任何值,而方程组(1)可以看作n x x ,,2 的方程组来解.如果1x 的系数不全为零,那么利用初等变换3,可以设011≠a .利用初等变换2,分别把第一个方程的111a a i -倍加到第i 个方程(n i ,,2 =).于是方程组(1)就变成⎪⎪⎩⎪⎪⎨'='++''='++',,222222*********s n sn s n n n n b x a x a b x a x a (3) 其中n j s i a a a a a j i ij ij,,2,,,2,1111==⋅-=' 这样,解方程组(1)的问题就归结为解方程组⎪⎩⎪⎨⎧'='++''='++'n n sn s n n b x a x a b x a x a2222222, (4) 的问题.显然(4)的一个解,代入(3)的第一个方程就定出1x 的值,这就得出(3)的一个解;(3)的解显然都是(4)的解.这就是说,方程组(3)有解的充要条件为方程组(4)有解,而(3)与(1)是同解的,因之,方程组(1)有解的充要条件为方程组(4)有解.对(4)再按上面的考虑进行变换,并且这样一步步作下去,最后就得到一个阶梯形方程组.为了讨论起来方便,不妨设所得的方程组为⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧====++=++++=++++++.00,00,0,,,1222222111212111 r r n rn r rr n n r r n n r r d d x c x c d x c x c x c d x c x c x c x c (5) 其中r i c ii ,,2,1,0 =≠.方程组(5)中的“0=0”这样一些恒等式可能不出现,也可能出现,这时去掉它们也不影响(5)的解.而且(1)与(5)是同解的.现在考虑(5)的解的情况.如(5)中有方程10+=r d ,而01≠+r d .这时不管n x x x ,,,21 取什么值都不能使它成为等式.故(5)无解,因而(1)无解.当1+r d 是零或(5)中根本没有“0=0”的方程时,分两种情况: 1)n r =.这时阶梯形方程组为⎪⎪⎩⎪⎪⎨==++,,22222n n nn n n d x c d x c x c (6) 其中n i c ii ,,2,1,0 =≠.由最后一个方程开始,11,,,x x x n n -的值就可以逐个地唯一决定了.在这个情形,方程组(6)也就是方程组(1)有唯一的解.例1 解线性方程组⎪⎩⎪⎨⎧=++=++=+-.522,4524,132321321321x x x x x x x x x 2)n r <.这时阶梯形方程组为⎪⎪⎩⎪⎪⎨⎧=+++=+++++=++++++++++++,,,11,2211,222221111,11212111r n rn r r r r rr n n r r r r n n r r r r d x c x c x c d x c x c x c x c d x c x c x c x c x c 其中r i c ii ,,2,1,0 =≠.把它改写成⎪⎪⎩⎪⎪⎨⎧---=---=++---=+++++++++.,,11,211,222222111,111212111n rn r r r r r rr n n r r r r n n r r r r x c x c d x c x c x c d x c x c x c x c d x c x c x c (7) 由此可见,任给n r x x ,,1 +一组值,就唯一地定出r x x x ,,,21 的值,也就是定出方程组(7)的一个解.一般地,由(7)我们可以把r x x x ,,,21 通过n r x x ,,1 +表示出来,这样一组表达式称为方程组(1)的一般解,而n r x x ,,1 +称为一组自由未知量.例2 解线性方程组⎪⎩⎪⎨⎧-=+-=+-=+-.142,4524,132321321321x x x x x x x x x 从这个例子看出,一般线性方程组化成阶梯形,不一定就是(5)的样子,但是只要把方程组中的某些项调动一下,总可以化成(5)的样子.以上就是用消元法解线性方程组的整个过程.总起来说就是,首先用初等变换化线性方程组为阶梯形方程组,把最后的一些恒等式“0=0”(如果出现的话)去掉.如果剩下的方程当中最后的一个等式是零等于一非零的数,那么方程组无解,否则有解.在有解的情况下,如果阶梯形方程组中方程的个数r 等于未知量的个数,那么方程组有唯一的解;如果阶梯形方程组中方程的个数r 小于未知量的个数,那么方程组就有无穷多个解.定理1 在齐次线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++0,0,0221122221211212111n sn s s nn n n x a x a x a x a x a x a x a x a x a 中,如果n s <,那么它必有非零解.矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛s sns s n n b a a a b a a a b a a a21222221111211 (10) 称为线性方程组(1)的增广矩阵.显然,用初等变换化方程组(1)成阶梯形就相当于用初等行变换化增广矩阵(10)成阶梯形矩阵.因此,解线性方程组的第一步工作可以通过矩阵来进行,而从化成的阶梯形矩阵就可以判别方程组有解还是无解,在有解的情形,回到阶梯形方程组去解.例3 解线性方程组⎪⎩⎪⎨⎧=+-=+-=+-.042,4524,132321321321x x x x x x x x x§2 n 维向量空间定义2 所谓数域P 上一个n 维向量就是由数域P 中n 个数组成的有序数组),,,(21n a a a (1)i a 称为向量(1)的分量.用小写希腊字母 ,,,γβα来代表向量. 定义3 如果n 维向量),,,(,),,,(2121n n b b b a a a ==βα的对应分量都相等,即),,2,1(n i b a ii ==.就称这两个向量是相等的,记作βα=.n 维向量之间的基本关系是用向量的加法和数量乘法表达的.定义4 向量),,,(2211n n b a b a b a +++= γ称为向量),,,(,),,,(2121n n b b b a a a ==βα的和,记为βαγ+=由定义立即推出:交换律: αββα+=+. (2) 结合律: γβαγβα++=++)()(. (3) 定义5 分量全为零的向量)0,,0,0(称为零向量,记为0;向量),,,(21n a a a --- 称为向量),,,(21n a a a =α的负向量,记为α-.显然对于所有的α,都有αα=+0. (4) 0)(=-+αα. (5) (2)—(5)是向量加法的四条基本运算规律.定义6 )(βαβα-+=-定义7 设k 为数域P 中的数,向量),,,(21n ka ka ka称为向量),,,(21n a a a =α与数k 的数量乘积,记为αk由定义立即推出:βαβαk k k +=+)(, (6) αααl k l k +=+)(, (7) αα)()(kl l k =, (8)αα=1. (9)(6)—(9)是关于数量乘法的四条基本运算规则.由(6)—(9)或由定义不难推出:00=α, (10)αα-=-)1(, (11)00=k . (12)如果0,0≠≠αk ,那么0≠αk . (13)定义8 以数域P 中的数作为分量的n 维向量的全体,同时考虑到定义在它们上面的加法和数量乘法,称为数域P 上的n 维向量空间.在3=n 时,3维实向量空间可以认为就是几何空间中全体向量所成的空间. 以上已把数域P 上全体n 维向量的集合组成一个有加法和数量乘法的代数结构,即数域P 上n 维向量空间.向量通常是写成一行:),,,(21n a a a =α.有时也可以写成一列:⎪⎪⎪⎪⎪⎭⎫⎝⎛=n a a a 21α.为了区别,前者称为行向量,后者称为列向量。

相关文档
最新文档